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Announcements

• RSVP to Alex at zandra23@ece.tamu.edu for the 

TAMU ECE Energy and Power Group (EPG) 

picnic.  It starts at 5pm on September 27, 2019

• Be reading Chapters 1 and 2
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Power System Stability Terms

• Terms continue to evolve, but a good reference is [1]; image shows Figure 1 

from this reference

[1] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, “Definitions and Classification of Power 

System Stability,” IEEE Transactions Power Systems, May 2004, pp. 1387-1401 2



Physical Structure 
Power System Components
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P. Sauer and M. Pai, Power System Dynamics and Stability



Physical Structure 
Power System Components
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Differential Algebraic Equations

• Many problems, including many in the power area, can 

be formulated as a set of differential, algebraic 

equations (DAE) of the form

• A power example is transient stability, in which f

represents (primarily) the generator dynamics, and g

(primarily) the bus power balance equations

• We'll initially consider the simpler problem of just 
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Ordinary Differential Equations (ODEs) 

• Assume we have a problem of the form

• This is known as an initial value problem, since the 

initial value of x is given at some time t0

– We need to determine x(t) for future time

– Initial value, x0, must be either be given or determined by 

solving for an equilibrium point, f(x) = 0

– Higher-order systems can be put into this first order form

• Except for special cases, such as linear systems, an 

analytic solution is usually not possible – numerical 

methods must be used
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Equilibrium Points

• An equilibrium point x* satisfies

• An equilibrium point is stable if the response to a small 

disturbance remains small

– This is known as Lyapunov stability

– Formally, if for every e > 0, there exists a d = d(e) > 0 such 
that if x(0) – x* < d, then x(t) – x* < e for t  0

• An equilibrium point has asymptotic stability if there 
exists a d > 0 such that if x(0) – x* < d, then 
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Power System Application

• A typical power system application is to assume 

the power flow solution represents an equilibrium 

point

• Back solve to determine the initial state variables, 

x(0)

• At some point a contingency occurs, perturbing the 

state away from the equilibrium point

• Time domain simulation is used to determine 

whether the system returns to the equilibrium point
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Initial value Problem Examples

 

0

0

1 2

2 1 2

Example 1:  Exponential Decay

A simple example with an analytic solution is

x with x(0)  x

This has a solution x(t)  x

Example 2: Mass-Spring System

or

x
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Numerical Solution Methods

• Numerical solution methods do not generate exact 

solutions; they practically always introduce some error

– Methods assume time advances in discrete increments, called 

a stepsize (or time step), Dt

– Speed accuracy tradeoff: a smaller Dt usually gives a better 

solution, but it takes longer to compute 

– Numeric roundoff error due to finite computer word size

• Key issue is the derivative of x, f(x) depends on x, the 

value we are trying to determine

• A solution exists as long as f(x) is continuously 

differentiable
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Numerical Solution Methods

• There are a wide variety of different solution 

approaches, we will only touch on several

• One-step methods: require information about 

solution just at one point, x(t)

– Forward Euler 

– Runge-Kutta

• Multi-step methods: make use of information at 

more than one point, x(t), x(t-Dt), x(t-D2t)…

– Adams-Bashforth

• Predictor-Corrector Methods: implicit

– Backward Euler
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Error Propagation

• At each time step the total round-off error is the sum of 

the local round-off at time and the propagated error 

from steps 1, 2 ,  … , k − 1

• An algorithm with the desirable property that local 

round-off error decays with increasing number of steps 

is said to be numerically stable

• Otherwise, the algorithm is numerically unstable

• Numerically unstable algorithms can nevertheless give 

quite good performance if appropriate time steps are 

used

– This is particularly true when coupled with algebraic 

equations 12



Forward Euler’s Method

• The simplest technique for numerically integrating 

such equations is known as the Euler's Method 

(sometimes the Forward Euler's Method)

• Key idea is to approximate

• In general, the smaller the Dt, the more accurate the 

solution, but it also takes more time steps 
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Euler’s Method Algorithm

0

0 0

end

Set t = t  (usually 0)

(t ) =

Pick the time step t, which is problem specific

While t  t  Do

( ) ( ) ( ( ))

End While

t t t t t
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Euler’s Method Example 1

0

0

Consider the Exponential Decay Example

x with x(0)  x

This has a solution x(t)  x

Since we know the solution we can compare the accuracy

of Euler's method for different time steps

t

x

e

  


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Euler’s Method Example 1, cont’d

t xactual(t) x(t)  Dt=0.1 x(t)  Dt=0.05

0 10 10 10

0.1 9.048 9 9.02

0.2 8.187 8.10 8.15

0.3 7.408 7.29 7.35

… … … …

1.0 3.678 3.49 3.58

… … … …

2.0 1.353 1.22 1.29
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Euler’s Method Example 2

1 2

2 1

1 2

1

Consider the equations describing the horizontal 

position of a cart attached to a lossless spring:

x

Assuming initial conditions of (0) 1 and x (0) 0,

the analytic solution is x ( ) cos .

