ECEN 667 Power System Stability

Lecture 23: Small Signal Stability, Oscillations

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University <u>overbye@tamu.edu</u>

Announcements

- Read Chapter 8
- Homework 5 is due Today
- Homework 6 is due on Tuesday December 3
- Final is at scheduled time here (December 9 from1pm to 3pm)

Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the General Information tab shows information about the two bus equivalent

🔘 Generato	or SMIB Ei	genvalue Ir	formation	1			_	-		×
Bus Number	4		~	F	ind By Number	Status		0.1		
Bus Name	Bus 4		~		Find By Name	Open		Cloped and the second secon	sed	
ID	1				Find	Area Name	lome	(1)		
Generator Inf	ormation (o	n Generator I	MVA Base)							
General Info	A Matrix	Eigenvalues								
Generator M	IVA Base	100.000								
Infinite Bus	Voltage Ma	gnitude (pu)	1.0000		Infinite Bus Ar	ngle (deg)		0.000	00	
Terminal Cur	rrent Magni	tude (pu)	1.0526		Terminal Curre	ent Angle (deg)		-18, 19	93	
Terminal Volt	tage Magni	tude (pu)	1.0946		Terminal Volta	ge Angle (deg)		11.59	42	
Network In	mpedance o	n Generator	MVA Base		Network Imped	lance on System	n MVA	Base		
Network R	R <mark>(</mark> Gen Base	.) 0.0000	0		Network R (Sy	stem Base)	0.0	0000		
Network X	(Gen Base) 0.220	00		Network X (Sy	stem Base)	0.2	2000		
🗸 ок		<u>S</u> ave	× (Cance	el 🛛 📍 📍	Help	Pr	int		

PowerWorld case **B4_SMIB**

Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the A Matrix tab shows the A_{sys} matrix for the SMIB generator

🔘 Generato	or SMIB Eigenvalue Inf	ormation		-	- 🗆	×
Bus Number	4	~	Find By Number	Status	ିମ୍ୟ	
Bus Name	Bus 4	~	Find By Name	Open	Closed	
ID	1		Find	Area Name Home	(1)	
Generator Inf General Info	ormation (on Generator M A Matrix Eigenvalues	VA Base)				
: 📃 💽	#T. + + * .00 . 00 // ∰	Records	s • Set • Colum	ns 🔻 📴 🗶 📲 🖉	ÿ• 💎 🗮•	
	Row Name	Mach	nine Angle	Machine Speed	w 🔺	
1 Mac	nine Speed w		-0.3753		0.0000	
2 Mach	nine Angle		0.0000		376.9911	

• In this example A_{21} is showing

$$\frac{\partial \Delta \omega_{4,pu}}{\partial \delta_4} = \frac{1}{2H_4} \left(\frac{-\partial P_{E,4}}{\partial \delta_4} \right) = -\left(\frac{1}{6} \right) \left(\left(\frac{-1}{0.3 + 0.22} \right) \left(-1.2812 \cos\left(23.94^\circ \right) \right) \right)$$
$$= -0.3753$$

Example: Bus 4 with GENROU Model

4

- The eigenvalues can be calculated for any set of generator models
- The example can be extended by replacing the bus 4 generator classical machine with a GENROU model
 - There are now six eigenvalues, with the dominate response coming from the electro-mechanical mode with a frequency of 1.84 Hz, and damping of 6.9%

General I	Info A Matrix	Eigenvalues							
: 🕎 [→ k .00	.00 00 00 00 R	ecords • Set • (Columns 👻 📴 👻	80%8 + 80%8 + 🜱	$\underset{\text{ABED}}{\textcircled{\text{BM}}} \star \underset{\text{ABED}}{\overset{\text{SORT}}{\overset{\text{T}}}} f(x) \star$	Options •		
	Real Part 🛛 🔻	Imag Part	Magnitude	Damping Ratio	Damped Freq (Hz)	Damped Period (Sec)	Undamped Freq (Hz)	Machine Angle	Machine Sp W
1	-0.4248	0.0000	0.4248	1.0000	0.0000		0.0676	0.0027	0.
2	-0.8040	-11.5563	11.5842	0.0694	-1.8392	-0.5437	1.8437	0.7055	0.
3	-0.8040	11.5563	11.5842	0.0694	1.8392	0.5437	1.8437	0.7055	0.
4	-3.7087	0.0000	3.7087	1.0000	0.0000		0.5903	0.0155	0.
5	-14.2256	0.0000	14.2256	1.0000	0.0000		2.2641	0.0044	0.
6	-21.2472	0.0000	21.2472	1.0000	0.0000		3.3816	0.0159	0.

