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Announcements

• Read Chapter 8

• Homework 5 is due Today

• Homework 6 is due on Tuesday December 3

• Final is at scheduled time here (December 9 

from1pm to 3pm)
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Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the General Information tab 

shows information about the two bus equivalent

PowerWorld case B4_SMIB
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Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the A Matrix tab shows the Asys

matrix for the SMIB generator

• In this example A21 is showing
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Example: Bus 4 with 
GENROU Model

• The eigenvalues can be calculated for any set of 

generator models

• The example can be extended by replacing the bus 4 

generator classical machine with a GENROU model

– There are now six eigenvalues, with the dominate response 

coming from the electro-mechanical mode with a frequency 

of 1.84 Hz, and damping of 6.9%

PowerWorld case B4_SMIB_GENROU
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Relation to the Signal-Based 
Approaches

• The results from the SMIB analysis can be compared 

with the signal-based approach by applying a short self-

clearing fault to disturb the system

• This can be done easily in PowerWorld by running the 

transient stability simulation, looking at the Results 

from RAM page, right-clicking on the desired signal(s) 

and selecting Modal Analysis Selected Column.  

• The next slide shows the results for the Bus 4 Generator 

rotor angle (which would not be directly observable) 
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Bus 4 Generator Rotor Angle

• Notice that the main mode, at 1.84 Hz with 7% 

damping closely matches

Not all modes will be easily observed in all signals
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Example: Bus 4 with 
GENROU Model and Exciter

• Adding an relatively slow EXST1 exciter adds 

additional states (with KA=200, TA=0.2)

– As the initial reactive power output of the generator is 

decreased, the system becomes unstable 

Case is saved as B4_GENROU_EXST1
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Example: Bus 4 with 
GENROU Model and Exciter

• With Q4 = 25 Mvar the eigenvalues are

• And with Q4=0 Mvar the eigenvalues are 
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Example: Bus 4 with 
GENROU Model and Exciter

• Graph shows response following a short fault when Q4 

is 0 Mvar

• This motivates trying to get additional insight into how 

to increase system damping, which is the goal of modal 

analysis
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Modal Analysis - Comments

• Modal analysis (analysis of small signal stability 

through eigenvalue analysis) is at the core of SSA 

software

• In Modal Analysis one looks at:

– Eigenvalues

– Eigenvectors (left or right)

– Participation factors

– Mode shape

• Power System Stabilizer (PSS) design in a multi-

machine context can be done using modal analysis 

method (we’ll see another method later)

Goal is to

determine

how the various

parameters

affect the 

response of

the system
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Eigenvalues, Right Eigenvectors

• For an n by n matrix A the eigenvalues of A are the 

roots of the characteristic equation:

• Assume l1…ln as distinct (no repeated eigenvalues).

• For each eigenvalue li there exists an eigenvector    

such that:

• vi is called a right eigenvector

• If li is complex, then vi has complex entries

det[ ] 0l l   A I A I

i i ilAv v
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Left Eigenvectors

• For each eigenvalue li there exists a left 

eigenvector wi such that:

• Equivalently, the left eigenvector is the right 

eigenvector of AT; that is,  

t t

i i ilw A w

t

i i ilA w w
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Eigenvector Properties

• The right and left eigenvectors are orthogonal i.e.

• We can normalize the eigenvectors so that:

, ( )t t

i i i j0 0 i j  w v w v

, ( )t t

i i i j1 0 i j  w v w v
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Eigenvector Example

2
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Eigenvector Example

• Left eigenvectors

51 l
1 1 11 21 11 21

11 21 11

21 11

11 21 21

1 2 2

1 2 1 2

1 1 2 2 2 1 1 2

1 4
5 [ ] 5[ ]

3 2

3 5
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3 1
2
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1 4 3 1
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7 , 7 , 0 , 0

t t

t t t t

w w w w

w w w
Let w then w

w w w

Verify

l

 
   

 

 
  

 

   
       

   

       
          

        

   

w A w

w w

v v w w

w v w v w v w v

We would like to make

This can be done in many ways.

1.t

i iw v 
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Eigenvector Example

• It can be verified that WT=V-1 . 

• The left and right eigenvectors are used in 
computing the participation factor matrix.

