ECEN 667 Power System Stability

Lecture 2: Numeric Solution of Differential Equations

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- RSVP to Alex at zandra23@ece.tamu.edu for the TAMU ECE Energy and Power Group (EPG) picnic. It starts at 5pm on September 27, 2019
- Be reading Chapters 1 and 2

Power System Stability Terms

• Terms continue to evolve, but a good reference is [1]; image shows Figure 1 from this reference

[1] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, "Definitions and Classification of Power System Stability," *IEEE Transactions Power Systems*, May 2004, pp. 1387-1401

Physical Structure Power System Components

P. Sauer and M. Pai, Power System Dynamics and Stability

Physical Structure Power System Components

Differential Algebraic Equations

Many problems, including many in the power area, can be formulated as a set of differential, algebraic equations (DAE) of the form
 x = f(x,y)

 $\mathbf{0} = \mathbf{g}(\mathbf{x}, \mathbf{y})$

- A power example is transient stability, in which **f** represents (primarily) the generator dynamics, and **g** (primarily) the bus power balance equations
- We'll initially consider the simpler problem of just
 x = f(x)

Ordinary Differential Equations (ODEs)

- Assume we have a problem of the form $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with $\mathbf{x}(t_0) = \mathbf{x}_0$
- This is known as an initial value problem, since the initial value of **x** is given at some time t₀
 - We need to determine $\mathbf{x}(t)$ for future time
 - Initial value, \mathbf{x}_0 , must be either be given or determined by solving for an equilibrium point, $\mathbf{f}(\mathbf{x}) = \mathbf{0}$
 - Higher-order systems can be put into this first order form
- Except for special cases, such as linear systems, an analytic solution is usually not possible numerical methods must be used

Equilibrium Points

• An equilibrium point **x*** satisfies

 $\dot{x} = f(x^*) = 0$

- An equilibrium point is stable if the response to a small disturbance remains small
 - This is known as Lyapunov stability
 - Formally, if for every $\varepsilon > 0$, there exists a $\delta = \delta(\varepsilon) > 0$ such that if $||\mathbf{x}(0) \mathbf{x}^*|| < \delta$, then $||\mathbf{x}(t) \mathbf{x}^*|| < \varepsilon$ for $t \ge 0$
- An equilibrium point has asymptotic stability if there exists a $\delta > 0$ such that if $||\mathbf{x}(0) \mathbf{x}^*|| < \delta$, then

$$\lim_{t\to\infty} \|\mathbf{x}(t) - \mathbf{x}^*\| = \mathbf{0}$$

Power System Application

- A typical power system application is to assume the power flow solution represents an equilibrium point
- Back solve to determine the initial state variables,
 x(0)
- At some point a contingency occurs, perturbing the state away from the equilibrium point
- Time domain simulation is used to determine whether the system returns to the equilibrium point

Initial value Problem Examples

Example 1: Exponential Decay

A simple example with an analytic solution is

$$\dot{\mathbf{x}} = -x$$
 with $\mathbf{x}(0) = \mathbf{x}_0$

This has a solution $x(t) = x_0 e^{-t}$

Example 2: Mass-Spring System

$$kx - gM = M\ddot{x} + D\dot{x}$$
or
$$\dot{f} \text{ spring force}$$

$$\dot{f} \text{ spring force}$$

$$\dot{x}_1 = x_2$$

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \frac{1}{M}(kx_1 - gM - Dx_2)$$

Numerical Solution Methods

- Numerical solution methods do not generate exact solutions; they practically always introduce some error
 - Methods assume time advances in discrete increments, called a stepsize (or time step), Δt
 - Speed accuracy tradeoff: a smaller Δt usually gives a better solution, but it takes longer to compute
 - Numeric roundoff error due to finite computer word size
- Key issue is the derivative of **x**, **f**(**x**) depends on **x**, the value we are trying to determine
- A solution exists as long as **f**(**x**) is continuously differentiable