PowerWorld case **B4_SMIB_GENROU**

Relation to the Signal-Based Approaches

- The results from the SMIB analysis can be compared with the signal-based approach by applying a short selfclearing fault to disturb the system
- This can be done easily in PowerWorld by running the transient stability simulation, looking at the **Results** from RAM page, right-clicking on the desired signal(s) and selecting Modal Analysis Selected Column.
- The next slide shows the results for the Bus 4 Generator rotor angle (which would not be directly observable)

Bus 4 Generator Rotor Angle

• Notice that the main mode, at 1.84 Hz with 7% damping closely matches

🔘 Modal Analysis Form												- 🗆	×
Martel Analysis Shahas Rahad		D. 55 AM					Results						
Modal Analysis Status Solved	at 11/9/2019 10:4	2:56 AM					Number	of Complay and De	and Madaa		nclude Detrend in	n Reproduced 9	Signals
Data Source Type			Calo	ulation Method			Number o	or complex and Re	ai Modes T		Subtract Reprodu	ced from Actua	4
O From Plot	🔵 File, Comtra	de CFF	() N	latrix Pencil (On	ce)		Lowest P	ercent Damping	-10	00.000			
File, WECC CSV 2	🔾 File, Comtra	de CFG	0	terative Matrix P	encil						Update Reprod	luced Signals	
○ File, JSIS Format	None, Existi	ing Data			crici .		Real and	Complex Modes -	Editable to Ch	ange Initial Guess	es		
Data Source Inputs from Plots	or Files		0	ynamic Mode De	composi	tion			amping (%)	Largert	Signal Name of	Lambda	Include
				D- 14-	. And	-1-		requercy (riz)	amping (76)	Weighted	Largest	Lambua	Reprodu
From Plot Gen_Rotor Angle		~		Do Moc	al Analy	SIS				Percentage for	Weighted		Signa
From File		Browse								Mode	Percentage for		
			Sa	ve in JSIS Forma	at	Save to CSV	1	1.920	7.010	00 7212	Cop Rus 4 #1 D	0.9120	VEC
Just Load Signals Group	Disabled for Ex	kisting Data					2	0.000	100.000	2.8612	Gen Bus 4 #1 R	-0.0120	VES
							3	0.000	100.000	6.3320	Gen Bus 4 #1 R	-0.5061	YES
							4	0.000	-100.000	2.7158	Gen Bus 4 #1 R	0.7508	YES
Data Sampling Time (Seconds)	and Frequency (H	12)											
Start Time 1.010	End Time	5.000 🌲											
	Lindate Consula	10-1-											
Maximum Hz 5.000	Update Sample	d Data	✓ Sto	ore Results in PV	/B File								
							<						>
Input Data, Actual Sampled In	nput Data Signals	S Options R	Reproduced	Data									
Туре	Name	Latitude L	ongitude	Description	Units	Include	Include	Exclude from	Detrend	Detrend	Post-Detrend	Post-Detre	nd So
			-				Reproduced	Iterative Matrix	Parameter	A Parameter B	Number Zero	s Standard	1
								Pencil (IMP)				Deviation	1
1 Gen B	us 4 #1 Rotor An			Rotor Angle		YES	YES	NO	49.49	-0.075	54	0 0.712	YES

Not all modes will be easily observed in all signals

Example: Bus 4 with GENROU Model and Exciter

- Adding an relatively slow EXST1 exciter adds additional states (with $K_A=200$, $T_A=0.2$)
 - As the initial reactive power output of the generator is decreased, the system becomes unstable