3 11

4 17

3 4 1 4 1 01

1 1 1 3 0 17

T

Let

Then

Verify

 
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      

W

W V I
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Modal Matrices

• The deviation away from an equilibrium point can be 

defined as

• If the initial deviation corresponds to a right 

eigenvector, then the subsequent response is along this 

eigenvector since 

Δx AΔx

i i ilAv v



18

Modal Matrices

• From this equation (                 ) it is difficult to 

determine how parameters in A affect a particular x

because of the variable coupling

• To decouple the problem first define the matrices 

of the right and left eigenvectors (the modal 

matrices)

1 2 1 2[ , ..... ] & [ , ,..... ]

when ( )

n n

iDiag l

 

 

V v v v W w w w

AV VΛ Λ

Δx AΔx
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Modal Matrices

• It follows that

• To decouple the variables define z so

• Then

• Since  is diagonal, the equations are now uncoupled 

with

• So 

      x Vz x Vz AΔx AVz

1 V AV Λ

1  z V AVz WAVz Λz

( ) ( )t t x Vz

i i iz zl
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Example

• Assume the previous system with

1 4
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1 4

1 3

5 0
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  
 

 
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Modal Matrices

• Thus the response can be written in terms of the 

individual eigenvalues and right eigenvectors as

• Furthermore with

• So z(t) can be written as using the left eigenvectors 

as

( ) ( ) i

n
t

i i

i 1

t z 0 e
l



 x v

1 T  Δx= VZ z V x W x

( )

( ) ( ) [ .... ]

( )

1

t t

1 2 n

n

x t

t t

x t

 
 

 
 
  

z W x w w w

Note, we are

requiring that

the eigenvalues

be distinct!
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Modal Matrices

• We can then write the response x(t) in terms of the 

modes of the system

• So ci is a scalar that represents the magnitude of 

excitation of the ith mode from the initial conditions

( ) ( )

( ) ( )

so  ( )

Expanding ( ) ...

i

n1 2

t

i i

t

i i i

n
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i 1

tt t
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t c e

x t v c e v c e v c e

l

ll l





 



   
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Numerical example

, ( )

Eigenvalues are ,

Eigenvectors are ,

Modal matrix

. .
Normalize so 

. .

1 1

2 2

1 2

1 2

x x0 1 1
0

x x8 2 4

4 2

1 1

4 2

1 1

4 2

0 2425 0 4472

0 9701 0 8944

l l

       
                

  

   
    

   

 
  

 

 
  

 

x

v v

V

V
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Numerical example (contd)

Left eigenvector matrix is:

. .

. .

1

1 1

2 2

1 3745 0 6872

1 4908 0 3727

z z4 0

z z0 2


 

   
 

    
    
    

T

T

W V

z = W AVz
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Numerical example (contd)

, ( ) ( )

( ) .
,

( )

.
( ) ( ) ; ( ) ( ) , ( )

( ) ( )
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. .
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 

 
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25

Because of the initial 

condition, the 2nd mode does 

not get excited
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Mode Shape, Sensitivity and 
Participation Factors 

• So we have 

• x(t) are the original state variables, z(t) are the 
transformed variables so that each variable is 
associated with only one mode.

• From the first equation the right eigenvector gives the 
“mode shape” i.e. relative activity of state variables 
when a particular mode is excited.

• For example the degree of activity of state variable xk

in vi mode is given by the element Vki of the the right 
eigenvector matrix V

) ( ), ( ) ( )tt t t t x( Vz z W x
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Mode Shape, Sensitivity and 
Participation Factors

• The magnitude of elements of vi give the extent of 

activities of n state variables in  the ith mode and 

angles of elements (if complex) give phase 

displacements of the state variables with regard to 

the mode.

• The left eigenvector wi identifies which 

combination of original state variables display only 

the ith mode.
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Eigenvalue Parameter Sensitivity

• To derive the sensitivity of the eigenvalues to the 

parameters recall Avi = livi; take the partial derivative 

with respect to Akj by using the chain rule

Multiply by

[ ]

i i
i i i

kj kj kj kj

t

i

t t t ti i
i i i i i i i

kj kj kj kj

t t ti i
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A A A
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l
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l
l

l
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 
  

   

 
  

   

 
  

  

i

i

vvA
v A v

A

w

vvA
w v w A w v w
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Eigenvalue Parameter Sensitivity

• This is simplified by noting that

by the definition of wi being a left eigenvector 

• Therefore

• Since all elements of          are zero, except the kth

row, jth column is 1

• Thus

( )t

i i 0l w A I

t i
i i

kj kjA A

l


 