Numerical Solution Methods

- There are a wide variety of different solution approaches, we will only touch on several
- One-step methods: require information about solution just at one point, **x**(t)
 - Forward Euler
 - Runge-Kutta
- Multi-step methods: make use of information at more than one point, $\mathbf{x}(t)$, $\mathbf{x}(t-\Delta t)$, $\mathbf{x}(t-\Delta 2t)$...
 - Adams-Bashforth
- Predictor-Corrector Methods: implicit
 - Backward Euler

Error Propagation

- At each time step the total round-off error is the sum of the local round-off at time and the propagated error from steps 1, 2, ..., k 1
- An algorithm with the desirable property that local round-off error decays with increasing number of steps is said to be numerically stable
- Otherwise, the algorithm is numerically unstable
- Numerically unstable algorithms can nevertheless give quite good performance if appropriate time steps are used
 - This is particularly true when coupled with algebraic equations

Forward Euler's Method

- The simplest technique for numerically integrating such equations is known as the Euler's Method (sometimes the Forward Euler's Method)
- Key idea is to approximate

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}(t)) = \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} \mathrm{as} \frac{\Delta \mathbf{x}}{\Delta t}$$

Then

$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \Delta t \mathbf{f}(\mathbf{x}(t))$$

• In general, the smaller the Δt , the more accurate the solution, but it also takes more time steps

Euler's Method Algorithm

Set $t = t_0$ (usually 0)

$$\mathbf{x}(\mathbf{t}_0) = \mathbf{x}_0$$

Pick the time step Δt , which is problem specific

While $t \leq t^{end}$ Do

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{f}(\mathbf{x}(t))$$
$$t = t + \Delta t$$

End While

Euler's Method Example 1

Consider the Exponential Decay Example

$$\dot{\mathbf{x}} = -x$$
 with $\mathbf{x}(0) = \mathbf{x}_0$

This has a solution $x(t) = x_0 e^{-t}$

Since we know the solution we can compare the accuracy of Euler's method for different time steps

Euler's Method Example 1, cont'd

t	x ^{actual} (t)	$\mathbf{x}(t) \Delta t=0.1$	$\mathbf{x}(t) \Delta t=0.05$
0	10	10	10
0.1	9.048	9	9.02
0.2	8.187	8.10	8.15
0.3	7.408	7.29	7.35
•••	•••	•••	•••
1.0	3.678	3.49	3.58
•••	•••	•••	•••
2.0	1.353	1.22	1.29

Euler's Method Example 2

Consider the equations describing the horizontal position of a cart attached to a lossless spring:

$$\dot{\mathbf{x}}_1 = \mathbf{x}_2$$
$$\dot{\mathbf{x}}_2 = -\mathbf{x}_1$$

Assuming initial conditions of $x_1(0) = 1$ and $x_2(0) = 0$, the analytic solution is $x_1(t) = \cos t$.

We can again compare the results of the analytic and numerical solutions

Euler's Method Example 2, cont'd

Starting from the initial conditions at t = 0 we next calculate the value of x(t) at time t = 0.25.

$$x_1(0.25) = x_1(0) + 0.25 x_2(0) = 1.0$$

 $x_2(0.25) = x_2(0) - 0.25 x_1(0) = -0.25$

Then we continue on to the next time step, t = 0.50

$$x_1(0.50) = x_1(0.25) + 0.25 x_2(0.25) =$$

= 1.0+0.25×(-0.25) = 0.9375

$$x_2(0.50) = x_2(0.25) - 0.25 x_1(0.25) = -0.25 - 0.25 \times (1.0) = -0.50$$

Euler's Method Example 2, cont'd

t	$x_1^{actual}(t)$	$x_1(t) \Delta t = 0.25$
0	1	1
0.25	0.9689	1
0.50	0.8776	0.9375
0.75	0.7317	0.8125
1.00	0.5403	0.6289
•••	•••	•••
10.0	-0.8391	-3.129
100.0	0.8623	-151,983

Since we know from the exact solution that x_1 is bounded between -1 and 1, clearly the method is numerically unstable