🔘 Generat	tor SMIB Eige	envalue Informat	ion										
Bus Number	4	~	Find By Nu	mber Status	en 🔘 Clos	sed							
Bus Name	Bus 4		Find By N	ame									
ID	1		Find	. Area Nar	me Home (1)								
Generator Information (on Generator MVA Base)													
General Info	A Matrix	igenvalues											
: 📃 📄	®PT. ⇒ k	.00 A ABCD Re	cords + Set + (Columns 👻 📴 👻	auxe - auxe - 💎	$\underset{ABED}{\textcircled{\begin{tabular}{lllllllllllllllllllllllllllllllllll$	☐ Options ▼						
R	Real Part 🔻 🔻	Imag Part	Magnitude	Damping Ratio	Damped Freq (Hz)	Damped Period (Sec)	Undamped Freq (Hz)	Machine Angle	Machine Sp W				
1	-0.5088	11.1509	11.1625	0.0456	1.7747	0.5635	1.7766	0.7051	0.6				
2	-0.5088	-11.1509	11.1625	0.0456	-1.7747	-0.5635	1.7766	0.7051	0.6				
3	-1.0000	0.0000	1.0000	1.0000	0.0000		0.1592	0.0000	0.0				
4	-2.6668	0.0000	2.6668	1.0000	0.0000		0.4244	0.0260	0.0				
5	-3.3640	-7.2653	8.0063	0.4202	-1.1563	-0.8648	1.2742	0.0768	0.0				
6	-3.3640	7.2653	8.0063	0.4202	1.1563	0.8648	1.2742	0.0768	0.0				
7	-14.5748	0.0000	14.5748	1.0000	0.0000		2.3197	0.0031	0.0				
8	-21.2270	0.0000	21.2270	1.0000	0.0000		3.3784	0.0172	0.0				

Case is saved as **B4_GENROU_EXST1**

Example: Bus 4 with GENROU Model and Exciter

• With $Q_4 = 25$ Mvar the eigenvalues are

	Real Part 🛛 🔻	Imag Part	Magnitude	Damping Ratio	Damped Freq (Hz)	Damped Period (Sec)	Undamped Freq (Hz)	Machine Angle	Machii
1	-0.1239	-10.3955	10.3962	0.0119	-1.6545	-0.6044	1.6546	0.7021	
2	-0.1239	10.3955	10.3962	0.0119	1.6545	0.6044	1.6546	0.7021	
3	-1.0000	0.0000	1.0000	1.0000	0.0000		0.1592	0.0000	
4	-2.6586	0.0000	2.6586	1.0000	0.0000		0.4231	0.0209	
5	-3.5938	-6.8580	7.7426	0.4642	-1.0915	-0.9162	1.2323	0.1110	
6	-3.5938	6.8580	7.7426	0.4642	1.0915	0.9162	1.2323	0.1110	
7	-14.5078	0.0000	14.5078	1.0000	0.0000		2.3090	0.0045	
8	-21.4739	0.0000	21.4739	1.0000	0.0000		3.4177	0.0097	

• And with $Q_4=0$ Mvar the eigenvalues are

	Real Part 🔻	Imag Part	Magnitude	Damping Ratio	Damped Freq (Hz)	Damped Period (Sec)	Undamped Freq (Hz)	Machine Angle	Machii
1	0.2704	-9.5336	9.5374	-0.0283	-1.5173	-0.6591	1.5179	0.6920	
2	0.2704	9.5336	9.5374	-0.0283	1.5173	0.6591	1.5179	0.6920	
3	-1.0000	0.0000	1.0000	1.0000	0.0000		0.1592	0.0000	
4	-3.0137	0.0000	3.0137	1.0000	0.0000		0.4796	0.0071	
5	-3.6849	-6.4281	7.4094	0.4973	-1.0231	-0.9775	1.1792	0.1643	
6	-3.6849	6.4281	7.4094	0.4973	1.0231	0.9775	1.1792	0.1643	
7	-14.4234	0.0000	14.4234	1.0000	0.0000		2.2956	0.0054	
8	-21.6978	0.0000	21.6978	1.0000	0.0000		3.4533	0.0030	

