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Announcements

Read Chapter 4
Homework 3 is due today

Exam 1 is Thursday October 10 during class;
closed book, closed notes. One 8.5 by 11 inch note
sheet and calculators allowed.
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Governor Models
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Prime Movers and Governors

T

« Synchronous generator Is used to convert mechanical
energy from a rotating shaft into electrical energy

« The "prime mover" is what converts the orginal energy
source into the mechanical energy in the rotating shaft

* Possible sources: 1) steam (nuclear, coal, combined
cycle, solar thermal), 2) gas turblnes 3) water wheel
(hydro turbines), 4) diesel/
gasoline, 5) wind
(which we'll cover separately)

* The governor is used
to control the speed

FIG. 4.-—Goze; hero
Image source: http://upload.wikimedia. org/mk|ped|a/commons/l/le/CentrlfugaI governor png




Prime Movers and Governors

T

 |In transient stability collectively the prime mover and
the governor are called the "governor"

* As has been previously discussed, models need to be
appropriate for the application

* In transient stability the response of the system for
seconds to perhaps minutes is considered

« Long-term dynamics, such as those of the boiler and
automatic generation control (AG), are usually not
considered

* These dynamics would need to be considered in longer

simulations (e.g. dispatcher training simulator (DTS)
4



Power Grid Disturbance Example

Alw
Figures show the frequency change as a result of the sudden loss of
a large amount of generation in the Southern WECC
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Frequency Response for
Generation LoSS

T
* Inresponse to a rapid loss of generation, in the initial
seconds the system frequency will decrease as energy
stored in the rotating masses is transformed into
electric energy
— Some generation, such as solar PV has no inertia, and for
most new wind turbines the inertia is not seen by the system
« Within seconds governors respond, increasing the
power output of controllable generation

- Many conventional units are operated so they only respond to
over frequency situations

— Solar PV and wind are usually operated in North America at
maximum power so they have no reserves to contribute



Governor Response:
Thermal Versus Hydro

Thermal units respond quickly, hydro ramps slowly (and goes
down initially), wind and solar usually do not respond. And many
units are set to not respond!
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Some Good References

Alw
Kundur, Power System Stability and Control, 1994

Wood, Wollenberg and Sheble, Power Generation,
Operation and Control, third edition, 2013

IEEE PES, "Dynamic Models for Turbine-Governors in
Power System Studies," Jan 2013

"Dynamic Models for Fossil Fueled Steam Units in
Power System Studies," IEEE Trans. Power Syst., May
1991, pp. 753-761

"Hydraulic Turbine and Turbine Control Models for
System Dynamic Studies," IEEE Trans. Power Syst.,
Feb 1992, pp. 167-179
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Frequency Response Definition

KM

 FERC defines in RM13-11: “Frequency response is a
measure of an Interconnection’s ability to stabilize
frequency immediately following the sudden loss of
generation or load, and is a critical component of the
reliable operation of the Bulk-Power System,
particularly during disturbances and recoveries.”

* Design Event for WECC is N-2 (Palo Verde Outage)
not to result in UFLS (59.5 Hz in WECC)

Source: wecc.biz/Reliability/Frequency%20Response%20Analysis%20-%20Dmitry%20Kosterev.pdf
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Frequency Response Measure

A
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NERC FRM BAL-003-1: Frequency difference between Point A and Point B

LBNL Metrics: Frequency difference between Point A and Point C

Source: wecc.biz/Reliability/Frequency%20Response%20Analysis%20-%20Dmitry%20Kosterev.pdf 11



WECC IFRO ~950 MW per 01. Hz, WECC IFRM is trending ~ 1,400 to 1,600 MW per 0.1 Hz
Response at nadir: required ~580 MW per 0.1 Hz, actual is about 800 MW per 0.1 Hz

Source: wecc.biz/Reliability/Frequency%20Response%20Analysis%20-%20Dmitry%20Kosterev.pdf
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Control of Generation Overview

T

« Goal Is to maintain constant frequency with changing
load

 |f there is just a single generator, such with an
emergency generator or isolated system, then an
Isochronous governor is used

— Integrates frequency error to insure frequency goes back to
the desired value |

_ Cannot be used with Steam = St [ ] -
Interconnected systems .
because of "hunting" —_ st

i+ 1G. 9.9 Isoch g !
Image source: Wood/WOHenberg’ ond adition FIG. 9.9 Tsochronous governor
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Generator “Hunting”

T

* Control system “hunting” 1s oscillation around an
equilibrium point

« Trying to interconnect multiple isochronous generators
will cause hunting because the frequency setpoints of
the two generators are never exactly equal

- One will be accumulating a frequency error trying to speed up
the system, whereas the other will be trying to slow it down

- The generators will NOT share the power load proportionally

14



Isochronous Gen Example

o

« WSCC 9 bus from before, gen 3 dropping (85 MW)

— No infinite bus, gen 1 is modeled with an isochronous
generator (PW ISOGov1 model)
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Isochronous Gen Example
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Droop Control
T
« To allow power sharing between generators the
solution is to use what is known as droop control, in
which the desired set point frequency is dependent

upon the generator’s output R is known as the

1 .
Frequency Apm — Apref I Af regLIIatlon Cons.tant
SR R or droop; a typical
104 P e value is 4 or 5%.

at o, = 1.0 per unit

At 60 Hz and a 5%

1.02 ki Slope = —R = 5}1' = —0.04 per unit
\ s droop, each 0.1 Hz
| 00 _ : i - Turbine mechanica Change Wou Id