We

x

x x

x

t t



 

 



 can again compare the results of the analytic and

numerical solutions

17



Euler's Method Example 2, cont'd

1 1 2

2 2 1

Starting from the initial conditions at t =0 we next

calculate the value of x(t) at time t = 0.25.

(0.25) (0) 0.25 (0) 1.0

(0.25) (0) 0.25 (0) 0.25

Then we continue on to the next time step, t 

x x x

x x x

  

   

1 1 2

2 2 1

= 0.50

(0.50) (0.25) 0.25 (0.25)

1.0 0.25 ( 0.25) 0.9375

(0.50) (0.25) 0.25 (0.25)

0.25 0.25 (1.0) 0.50

x x x

x x x

  

    

  

     
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Euler's Method Example 2, cont'd

t x1
actual(t) x1(t)  Dt=0.25

0 1 1

0.25 0.9689 1

0.50 0.8776 0.9375

0.75 0.7317 0.8125

1.00 0.5403 0.6289

… … …

10.0 -0.8391 -3.129

100.0 0.8623 -151,983
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Since we 

know from

the exact

solution that

x1 is bounded

between 

-1 and 1, 

clearly the

method is

numerically

unstable



Euler's Method Example 2, cont'd

Dt x1(10)

actual -0.8391

0.25 -3.129

0.10 -1.4088

0.01 -0.8823

0.001 -0.8423

Below is a comparison of the solution values for x1(t)

at time t = 10 seconds
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Second Order Runge-Kutta Method

• Runge-Kutta methods improve on Euler's method by 

evaluating f(x) at selected points over the time step

• Simplest method is the second order method in which

• That is, k1 is what we get from Euler's; k2 improves on 

this by reevaluating at the estimated end of the time 

step 21
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Second Order Runge-Kutta Algorithm

t = 0, x(0)  =  x0, Dt = step size

While t  tfinal Do 

k1 = Dt f(x(t))

k2 = Dt f(x(t) + k1)

x(t+Dt)  =   x(t) + ( k1 + k2)/2

t = t + Dt

End While
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RK2 Oscillating Cart

• Consider the same example from before the 

position of a cart attached to a lossless spring.  

Again, with initial conditions of x1(0) =1 and x2(0) 

= 0, the analytic solution is x1(t) = cos(t) 

• With Dt=0.25 

at t = 0
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RK2 Oscillating Cart
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Comparison

• The below table compares the numeric and exact 

solutions for x1(t) using the RK2 algorithm

25

time actual x1(t) x1(t) with RK2

Dt=0.25

0 1 1

0.25 0.9689 0.969

0.50 0.8776 0.876

0.75 0.7317 0.728

1.00 0.5403 0.533

10.0 -0.8391 -0.795

100.0 0.8623 1.072



Comparison of x1(10) for varying Dt

• The below table compares the x1(10) values for 

different values of Dt; recall with Euler's with Dt=0.1 

was -1.41 and with 0.01 was -0.8823

26

Dt x1(10)

actual -0.8391

0.25 -0.7946

0.10 -0.8310

0.01 -0.8390

0.001 -0.8391



RK2 Versus Euler's

• RK2 requires twice the function evaluations per 

iteration, but gives much better results

• With RK2 the error tends to vary with the cube of 

the step size, compared with the square of the step 

size for Euler's

• The smaller error allows for larger step sizes 

compared to Eulers
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Fourth Order Runge-Kutta

• Other Runge-Kutta algorithms are possible, including 

the fourth order 
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RK4 Oscillating Cart Example

• RK4 gives much better results, with error varying with 

the time step to the fifth power  
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time actual x1(t) x1(t) with RK4