Example: Bus 4 with GENROU Model and Exciter

• Graph shows response following a short fault when Q4 is 0 Mvar

• This motivates trying to get additional insight into how to increase system damping, which is the goal of modal analysis

Modal Analysis - Comments

- A M
- Modal analysis (analysis of small signal stability through eigenvalue analysis) is at the core of SSA software
- In Modal Analysis one looks at:
 - Eigenvalues
 - Eigenvectors (left or right)
 - Participation factors
 - Mode shape

Goal is to determine how the various parameters affect the response of the system

• Power System Stabilizer (PSS) design in a multimachine context can be done using modal analysis method (we'll see another method later)

Eigenvalues, Right Eigenvectors

• For an n by n matrix **A** the eigenvalues of **A** are the roots of the characteristic equation:

$$\det[\mathbf{A} - \lambda \mathbf{I}] = |\mathbf{A} - \lambda \mathbf{I}| = 0$$

- Assume $\lambda_1 \dots \lambda_n$ as distinct (no repeated eigenvalues).
- For each eigenvalue λ_i there exists an eigenvector such that:

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

- \mathbf{v}_i is called a right eigenvector
- If λ_i is complex, then \mathbf{v}_i has complex entries

Left Eigenvectors

• For each eigenvalue λ_i there exists a left eigenvector \mathbf{w}_i such that:

$$\mathbf{w}_i^t \mathbf{A} = \mathbf{w}_i^t \lambda_i$$

• Equivalently, the left eigenvector is the right eigenvector of **A**^T; that is,

$$\mathbf{A}^{t}\mathbf{w}_{i} = \lambda_{i}\mathbf{w}_{i}$$

Eigenvector Properties

• The right and left eigenvectors are orthogonal i.e.

$$\mathbf{w}_i^t \mathbf{v}_i \neq 0$$
, $\mathbf{w}_i^t \mathbf{v}_j = 0$ $(i \neq j)$

• We can normalize the eigenvectors so that:

$$\mathbf{w}_i^t \mathbf{v}_i = 1$$
, $\mathbf{w}_i^t \mathbf{v}_j = 0$ $(i \neq j)$

Eigenvector Example

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}, \ |\mathbf{A} - \lambda \mathbf{I}| = 0 \implies \begin{vmatrix} 1 - \lambda & 4 \\ 3 & 2 - \lambda \end{vmatrix} = 0$$
$$\lambda^2 - 3\lambda - 10 = 0 \implies \lambda_{1,2} = \frac{3 \pm \sqrt{(3)^2 + 4(10)}}{2} = \frac{3 \pm \sqrt{49}}{2} = 5, -2$$

Right Eigenvectors $\lambda_1 = 5$

$$\mathbf{A}\mathbf{v}_{1} = 5\mathbf{v}_{1} \Rightarrow \mathbf{v}_{1} = \begin{bmatrix} v_{11} \\ v_{21} \end{bmatrix} \Rightarrow \begin{bmatrix} v_{11} + 4v_{21} = 5v_{11} \\ 3v_{11} + 2v_{21} = 5v_{21} \end{bmatrix} \text{ choose } \mathbf{v}_{21} = 1 \Rightarrow \mathbf{v}_{11} = 1$$

Similarly,
$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Similarly,

$$\lambda_2 = -2 \implies \mathbf{v}_2 = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$$

14

Eigenvector Example

• Left eigenvectors

$$\lambda_1 = 5 \mathbf{w}_1^t \mathbf{A} = \mathbf{w}_1^t 5 \Longrightarrow [w_{11} \ w_{21}] \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} = 5[w_{11} \ w_{21}]$$

$$w_{11} + 3w_{21} = 5w_{11}$$

$$4w_{11} + 2w_{21} = 5w_{21} \implies Let \ w_{21} = 4, \ then \ w_{11} = 3$$

$$\mathbf{w}_{1} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad \lambda_{2} = -2 \implies \mathbf{w}_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ \mathbf{v}_{2} = \begin{bmatrix} 4 \\ -3 \end{bmatrix} \ \mathbf{w}_{1} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \ \mathbf{w}_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Verify $\mathbf{w}_1^t \mathbf{v}_1 = 7$, $\mathbf{w}_2^t \mathbf{v}_2 = 7$, $\mathbf{w}_2^t \mathbf{v}_1 = 0$, $\mathbf{w}_1^t \mathbf{v}_2 = 0$ We would like to make $w_i^t v_i = 1$.