= power output
(per unit)

oo b - peran change the output
0.98 — ?..:;_m set to -;;wc/// by O' 1/(60*0'05):

Q7 b = 0.50 per unit
o 3.33% |




WSCC 9 Bus Droop Example

T
« Assume the previous gen 3 drop contingency (85 MW),
and that gens 1 and 2 have ratings of 500 and 250 MVA
respectively and governors with a 5% droop. What is
the final frequency (assuming no change in load)?
To solve the problem in per unit, all values need to be on a
common base (say 100 MVA)

Ap,, +Ap,, =85/100=0.85

100 100
R1,100|\/|VA — Rl % =0.04, R2,100|\/|VA — Rz 2_50 =0.02
AP, + AP, =—( = + = )Af =0.85
Rl,lOO MVA RZ,lOOMVA

Af =—-.85/150=0.00567 = —-0.34 Hz — 59.66 Hz 18
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WSCC 9 Bus Droop Example

T

* The below graphs compare the mechanical power and
generator speed; note the steady-state values match the
calculated 59.66 Hz value
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Quick Interconnect Calculation
T
* When studying a system with many generators,

each with the same (or close) droop, then the final

frequency deviationis L e generator group

Af — R ARgen, mw obviously does not
> Siwa include the contingency
OnlineGens generator(s) that are opened

* The online generator summation should only
Include generators that actually have governors that
can respond, and does not take into account
generators hitting their limits

20



Larger System Example

o

* As an example, consider the 37 bus, nine generator
example from earlier; assume one generator with
42 MW is opened. The total MVA of the

remaining generators is 1132. With R=0.05

0.05x42

Af = ——-0.00186 pu =—0.111 Hz — 59.889 Hz
Lo 1132

[v© —— Mech Input, Gen JO345 #1 [v" —— Mech Input, Gen JO345 #2

v 1ol . Gen SLACK345 #1 [ ——— Mech Input, Gen LAUF69 #1
[V —— Mech Input, Gen ROGER69 #1 [v
= Mech Input, Gen BLT69 #1

Case Is Bus37_ TGOV

21



WECC Interconnect
Frequency Response

A

« Data for the four major interconnects is available from
NERC,; these are the values between points A and B

M-4 Interconnection Frequency Response
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Eastern Interconnect
Frequency Response

A

M-4 Interconnection Frequency Response
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ERCOT Interconnect
Frequency Response

M-4 Interconnection Frequency Response
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Impact of Inertia (H)

A

Final frequency is determined by the droop of the

responding governors

How quickly the frequency drops depends upon the
generator inertia values
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20

The least
frequency
deviation
occurs with
high inertia
and fast
governors
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Restoring Frequency to 60 (or 50) Hz

Al

* Inan interconnected power system the governors to not
automatically restore the frequency to 60 Hz

« Rather done via the ACE (area control area
calculation). Previously we defined ACE as the
difference between the actual real power exports from
an area and the scheduled exports. But it has an
additional term
ACE = I:)actual ) I:)sched o 1OB(freqact ) 1:reqsched)

* B is the balancing authority frequency bias in MW/0.1
Hz with a negative sign. It is about 0.8% of peak

load/generation  This slower ACE response is usually
not modeled In transient stability

26



Turbine Models

W
Sue 25

model shaft “squishiness™ as a spring

d5:a)—a)5 \

o

dt Tm = —Kshat (5 = SHp ) =TouT
2H do
T Tm —TeLEC — TFw Usually shaft dynamics
d35 are neglected
AOHP _ 1) 0 — o, ~
dt High-pressure
2H HP da)Hp _T T - turbine shaft
= 1IN —lout :
ws  dt p dynamics
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Steam Turbine Models

Boiler supplies a ""steam chest" with the steam then
entering the turbine through a value

dI:)CH
dt
Assume T. = P.,, and a rigid shaft with P, =T,

Ten =—Fey + Py

Then the above equation becomes
dT
Ton d—,LVI =Ty +Fy

And we just have the swing equations from before
do

— =0— @,

dt

2H do _

o E _TM _TELEC _TFW

We are
assuming
0=0,p and

WO=0pp

o

28
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Steam Governor Model
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Steam Governor Model

dPy, 1

T =Py, +P. - —Aw
SV dt SV C R

a—aq
where Aw = >

s

max
0<Psy <Psy™  Steam valve limits

R =.05 (5% droop)

o

30



TGOV1 Model
AlM

e Standard model that i1s close to this i1s TGOV1

Viax

)

i
+
>
By | —
-
<

About 12% of governors in a 2015 EI model are TGOV1,
R =0.05, T, 1s less than 0.5 (except a few 999°s!), T,
has an average of 7, average T,/T; Is 0.34;

D, is used to model turbine damping and is often zero

(about 80% of time In El) 31



IEEEG1 Model
Al

A common stream turbine model, iIs the IEEEG],
originally introduced in the below 1973 paper

In this model K=1/R

It can be used to represent
cross-compound units, with
high and low pressure steam

IEEE Committee Report, “Dynamic Models for Steam and Hydro Turbines in Power System Studies,” Transactions in 32
Power Apparatus & Systems, volume 92, No. 6, Nov./Dec. 1973, pp 1904-15

U, and U, are rate
limits



IEEEG1
T
* Blocks on the right model the various steam stages

« About 12% of WECC and EI governors are currently
IEEEG1s

» Below figures show two test comparison with this
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Image Source: Figs 2-4, 2-6 of IEEE PES, "Dynamic Models for Turbine-Governors in Power System Studies,” Jan 2013



