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Announcements

• Read Chapter 4

• Homework 3 is due on Tuesday October 1

• Exam 1 is Thursday October 10 during class; 

closed book, closed notes.  One 8.5 by 11 inch note 

sheet and calculators allowed.  
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Exciter Models
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Exciters, Including AVR

• Exciters are used to control the synchronous machine 

field voltage and current

– Usually modeled with automatic voltage regulator included

• A useful reference is IEEE Std 421.5-2016 

– Updated from the 2005 edition

– Covers the major types of exciters used in transient stability

– Continuation of standard designs started with  "Computer 

Representation of Excitation Systems," IEEE Trans. Power 

App. and Syst., vol. pas-87, pp. 1460-1464, June 1968

• Another reference is P. Kundur, Power System Stability 

and Control, EPRI, McGraw-Hill, 1994 

– Exciters are covered in Chapter 8 as are block diagram basics
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Types of DC Machines

• If there is a field winding (i.e., not a permanent 

magnet machine) then the machine can be 

connected in the following ways

– Separately-excited: Field and armature windings are 

connected to separate power sources

• For an exciter, control is provided by varying the field current 

(which is stationary), which changes the armature voltage

– Series-excited: Field and armature windings are in series

– Shunt-excited: Field and armature windings are in 

parallel
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Separately Excited DC Exciter
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Separately Excited DC Exciter

• Relate the input voltage, ein1, to vfd

1 1

f 1

fd a1 1 a1 a1 1

1

1
f 1 fd

a1 1

f 1 fd1

a1 1

f 1 1 fd

in in f 1

a1 1

v K K

v
K

d dv

dt K dt

N dv
e i r

K dt


  








 







 





 

Assuming a constant 

speed 1

Solve above for f1 which was used 

in the previous slide
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Separately Excited DC Exciter
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Separately Excited DC Exciter

• Relate the input voltage, ein1, to vfd
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Separately Excited DC Exciter

• If it was a linear magnetic circuit, then vfd would be 

proportional to in1; for a real system we need to 

account for saturation

  fdfdsat
g

fd
in vvf

K

v
i 

1
1

Without saturation we 

can write

Where  is the 

unsaturated field inductance
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g1 f 1us
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f 1us

K
K L

N

L




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Separately Excited DC Exciter

 

1

1
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1 1 1
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Can be written as
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This equation is then scaled based on the synchronous

machine base values 



12

Separately Excited Scaled Values

 
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output of the 

voltage regulator 

amplifier
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The Self-Excited Exciter

• When the exciter is self-excited, the amplifier 

voltage appears in series with the exciter field

 
dE

fd
T K S E E V E

E E E fd fd R fddt sep

 
     

 
 

Note the 

additional

Efd term on 

the end
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Self and Separated Excited Exciters

• The same model can be used for both by just 

modifying the value of KE

  fd

E E E fd fd R

dE
T K S E E V

dt
   

1 typically .01K K K
E E E
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Exciter Model IEEET1 KE Values

Example IEEET1 Values from a large system 

The KE equal 1 are separately excited, and KE close to 

zero are self excited 
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Saturation

• A number of different functions can be used to 

represent the saturation

• The quadratic approach is now quite common

• Exponential function could also be used

2

2

( ) ( )

( )
An alternative model is ( )

E fd fd
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E fd
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Exponential Saturation
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Exponential Saturation Example
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Voltage Regulator Model

Amplifier

min max

R
A R A in

R R R

dV
T V K V

dt
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 
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R
intref

K

V
VVV In steady state

reftA VVK As KA is increased 

There is often a droop in regulation

Modeled

as a first

order

differential

equation
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Feedback

• This control system can often exhibit instabilities, 

so some type of feedback is used

• One approach is a stabilizing transformer

Designed with a large Lt2 so It2  0

dt

dI
L

N

N
V t

tmF
1

1

2
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Feedback
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IEEET1 Example

• Assume previous GENROU case with saturation.  

Then add a IEEE T1 exciter with Ka=50, Ta=0.04, 

Ke=-0.06, Te=0.6, Vrmax=1.0, Vrmin= -1.0  For 

saturation assume Se(2.8) = 0.04, Se(3.73)=0.33

• Saturation function is 0.1621(Efd-2.303)2 (for Efd

> 2.303); otherwise zero

• Efd is initially 3.22

• Se(3.22)*Efd=0.437

• (Vr-Se*Efd)/Ke=Efd

• Vr =0.244

• Vref = 0.244/Ka +VT =0.0488 +1.0946=1.09948

Case B4_GENROU_Sat_IEEET1
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IEEE T1 Example

• For 0.1 second fault (from before), plot of Efd and 

the terminal voltage is given below

• Initial V4=1.0946, final V4=1.0973

– Steady-state error depends on the value of Ka
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IEEET1 Example