This can be done in many ways.

Eigenvector Example

Let
$$\mathbf{W} = \frac{1}{7} \begin{bmatrix} 3 & 1 \\ 4 & -1 \end{bmatrix}$$

Then $\mathbf{W}^T \mathbf{V} = \mathbf{I}$
Verify $\frac{1}{7} \begin{bmatrix} 3 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

- It can be verified that $\mathbf{W}^{\mathrm{T}} = \mathbf{V}^{-1}$
- The left and right eigenvectors are used in computing the participation factor matrix.

• The deviation away from an equilibrium point can be defined as

 $\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x}$

• If the initial deviation corresponds to a right eigenvector, then the subsequent response is along this eigenvector since $\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$

- From this equation $(\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x})$ it is difficult to determine how parameters in \mathbf{A} affect a particular \mathbf{x} because of the variable coupling
- To decouple the problem first define the matrices of the right and left eigenvectors (the modal matrices)

$$\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n] \& \mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$$
$$\mathbf{AV} = \mathbf{V} \mathbf{\Lambda} \quad \text{when} \quad \mathbf{\Lambda} = Diag(\lambda_i)$$

• It follows that

$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V}=\mathbf{\Lambda}$$

• To decouple the variables define \mathbf{z} so

$$\Delta \mathbf{x} = \mathbf{V}\mathbf{z} \to \Delta \dot{\mathbf{x}} = \mathbf{V}\dot{\mathbf{z}} = \mathbf{A}\Delta \mathbf{x} = \mathbf{A}\mathbf{V}\mathbf{z}$$

• Then

$$\dot{\mathbf{z}} = \mathbf{V}^{-1}\mathbf{A}\mathbf{V}\mathbf{z} = \mathbf{W}\mathbf{A}\mathbf{V}\mathbf{z} = \mathbf{\Lambda}\mathbf{z}$$

- Since Λ is diagonal, the equations are now uncoupled with $\dot{z}_i = \lambda_i z_i$
- So $\Delta \mathbf{x}(t) = \mathbf{V}\mathbf{z}(t)$

Example

• Assume the previous system with

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$
$$\mathbf{V} = \begin{bmatrix} 1 & 4 \\ 1 & -3 \end{bmatrix}$$
$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix}$$

• Thus the response can be written in terms of the individual eigenvalues and right eigenvectors as

$$\Delta \mathbf{x}(t) = \sum_{i=1}^{n} \mathbf{v}_{i} z_{i}(0) e^{\lambda_{i} t}$$

• Furthermore with $\Delta \mathbf{x} = \mathbf{V} \mathbf{Z} \implies \mathbf{z} = \mathbf{V}^{-1} \mathbf{x} = \mathbf{W}^T \mathbf{x}$ Note, we are requiring that the eigenvalues be distinct!

• So z(t) can be written as using the left eigenvectors as $\begin{bmatrix} r & (t) \end{bmatrix}$

$$\mathbf{z}(t) = \mathbf{W}^{t} \mathbf{x}(t) = [\mathbf{w}_{1} \ \mathbf{w}_{2} \dots \mathbf{w}_{n}]^{t} \begin{bmatrix} x_{1}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix}$$

• We can then write the response x(t) in terms of the modes of the system

$$z_{i}(t) = w_{i}^{t} x(t)$$
$$z_{i}(0) = w_{i}^{t} x(0) \underline{\Delta} c_{i}$$
so $\mathbf{x}(t) = \sum_{i=1}^{n} \mathbf{v}_{i} c_{i} e^{\lambda_{i} t}$

Expanding $\Delta x_i(t) = v_{il}c_le^{\lambda_l t} + v_{i2}c_2e^{\lambda_2 t} + \dots v_{in}c_ne^{\lambda_n t}$