A
w v

kjA





A

i
ki ji

kj

W V
A

l



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Sensitivity Example

• In the previous example we had

• Then the sensitivity of l1 and l2 to changes in A are

• For example with 

1,2

1 4 1 4 3 11
, 5, 2, ,

3 2 1 3 4 17
l

     
         

      
A V W

1 2
3 3 4 31 1

,
4 4 4 37 7

i
ki ji

kj

W V
A

l l l      
      

     A A

1,2

1 4ˆ ˆ, 5.61, 1.61,
3 3

l
 

   
 

A
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Eigenvalue Parameter Sensitivity

• This is simplified by noting that

by the definition of wi being a left eigenvector 

• Therefore

• Since all elements of          are zero, except the kth

row, jth column is 1

• Thus

( )t

i i 0l w A I

t i
i i

kj kjA A

l


 

A
w v

kjA





A

i
ki ji

kj

W V
A

l






32

Participation Factors

• The participation factors, Pki, are used to determine how 

much the kth state variable participates in the ith mode 

• The sum of the participation factors for any mode or any 

variable sum to 1

• The participation factors are quite useful in relating the 

eigenvalues to portions of a model

ki ki kiP V W
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Participation Factors

• For the previous example with Pki = VkiWik and

• We get  

3 41

4 37

 
  

 
P

1 4 1 4 3 11
, ,

3 2 1 3 4 17

     
       

      
A V W
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PowerWorld SMIB 
Participation Factors

• The magnitudes of the participation factors are 

shown on the PowerWorld SMIB dialog

• The below values are shown for the four bus 

example with Q4 = 0 

Case is saved as B4_GENROU_Sat_SMIB_QZero
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Oscillations

• An oscillation is just a repetitive motion that can be 

either undamped, positively damped (decaying with 

time) or negatively damped (growing with time)

• If the oscillation can be written as a sinusoid then

• And the damping ratio is defined as (see Kundur 12.46)

The percent damping is just the damping 

ratio multiplied by 100; goal is sufficiently 

positive damping

2 2




 






      cos sin cos

where  and tan

t t

2 2

e a t b t e C t

b
C A B

a

    



  

 
    

 



36

Power System Oscillations

• Power systems can experience a wide range of 

oscillations, ranging from highly damped and high 

frequency switching transients to sustained low 

frequency (< 2 Hz) inter-area oscillations affecting an 

entire interconnect

• Types of oscillations include

– Transients: Usually high frequency and highly damped

– Local plant: Usually from 1 to 5 Hz

– Inter-area oscillations: From 0.15 to 1 Hz

– Slower dynamics: Such as AGC, less than 0.15 Hz

– Subsynchronous resonance: 10 to 50 Hz (less than 

synchronous)
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Example Oscillations

• The below graph shows an oscillation that was 

observed during a 1996 WECC Blackout
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Example Oscillations

• The below graph shows oscillations on the 

Michigan/Ontario Interface on 8/14/03
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Fictitious System Oscillation

Movie shows

an example

of sustained

oscillations in

an equivalent

system
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Forced Oscillations in WECC (from [1])

• Summer 2013 24 hour data: 0.37 Hz oscillations 

observed for several hours. Confirmed to be forced 

oscillations at a hydro plant from vortex effect.

• 2014 data: Another 0.5 Hz oscillation also 

observed. Source points to hydro unit as well. And 

0.7 Hz. And 1.12 Hz. And 2 Hz. 

• Resonance is possible when a system mode is 

poorly damped and close. Resonance can be 

observed in model simulations

1. M. Venkatasubramanian, “Oscillation Monitoring System”,  June 2015

http://www.energy.gov/sites/prod/files/2015/07/f24/3.%20Mani%20Oscillation%20Monitoring.pdf 
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Inter-Area Modes in the WECC

• The dominant inter-area modes in the WECC have 

been well studied

• A good reference paper is D. Trudnowski, 

“Properties of the Dominant Inter-Area Modes in 

the WECC Interconnect,” 2012

– Four well known modes are 

NS Mode A (0.25 Hz), 

NS Mode B (or Alberta Mode), 

(0.4 Hz), BC Mode (0.6 Hz), 

Montana Mode (0.8 Hz)

Below figure from

paper shows NS Mode A

On May 29, 2012