• Same case, except with Ka=500 to decrease steady-

state error, no Vr limits; this case is actually unstable
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IEEET1 Example

• With Ka=500 and  rate feedback, Kf=0.05, Tf=0.5

• Initial V4=1.0946, final V4=1.0957
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WECC Case Type 1 Exciters

• In a recent WECC case with 3519 exciters, 20 are 

modeled with the IEEE T1,  156 with the EXDC1 20 

with the ESDC1A (and none with IEEEX1)

• Graph shows KE value for the EXDC1 exciters in case;

about 1/3 are separately

excited, and the rest self

excited

– A value of KE equal zero 

indicates code should

set KE so Vr initializes

to zero; this is used to mimic

the operator action of trimming this value
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DC2 Exciters

• Other dc exciters exist, such as the EXDC2, which 

is quite similar to the EXDC1

Image Source: Fig 4 of "Excitation System Models for Power Stability Studies," 

IEEE Trans. Power App. and Syst., vol. PAS-100, pp. 494-509, February 1981

Vr limits are 

multiplied by

the terminal

voltage
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ESDC4B

• A newer dc model introduced in 421.5-2005 in which a 

PID controller is added; might represent a retrofit  

Image Source: Fig 5-4 of IEEE Std 421.5-2005
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Desired Performance

• A discussion of the desired performance of exciters is 

contained in IEEE Std. 421.2-2014 (update from 1990)

• Concerned with 

– large signal performance: large, often discrete change in the 

voltage such as due to a fault; nonlinearities are significant

• Limits can play a significant role

– small signal performance: small disturbances in which close to 

linear behavior can be assumed

• Increasingly exciters have inputs from power system 

stabilizers, so performance with these signals is 

important
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Transient Response

• Figure shows typical transient response performance to 

a step change in input

Image Source: IEEE Std 421.2-1990, Figure 3
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Small Signal Performance

• Small signal performance can be assessed by either 

the time responses, frequency response, or 

eigenvalue analysis

• Figure shows the

typical open loop

performance of

an exciter and 

machine in 

the frequency

domain

Image Source: IEEE Std 421.2-1990, Figure 4
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AC Exciters

• Almost all new exciters use an ac source with an 

associated rectifier (either from a machine or static)

• AC exciters use an ac generator and either stationary or 

rotating rectifiers to produce the field current

– In stationary systems the field current is provided through slip 

rings

– In rotating systems since the rectifier is rotating there is no 

need for slip rings to provide the field current

– Brushless systems avoid the anticipated problem of supplying 

high field current through brushes, but these problems have 

not really developed 
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AC Exciter System Overview

Image source: Figures 8.3 of Kundur, Power System Stability and Control, 1994
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ABB UNICITER

Image source: www02.abb.com, Brushless Excitation Systems Upgrade, 
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ABB UNICITER Example

Image source: www02.abb.com, Brushless Excitation Systems Upgrade 
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ABB UNICITER Rotor Field

Image source: www02.abb.com, Brushless Excitation Systems Upgrade, 
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AC Exciter Modeling

• Originally represented by IEEET2 shown below

Image Source: Fig 2 of "Computer Representation of Excitation Systems," 

IEEE Trans. Power App. and Syst., vol. PAS-87, pp. 1460-1464, June 1968

Exciter

model

is quite

similar

to IEEE T1
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EXAC1 Exciter

• The FEX function represent the rectifier regulation, 

which results in a decrease in output voltage as the 

field current is increased

Image Source: Fig 6 of "Excitation System Models for Power Stability Studies," 

IEEE Trans. Power App. and Syst., vol. PAS-100, pp. 494-509, February 1981

KD models the exciter machine reactance

About 

5% of 

WECC

exciters

are

EXAC1
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EXAC1 Rectifier Regulation

Image Source: Figures E.1 and E.2 of "Excitation System Models for Power Stability Studies," 

IEEE Trans. Power App. and Syst., vol. PAS-100, pp. 494-509, February 1981

There are about

6 or 7 main types 

of ac exciter

models

Kc represents the 

commuting reactance
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Initial State Determination, EXAC1

• To get initial states Efd

and Ifd would be known 

and equal

• Solve Ve*Fex(Ifd,Ve) = Efd

– Easy if Kc=0, then In=0 and Fex =1

– Otherwise the FEX function is represented 

by three piecewise functions; need to figure out the 

correct segment; for example for Mode 3

 

fd fd

. .