• So c_i is a scalar that represents the magnitude of excitation of the ith mode from the initial conditions

Numerical example

$$\begin{bmatrix} \Delta \dot{x}_1 \\ \Delta \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 8 & -2 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix}, \ \Delta \mathbf{x}(0) = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$$

Eigenvalues are $\lambda_1 = -4, \ \lambda_2 = 2$
Eigenvectors are $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
Modal matrix $\mathbf{V} = \begin{bmatrix} 1 & 1 \\ -4 & 2 \end{bmatrix}$
Normalize so $\mathbf{V} = \begin{bmatrix} 0.2425 & 0.4472 \\ -0.9701 & 0.8944 \end{bmatrix}$

Numerical example (contd)

Left eigenvector matrix is:

$$\mathbf{W}^{\mathbf{T}} = \mathbf{V}^{-1} = \begin{bmatrix} 1.3745 & -0.6872 \\ 1.4908 & 0.3727 \end{bmatrix}$$

$$\dot{\mathbf{z}} = \mathbf{W}^{\mathrm{T}} \mathbf{A} \mathbf{V} \mathbf{z}$$
$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} -4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

Numerical example (contd)

$$\dot{z}_1 = -4z_1 , \quad \mathbf{z}(0) = V^{-1}\mathbf{x}(0)$$
$$\dot{z}_2 = 2z_2 , \quad \begin{bmatrix} z_1(0) \\ z_2(0) \end{bmatrix} = \begin{bmatrix} 4.123 \\ 0 \end{bmatrix}$$

$$z_1(t) = z_1(0)e^{-4t}$$
; $z_2(t) = z_2(0)e^{2t}$, $\mathbf{C} = \mathbf{W}^T \mathbf{x}(0) = \begin{bmatrix} 4.123\\0 \end{bmatrix}$

 $\mathbf{x} = \mathbf{V}\mathbf{z}$

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix}$$

Because of the initial condition, the 2nd mode does not get excited

$$=c_{I}\begin{bmatrix}0.2425\\-0.9701\end{bmatrix}z_{I}(t)+c_{2}\begin{bmatrix}0.4472\\0.8944\end{bmatrix}z_{2}(t)=\sum_{i=1}^{2}c_{i}\mathbf{v}_{i}z_{i}(0)e^{\lambda_{i}t}$$

$$25$$

Mode Shape, Sensitivity and Participation Factors

• So we have

$$\mathbf{x}(t) = \mathbf{V}\mathbf{z}(t), \quad \mathbf{z}(t) = \mathbf{W}^{t}\mathbf{x}(t)$$

- **x**(t) are the original state variables, **z**(t) are the transformed variables so that each variable is associated with only one mode.
- From the first equation the right eigenvector gives the "mode shape" i.e. relative activity of state variables when a particular mode is excited.
- For example the degree of activity of state variable x_k in v_i mode is given by the element V_{ki} of the the right eigenvector matrix V

Mode Shape, Sensitivity and Participation Factors

- A]M
- The magnitude of elements of v_i give the extent of activities of *n* state variables in the ith mode and angles of elements (if complex) give phase displacements of the state variables with regard to the mode.
- The left eigenvector \mathbf{w}_i identifies which combination of original state variables display only the ith mode.

Eigenvalue Parameter Sensitivity

• To derive the sensitivity of the eigenvalues to the parameters recall $\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$; take the partial derivative with respect to A_{kj} by using the chain rule

$$\frac{\partial \mathbf{A}}{\partial \mathbf{A}_{kj}} \mathbf{v}_i + \mathbf{A} \frac{\partial \mathbf{v}_i}{\partial A_{kj}} = \frac{\partial \lambda_i}{\partial A_{kj}} \mathbf{v}_i + \lambda_i \frac{\partial \mathbf{v}_i}{\partial A_{kj}}$$