Euler's Method Example 2, cont'd

Below is a comparison of the solution values for $x_1(t)$ at time t = 10 seconds

Δt	x ₁ (10)	
actual	-0.8391	
0.25	-3.129	
0.10	-1.4088	
0.01	-0.8823	
0.001	-0.8423	

Second Order Runge-Kutta Method

- Runge-Kutta methods improve on Euler's method by evaluating **f**(**x**) at selected points over the time step
- Simplest method is the second order method in which $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \frac{1}{2}(\mathbf{k}_1 + \mathbf{k}_2)$

where

$$\mathbf{k}_{1} = \Delta t \ \mathbf{f} \left(\mathbf{x}(t) \right)$$
$$\mathbf{k}_{2} = \Delta t \ \mathbf{f} \left(\mathbf{x}(t) + \mathbf{k}_{1} \right)$$

That is, k₁ is what we get from Euler's; k₂ improves on this by reevaluating at the estimated end of the time step

Second Order Runge-Kutta Algorithm

ЯM

RK2 Oscillating Cart

- Consider the same example from before the position of a cart attached to a lossless spring. Again, with initial conditions of x₁(0) =1 and x₂(0) = 0, the analytic solution is x₁(t) = cos(t)
 - $\dot{x}_1 = x_2$ $\dot{x}_2 = -x_1$
- With $\Delta t=0.25$ $\mathbf{k}_1 = (0.25) \times \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -0.25 \end{bmatrix}$ $\mathbf{x}(0) + \mathbf{k}1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -0.25 \end{bmatrix} = \begin{bmatrix} 1 \\ -0.25 \end{bmatrix}$

RK2 Oscillating Cart

$$\mathbf{k}_{2} = (0.25) \times \mathbf{f} \left(\mathbf{x}(0) + \mathbf{k}_{1} \right) = \begin{bmatrix} -0.0625 \\ -0.25 \end{bmatrix}$$
$$\mathbf{x}(0.25) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{1}{2} \left(\mathbf{k}_{1} + \mathbf{k}_{2} \right) = \begin{bmatrix} 0.96875 \\ -0.25 \end{bmatrix}$$

Comparison

• The below table compares the numeric and exact solutions for $x_1(t)$ using the RK2 algorithm

time	actual $x_1(t)$	$x_1(t)$ with RK2
		$\Delta t=0.25$
0	1	1
0.25	0.9689	0.969
0.50	0.8776	0.876
0.75	0.7317	0.728
1.00	0.5403	0.533
10.0	-0.8391	-0.795
100.0	0.8623	1.072

Comparison of $x_1(10)$ for varying Δt

• The below table compares the $x_1(10)$ values for different values of Δt ; recall with Euler's with $\Delta t=0.1$ was -1.41 and with 0.01 was -0.8823

Δt	x ₁ (10)
actual	-0.8391
0.25	-0.7946
0.10	-0.8310
0.01	-0.8390
0.001	-0.8391

RK2 Versus Euler's

- RK2 requires twice the function evaluations per iteration, but gives much better results
- With RK2 the error tends to vary with the cube of the step size, compared with the square of the step size for Euler's
- The smaller error allows for larger step sizes compared to Eulers

Fourth Order Runge-Kutta

• Other Runge-Kutta algorithms are possible, including the fourth order

$$\mathbf{x}(t+\Delta t) = \mathbf{x}(t) + \frac{1}{6}(\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$

where

$$\mathbf{k}_{1} = \Delta t \ \mathbf{f}\left(\mathbf{x}(t)\right)$$
$$\mathbf{k}_{2} = \Delta t \ \mathbf{f}\left(\mathbf{x}(t) + \frac{1}{2}\mathbf{k}_{1}\right)$$
$$\mathbf{k}_{3} = \Delta t \ \mathbf{f}\left(\mathbf{x}(t) + \frac{1}{2}\mathbf{k}_{2}\right)$$
$$\mathbf{k}_{4} = \Delta t \ \mathbf{f}\left(\mathbf{x}(t) + \mathbf{k}_{2}\right)$$