E E
Rewrite as 

. .

fd c fd

ex fd n

e e

e c fd c fd

E K I
F 1 732 I I 1 732 1

V V

V K I K I
1 732 1 732

 
     

 

   

Need to check

to make sure

we are on 

this segment
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Static Exciters

• In static exciters the field current is supplied from a 

three phase source that is rectified (i.e., there is no 

separate machine)

• Rectifier can be either controlled or uncontrolled

• Current is supplied through slip rings

• Response can be quite rapid
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EXST1 Block Diagram

• The EXST1 is intended to model rectifier in which 

the power is supplied by the generator's terminals 

via a transformer

– Potential-source controlled-rectifier excitation system

• The exciter time constants are assumed to be so 

small they are not represented
Most common

exciter in WECC

with about

14% modeled

with this type

Kc represents the commuting reactance
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EXST4B

• EXST4B models a controlled rectifier design; field 

voltage loop is used to make output independent of 

supply voltage
Second most 

common

exciter in 

WECC

with about

13% modeled

with this type,

though Ve is 

almost always

independent

of IT
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Simplified Excitation System Model

• A very simple model call Simplified EX System 

(SEXS) is available

– Not now commonly used; also other, more detailed 

models, can match this behavior by setting various 

parameters to zero
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Compensation

• Often times it is useful to use a compensated 

voltage magnitude value as the input to the exciter

– Compensated voltage depends on generator current; 

usually Rc is zero

• PSLF and PowerWorld model compensation with 

the machine model using a minus sign

– Specified on the machine base

• PSSE requires a separate model with their COMP 

model also using a negative sign

 c t c c TE V R jX I  
Sign convention is

from IEEE 421.5 

 c t c c TE V R jX I  
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Compensation

• Using the negative sign convention 

– if Xc is negative then the compensated voltage is within the 

machine; this is known as droop compensation, which is used 

reactive power sharing among multiple generators at a bus

– If Xc is positive then the compensated voltage is partially 

through the step-up transformer, allowing better voltage 

stability

– A nice reference is C.W. Taylor, "Line drop compensation, 

high side voltage control, secondary voltage control – why not 

control a generator like a static var compensator," IEEE PES 

2000 Summer Meeting
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Example Compensation Values

Graph shows example compensation values for large system; 

overall about 30% of models use compensation

Negative

values

are within

the machine
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Compensation Example 1

• Added EXST1 model to 4 bus GENROU case with 

compensation of 0.05 pu (on gen's 100 MVA base) 

(using negative sign convention)

– This is looking into step-up transformer

– Initial voltage value is 

  

. . , . .

. . . . . . . .

t t

c

V 1 072 j0 22 I 1 0 j0 3286

E 1 072 j0 22 j0 05 1 0 j0 3286 1 0557 j0 17 1 069

   

      

Case is B4_comp1
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Compensation Example 2

• B4 case with two identical generators, except one in Xc

= -0.1, one with Xc=-0.05; in the power flow the

Mvars are shared equally (i.e., the initial value)

Mvar_Gen Bus 4 #1gfedcb Mvar_Gen Bus 4 #2gfedcb
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Plot shows the

reactive power

output of the two

units, which 

start out equal,

but diverage

because of the

difference

values for Xc

Case is B4_comp2
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Compensation Example 3

• B4 case with two identical generators except with 

slightly different Xc values (into net) (0.05 and 0.048)

• Below graphs show reactive power output if the 

currents from the generators not coordinated (left) or 

are coordinated (right); PowerWorld always does the 

coordinated approach
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Case is B4_comp3
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Initial Limit Violations

• Since many models have limits and the initial state 

variables are dependent on power flow values, 

there is certainly no guarantee that there will not be 

initial limit violations

• If limits are not changed, this does not result in an 

equilibrium point solution

• PowerWorld has several options for dealing with 

this, with the default value to just modify the limits 

to match the initial operating point 

– If the steady-state power flow case is correct, then the 

limit must be different than what is modeled
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Governor Models
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Prime Movers and Governors

• Synchronous generator is used to convert mechanical 

energy from a rotating shaft into electrical energy

• The "prime mover" is what converts the orginal energy 

source into the mechanical energy in the rotating shaft

• Possible sources: 1) steam (nuclear, coal, combined 

cycle, solar thermal), 2) gas turbines, 3) water wheel 

(hydro turbines), 4) diesel/

gasoline, 5) wind 

(which we'll cover separately)

• The governor is used 

to control the speed
Image source: http://upload.wikimedia.org/wikipedia/commons/1/1e/Centrifugal_governor.png
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Prime Movers and Governors

• In transient stability collectively the prime mover and 

the governor are called the "governor"

• As has been previously discussed, models need to be 

appropriate for the application

• In transient stability the response of the system for 

seconds to perhaps minutes is considered

• Long-term dynamics, such as those of the boiler and 

automatic generation control (AG), are usually not 

considered

• These dynamics would need to be considered in longer 

simulations (e.g. dispatcher training simulator (DTS)