Multiply by \mathbf{w}_i^t

Eigenvalue Parameter Sensitivity

- This is simplified by noting that $\mathbf{w}_i^t (\mathbf{A} \lambda_i \mathbf{I}) = 0$ by the definition of \mathbf{w}_i being a left eigenvector
- Therefore

$$\mathbf{w}_{i}^{t} \frac{\partial \mathbf{A}}{\partial A_{kj}} \mathbf{v}_{i} = \frac{\partial \lambda_{i}}{\partial A_{kj}}$$

- Since all elements of $\frac{\partial \mathbf{A}}{\partial A_{kj}}$ are zero, except the kth row, jth column is 1
- Thus $\frac{\partial \lambda_i}{\partial A_{kj}} = W_{ki}V_{ji}$

Sensitivity Example

• In the previous example we had

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}, \quad \lambda_{1,2} = 5, -2, \quad \mathbf{V} = \begin{bmatrix} 1 & 4 \\ 1 & -3 \end{bmatrix}, \quad \mathbf{W} = \frac{1}{7} \begin{bmatrix} 3 & 1 \\ 4 & -1 \end{bmatrix}$$

• Then the sensitivity of λ_1 and λ_2 to changes in **A** are

$$\frac{\partial \lambda_i}{\partial A_{kj}} = W_{ki}V_{ji} \longrightarrow \frac{\partial \lambda_1}{\partial \mathbf{A}} = \frac{1}{7} \begin{bmatrix} 3 & 3\\ 4 & 4 \end{bmatrix}, \quad \frac{\partial \lambda_2}{\partial \mathbf{A}} = \frac{1}{7} \begin{bmatrix} 4 & -3\\ -4 & 3 \end{bmatrix}$$

• For example with $\hat{\mathbf{A}} = \begin{bmatrix} 1 & 4 \\ 3 & 3 \end{bmatrix}$, $\hat{\lambda}_{1,2} = 5.61, -1.61$,

Eigenvalue Parameter Sensitivity

- This is simplified by noting that $\mathbf{w}_i^t (\mathbf{A} \lambda_i \mathbf{I}) = 0$ by the definition of \mathbf{w}_i being a left eigenvector
- Therefore

$$\mathbf{w}_{i}^{t} \frac{\partial \mathbf{A}}{\partial A_{kj}} \mathbf{v}_{i} = \frac{\partial \lambda_{i}}{\partial A_{kj}}$$

- Since all elements of $\frac{\partial \mathbf{A}}{\partial A_{kj}}$ are zero, except the kth row, jth column is 1
- Thus $\frac{\partial \lambda_i}{\partial A_{kj}} = W_{ki} V_{ji}$

Participation Factors

- The sum of the participation factors for any mode or any variable sum to 1
- The participation factors are quite useful in relating the eigenvalues to portions of a model

Participation Factors

• For the previous example with $P_{ki} = V_{ki}W_{ik}$ and

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}, \quad \mathbf{V} = \begin{bmatrix} 1 & 4 \\ 1 & -3 \end{bmatrix}, \quad \mathbf{W} = \frac{1}{7} \begin{bmatrix} 3 & 1 \\ 4 & -1 \end{bmatrix}$$

• We get

$$\mathbf{P} = \frac{1}{7} \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}$$

PowerWorld SMIB Participation Factors

A M

- The magnitudes of the participation factors are shown on the PowerWorld SMIB dialog
- The below values are shown for the four bus example with $Q_4 = 0$