RK4 Oscillating Cart Example

• RK4 gives much better results, with error varying with the time step to the fifth power

time	actual $x_1(t)$	$x_1(t)$ with RK4
		$\Delta t=0.25$
0	1	1
0.25	0.9689	0.9689
0.50	0.8776	0.8776
0.75	0.7317	0.7317
1.00	0.5403	0.5403
10.0	-0.8391	-0.8392
100.0	0.8623	0.8601

Multistep Methods

- Euler's and Runge-Kutta methods are single step approaches, in that they only use information at x(t) to determine its value at the next time step
- Multistep methods take advantage of the fact that using we have information about previous time steps $\mathbf{x}(t-\Delta t)$, $\mathbf{x}(t-2\Delta t)$, etc
- These methods can be explicit or implicit (dependent on x(t+Δt) values; we'll just consider the explicit Adams-Bashforth approach

Multistep Motivation

 In determining x(t+Δt) we could use a Taylor series expansion about x(t)

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \, \dot{\mathbf{x}}(t) + \frac{\Delta t^2}{2} \, \ddot{\mathbf{x}}(t) + O(\Delta t^3)$$
$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \, \mathbf{f}(t) + \frac{\Delta t^2}{2} \left(\frac{\mathbf{f}(\mathbf{x}(t)) - \mathbf{f}(\mathbf{x}(t - \Delta t))}{\Delta t} + O(\Delta t) \right)$$
$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \left(\frac{3}{2} \mathbf{f}(\mathbf{x}(t)) - \frac{1}{2} \mathbf{f}(\mathbf{x}(t - \Delta t)) \right) + O(\Delta t^3)$$

(note Euler's is just the first two terms on the righthand side)

Adams-Bashforth

- A]M
- What we derived is the second order Adams-Bashforth approach. Higher order methods are also possible, by approximating subsequent derivatives. Here we also present the third order Adams-Bashforth

Second Order

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \frac{\Delta t}{2} \left(3\mathbf{f}(\mathbf{x}(t)) - \mathbf{f}(\mathbf{x}(t - \Delta t)) \right) + O(\Delta t^3)$$

Third Order

$$\mathbf{x}(t+\Delta t) = \mathbf{x}(t) + \frac{\Delta t}{12} \left(23\mathbf{f}(\mathbf{x}(t)) - 16\mathbf{f}(\mathbf{x}(t-\Delta t)) + 5\mathbf{f}(\mathbf{x}(t-2\Delta t)) \right) + O(\Delta t^4)$$

Adams-Bashforth Versus Runge-Kutta

- The key Adams-Bashforth advantage is the approach only requires one function evaluation per time step while the RK methods require multiple evaluations
- A key disadvantage is when discontinuities are encountered, such as with limit violations;
- Another method needs to be used until there are sufficient past solutions
- They also have difficulties if variable time steps are used

Numerical Instability

 All explicit methods can suffer from numerical instability if the time step is not correctly chosen for the problem eigenvalues

Values are scaled by the time step; the shape for RK2 has similar dimensions but is closer to a square. Key point is to make sure the time step is small enough relative to the eigenvalues

Stiff Differential Equations

- Stiff differential equations are ones in which the desired solution has components the vary quite rapidly relative to the solution
- Stiffness is associated with solution efficiency: in order to account for these fast dynamics we need to take quite small time steps

$$\dot{\mathbf{x}}_1 = x_2$$

$$\dot{x}_2 = -1000x_1 - 1001x_2$$

$$\dot{\mathbf{x}} \rightarrow = \begin{bmatrix} 0 & 1 \\ -1000 & -1000 \end{bmatrix} \mathbf{x}$$

$$x_1(t) = Ae^{-t} + Be^{-1000t}$$

Implicit Methods

- Implicit solution methods have the advantage of being numerically stable over the entire left half plane
- Only methods considered here are the is the Backward Euler and Trapezoidal

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}(t)) = \mathbf{A}\mathbf{x}(t))$$