Dt=0.25

0 1 1

0.25 0.9689 0.9689

0.50 0.8776 0.8776

0.75 0.7317 0.7317

1.00 0.5403 0.5403

10.0 -0.8391 -0.8392

100.0 0.8623 0.8601



Multistep Methods

• Euler's and Runge-Kutta methods are single step 

approaches, in that they only use information at 

x(t) to determine its value at the next time step

• Multistep methods take advantage of the fact that 

using we have information about previous time 

steps x(t-Dt), x(t-2Dt), etc

• These methods can be explicit or implicit 

(dependent on x(t+Dt) values; we'll just consider 

the explicit Adams-Bashforth approach 

30



Multistep Motivation

• In determining x(t+Dt) we could use a Taylor series 

expansion about x(t)

(note Euler's is just the first two terms on the right-

hand side)
31
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Adams-Bashforth

• What we derived is the second order Adams-Bashforth

approach.  Higher order methods are also possible, by 

approximating subsequent derivatives.  Here we also 

present the third order Adams-Bashforth
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Adams-Bashforth Versus 
Runge-Kutta

• The key Adams-Bashforth advantage is the 

approach only requires one function evaluation per 

time step while the RK methods require multiple 

evaluations

• A key disadvantage is when discontinuities are 

encountered, such as with limit violations; 

• Another method needs to be used until there are 

sufficient past solutions

• They also have difficulties if variable time steps are 

used
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Numerical Instability

• All explicit methods can suffer from numerical 

instability if the time step is not correctly chosen for 

the problem eigenvalues

34
Image source: http://www.staff.science.uu.nl/~frank011/Classes/numwisk/ch10.pdf

Values are scaled by the

time step;  the shape

for RK2 has similar 

dimensions but is closer

to a square.  Key point

is to make sure the time

step is small enough

relative to the eigenvalues



Stiff Differential Equations

• Stiff differential equations are ones in which the 

desired solution has components the vary quite rapidly 

relative to the solution

• Stiffness is associated with solution efficiency: in order 

to account for these fast dynamics we need to take 

quite small time steps
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Implicit Methods

• Implicit solution methods have the advantage of being 

numerically stable over the entire left half plane

• Only methods considered here are the is the Backward 

Euler and Trapezoidal

36

 

 
1

 ( ( )) ( ))  

Then using backward Euler

( ) ( ) ( ( ))

( ) ( )

( ) ( )

t t

t t t t t t

I t t t t

t t I t t


 

 D   D  D

 D  D 

 D   D

x f x Ax

x x A x

A x x

x A x



Implicit Methods

• The obvious difficulty associated with these methods is 

x(t) appears on both sides of the equation

• Easiest to show the solution for the linear case: 
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Backward Euler Cart Example

• Returning to the cart example 
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Backward Euler Cart Example

• Results with Dt = 0.25 and 0.05  
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time actual 

x1(t)

x1(t) with 

Dt=0.25

x1(t) with 

Dt=0.05

0 1 1 1

0.25 0.9689 0.9411 0.9629

0.50 0.8776 0.8304 0.8700

0.75 0.7317 0.6774 0.7185

1.00 0.5403 0.4935 0.5277

2.00 -0.416 -0.298 -0.3944

Note: Just because the method is numerically stable

doesn't mean it is error free!  RK2 is more

accurate than backward Euler.



Trapezoidal Linear Case

• For the trapezoidal with a linear system we have 
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Trapezoidal Cart Example

• Results with Dt = 0.25, comparing between backward 

Euler and trapezoidal
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time actual 

x1(t)

Backward 

Euler

Trapezoidal

0 1 1 1

0.25 0.9689 0.9411 0.9692

0.50 0.8776 0.8304 0.8788

0.75 0.7317 0.6774 0.7343

1.00 0.5403 0.4935 0.5446

2.00 -0.416 -0.298 -0.4067



Example Transient Stability Results

• Figure shows simulated generator frequencies after a 

large generator outage contingency 
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Spatial Variation of Frequency 
Response: EI Model 
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Electromagnetic Transients

• The modeling of very fast power system dynamics 

(much less than one cycle) is known as electromagnetics 

transients program (EMTP) analysis

– Covers issues such as lightning propagation and switching 

surges

• Concept originally developed by Prof. Hermann 

Dommel for his PhD in the 1960's (now emeritus at 

Univ. British Columbia)

– After his PhD work Dr. Dommel worked at BPA where he was 

joined by Scott Meyer in the early 1970's

– Alternative Transients Program (ATP) developed in response 

to commercialization of the BPA code
44