🜔 Gene	rator SMIB Eigen	alue Information														۰
Bus Numb	er 4	-	Find By Nu	mber Status	an Olar											
Bus Nan	ne Bus 4		 Find By N 	ame		eu										
	ID 1		Find	. Area Na	me Home (1)											
Generato	Generator Information (on Generator MVA Base)															
General I	info A Matrix E	genvalues														
	፤ 해야 해야 표	Record	ds • Set • Col	umns 🔻 📴 🕶	AUXA - AUXA - 🌱 月		Options •									
	Real Part 🛛 🔻	Imag Part	Magnitude	Damping Ratio	Damped Freq <mark>(</mark> Hz)	Damped Period (Sec)	Undamped Freq (Hz)	Machine Angle	Machine Speed w	Machine Eqp	Machine PsiDp	Machine PsiQpp	Machine Edp	Exciter EField before limit	Exciter VF	
1	0.2704	-9.5336	9.5374	-0.0283	-1.5173	-0.6591	1.5179	0.6920	0.6810	0.1642	0.0250	0.0137	0.0139	0.1714	0.0000	1
2	0.2704	9.5336	9.5374	-0.0283	1.5173	0.6591	1.5179	0.6920	0.6810	0.1642	0.0250	0.0137	0.0139	0.1714	0.0000	
3	-1.0000	0.0000	1.0000	1.0000	0.0000		0.1592	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	
4	-3.0137	0.0000	3.0137	1.0000	0.0000		0.4796	0.0071	0.0098	0.0573	0.0011	0.1263	0.9865	0.0865	0.0000	
5	-3.6849	-6.4281	7.4094	0.4973	-1.0231	-0.9775	1.1792	0.1643	0.1764	0.6494	0.0534	0.0350	0.0964	0.7120	0.0000	
6	-3.6849	6.4281	7.4094	0.4973	1.0231	0.9775	1.1792	0.1643	0.1764	0.6494	0.0534	0.0350	0.0964	0.7120	0.0000	
7	-14.4234	0.0000	14.4234	1.0000	0.0000		2.2956	0.0054	0.0049	0.0219	0.9995	0.0013	0.0028	0.0226	0.0000	
8	-21.6978	0.0000	21.6978	1.0000	0.0000		3.4533	0.0030	0.0037	0.0009	0.0006	0.9971	0.0762	0.0011	0.0000	
	ок	Save	Cancel	? Help	Print											

Case is saved as B4_GENROU_Sat_SMIB_QZero

Oscillations

- An oscillation is just a repetitive motion that can be either undamped, positively damped (decaying with time) or negatively damped (growing with time)
- If the oscillation can be written as a sinusoid then

 $e^{\alpha t} \left(a \cos(\omega t) + b \sin(\omega t) \right) = e^{\alpha t} C \cos(\omega t + \theta)$ where $C = \sqrt{A^2 + B^2}$ and $\theta = \tan\left(\frac{-b}{a}\right)$

• And the damping ratio is defined as (see Kundur 12.46)

$$\xi = \frac{-\alpha}{\sqrt{\alpha^2 + \omega^2}}$$

The percent damping is just the damping ratio multiplied by 100; goal is sufficiently positive damping

Power System Oscillations

- Power systems can experience a wide range of oscillations, ranging from highly damped and high frequency switching transients to sustained low frequency (< 2 Hz) inter-area oscillations affecting an entire interconnect
- Types of oscillations include
 - Transients: Usually high frequency and highly damped
 - Local plant: Usually from 1 to 5 Hz
 - Inter-area oscillations: From 0.15 to 1 Hz
 - Slower dynamics: Such as AGC, less than 0.15 Hz
 - Subsynchronous resonance: 10 to 50 Hz (less than synchronous)

Example Oscillations

• The below graph shows an oscillation that was observed during a 1996 WECC Blackout

Example Oscillations

• The below graph shows oscillations on the Michigan/Ontario Interface on 8/14/03

AM

Fictitious System Oscillation

Forced Oscillations in WECC (from [1])

- Summer 2013 24 hour data: 0.37 Hz oscillations observed for several hours. Confirmed to be forced oscillations at a hydro plant from vortex effect.
- 2014 data: Another 0.5 Hz oscillation also observed. Source points to hydro unit as well. And 0.7 Hz. And 1.12 Hz. And 2 Hz.
- Resonance is possible when a system mode is poorly damped and close. Resonance can be observed in model simulations

Inter-Area Modes in the WECC

- The dominant inter-area modes in the WECC have been well studied
- A good reference paper is D. Trudnowski,
 "Properties of the Dominant Inter-Area Modes in the WECC Interconnect," 2012 Below figure from
 - Four well known modes are NS Mode A (0.25 Hz),
 NS Mode B (or Alberta Mode),
 (0.4 Hz), BC Mode (0.6 Hz),
 Montana Mode (0.8 Hz)

Below figure from paper shows NS Mode A On May 29, 2012