Then using backward Euler

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{A}(\mathbf{x}(t + \Delta t))$$
$$[I - \Delta t \mathbf{A}]\mathbf{x}(t + \Delta t) = \mathbf{x}(t)$$
$$\mathbf{x}(t + \Delta t) = [I - \Delta t \mathbf{A}]^{-1}\mathbf{x}(t)$$

Implicit Methods

- The obvious difficulty associated with these methods is **x**(t) appears on both sides of the equation
- Easiest to show the solution for the linear case:

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}(t)) = \mathbf{A}\mathbf{x}(t))$

Then using backward Euler

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{A}(\mathbf{x}(t + \Delta t))$$
$$[I - \Delta t \mathbf{A}]\mathbf{x}(t + \Delta t) = \mathbf{x}(t)$$
$$\mathbf{x}(t + \Delta t) = [I - \Delta t \mathbf{A}]^{-1}\mathbf{x}(t)$$

Backward Euler Cart Example

• Returning to the cart example

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{x}(t))$$

Then using backward Euler with $\Delta t = 0.25$

$$\mathbf{x}(t + \Delta t) = \begin{bmatrix} I - \Delta t \mathbf{A} \end{bmatrix}^{-1} \mathbf{x}(t) = \begin{bmatrix} 1 & -0.25 \\ 0.25 & 1 \end{bmatrix}^{-1} \mathbf{x}(t)$$

Backward Euler Cart Example

• Results with $\Delta t = 0.25$ and 0.05

time	actual	$x_1(t)$ with	$x_1(t)$ with
	$\mathbf{x}_{1}(t)$	$\Delta t=0.25$	$\Delta t = 0.05$
0	1	1	1
0.25	0.9689	0.9411	0.9629
0.50	0.8776	0.8304	0.8700
0.75	0.7317	0.6774	0.7185
1.00	0.5403	0.4935	0.5277
2.00	-0.416	-0.298	-0.3944

Note: Just because the method is numerically stable doesn't mean it is error free! RK2 is more accurate than backward Euler.

Trapezoidal Linear Case

• For the trapezoidal with a linear system we have

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}(t)) = \mathbf{A}\mathbf{x}(t))$$
$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \frac{\Delta t}{2} \Big[\mathbf{A}(\mathbf{x}(t)) + \mathbf{A}(\mathbf{x}(t + \Delta t)) \Big]$$
$$\Big[I - \frac{\Delta t}{2} \mathbf{A} \Big] \mathbf{x}(t + \Delta t) = \Big[I + \frac{\Delta t}{2} \mathbf{A} \Big] \mathbf{x}(t)$$
$$\mathbf{x}(t + \Delta t) = \Big[I - \Delta t \mathbf{A} \Big]^{-1} \Big[I + \frac{\Delta t}{2} \mathbf{A} \Big] \mathbf{x}(t)$$

Trapezoidal Cart Example

• Results with $\Delta t = 0.25$, comparing between backward Euler and trapezoidal

time	actual	Backward	Trapezoidal
	$\mathbf{x}_{1}(t)$	Euler	
0	1	1	1
0.25	0.9689	0.9411	0.9692
0.50	0.8776	0.8304	0.8788
0.75	0.7317	0.6774	0.7343
1.00	0.5403	0.4935	0.5446
2.00	-0.416	-0.298	-0.4067

Example Transient Stability Results

AM

• Figure shows simulated generator frequencies after a large generator outage contingency

Spatial Variation of Frequency Response: El Model

Electromagnetic Transients

- The modeling of very fast power system dynamics (much less than one cycle) is known as electromagnetics transients program (EMTP) analysis
 - Covers issues such as lightning propagation and switching surges
- Concept originally developed by Prof. Hermann Dommel for his PhD in the 1960's (now emeritus at Univ. British Columbia)
 - After his PhD work Dr. Dommel worked at BPA where he was joined by Scott Meyer in the early 1970's
 - Alternative Transients Program (ATP) developed in response to commercialization of the BPA code