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Announcements

Read Chapter 8
Homework 5 Is due Today
Homework 6 Is due on Tuesday December 3

~inal Is at scheduled time here (December 9
fromlpm to 3pm)

o



Example: Bus 4 SMIB Dialog

On the SMIB dialog, the General Information tab
shows Iinformation about the two

Generator SMIEB Eigenvalue Information = O

Bus Mumber |= o Find By Mumber Status
Bus Mame |Bus 4 W |

O Closed
Find By Mame F=L R

D 1 Find ... Area Mame |Home (1)

Generator Information {on Generator MVA Base)
General Info A Matrix  Eigenvalues

Generator MVA Base

Infinite Bus Voltage Magnitude (pu) Infinite Bus Angle (deq)
Terminal Current Magnitude (pu) Terminal Current Angle (deg)
Terminal Voltage Magnitude (pu) Terminal Voltage Angle (deg)

Metwork Impedance on Generator My A Base

Metwork R (Gen Base) 0.00000
Metwork ¥ (Gen Base) 0.22000

0.0000
-18.193
11.5942

Metwork Impedance on System MVA Base

0.00000
0.22000

MNetwork R (System Base)

Metwork ¥ (System Base)

J QK Save

x Cancel ? Help Print

x

DUS equivalent

PowerWorld case B4 SMIB

A



Example: Bus 4 SMIB Dialog
T

* On the SMIB dialog, the A Matrix tab shows the A
n | : X W
sys
Generator SMIB Eigenvalue Information — O X
Bus Mumber |4 S Find By Mumber Status
Bus Mame |Bus 4 e | Find By MName Llosed
o |1 Find ... Area Mame |Home (1)
Generator Information (on Generator MVA Base)
Genera | Info AMatrix  Egenvalues
B Al %8 % #  Records~ Set~ Columns~ B~ i~ 18- ¥ BH-
Row Mame | Machine Angle | Machine Speed w &
1[Machine Speed w -0.3753 | 0.0000
2|Machine Angle 0.0000 376.9911
o

In this example A, Is showing

OA —oP, -
Orpu 1 =4 :{%( L j(—1.28lzcos(23.94°))
00, 2H,\ 00, 6 /{10.3+0.22

=—0.3753




Example: Bus 4 with
GENROU Model

* The eigenvalues can be calculated for any set of
generator models

« The example can be extended by replacing the bus 4
generator classical machine with a GENROU model
— There are now six eigenvalues, with the dominate response

coming from the electro-mechanical mode with a frequency
of 1.84 Hz, and damping of 6.9%

A

Geners | Info A Matrix Eigenvalues
= % "H“' ‘_'.;.'3 ;'3_3 ?&D Records = Set = Columns - * H.E' H@E' T % A i%ﬂ flx) - ﬁ Options -
RealPart ¥ Imag Part ‘ Magnitude Damping Ratio | Damped Freq | Damped Period ‘Undamped Freq ‘ Machine Angle ‘ Machine 5S¢
[Hz) [Sec) [Hz) W

1 -0.4243 0.0000 04243 1.0000 0.0000 00ETE 0.0027 .
2 -0.8040 -11.5563 11.5842 0.0604 -1.8392 -0.5437 1.8437 0.7055 0.
3 -0.8040 11.5563 11,5842 [ 0.0654] 1.8392 0.5437 1.8437 0.7055 0.
4 -3.7087 0.0000 3.7087 1.0000 0.0000 0.5903 0.0155 0.
5 -14.2256 0.0000 14,2256 1.0000 0.0000 2,261 0.0044 0.
& -21.2472 0.0000 21,2472 1.0000 0.0000 3.3816 0.0159 0.

PowerWorld case B4 SMIB_ GENROU



Relation to the Signal-Based
Approaches

T

« The results from the SMIB analysis can be compared
with the signal-based approach by applying a short self-
clearing fault to disturb the system

« This can be done easily in PowerWorld by running the
transient stability simulation, looking at the Results
from RAM page, right-clicking on the desired signal(s)
and selecting Modal Analysis Selected Column.

 The next slide shows the results for the Bus 4 Generator
rotor angle (which would not be directly observable)



Bus 4 Generator Rotor Angle

Notice that the main mode, at 1.84 Hz with 7%

damping closely matches

Madal Analysis Form

Modsl Analysis Status |Solved at 11/3/2019 10:42:56 AM |

Caloulation Method
(®) Matrix Pend (Once)

() Iterative Matrix Pencil

Data Source Type
() From Flot

(O File, WECC CSV 2
(O)File, 1515 Format

(O File, Comtrade CFF
(OFile, Comtrade CFG
(® Mone, Existing Data

D Dynamic Mode Decomposition
Data Source Inputs from Plots or Files

Gen_Rotor Angle ~ Do Modal Analysis

= O X
Results
Number of Complex and Real Modes Include Detrend in Reproduced Signals
[ subtract Reproduced from Actual
Lowest Percent Damping 0o

Update Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses

Frequency (Hz}| Damping (%) |Largest Signal Name o Lambda Include
Weighted Largest Reprodu
Percentage for|Weighted Signz

| | o Mode Percentage for
S Save in JSIS Format Save to CSV Maode
_ . 1 1 7.010 99,7213 Gen Bus 4#1R
Loa nals Group Disabled for Existing Data > 0.000 100,000 2.8612 Gen Eus 451 R
3 0.000 100.000 63320 Gen Bus 4#1R
4 0.000 -100,000 27158 Gen Bus4#1R
Data Sampling Time {Seconds) and Freguency {Hz) EN ls
Start Time 1.010[2 End Time ooo|=
Maximum Hz < | Undate Sampled Data Store Results in PWE File
£ >
Input Data, Actual  Sampled Input Data  Signals  Options  Reproduced Data
Type MName Latitude |Longitude | Description | Units Include Include Exclude from Detrend Detrend Post-Detrend | Post-Detrend 50
Reproduced |lterative Matrix| Parameter & Parameter B | Mumber Zeros Standard
Pencil [IMP} Dreviation
1§pen Gen Bus 4 #1 Rotor An Rotor Angle YES YES NO 454537 -0.0754 0 072 YES

Not all modes will be easily observed in all signals

AlM

®



Example: Bus 4 with

GENROU Model and Exciter
Adding an relatively slow EXST1 exciter adds

additional states (with K,=200, T,=0.2)

— As the initial reactive power output of the generator is
decreased, the system becomes unstable

o

Generator SMIB Eigenvalue Information

Bus Mumber |4

V.‘.
-

Find By Mumber

Bus Mame  (Bus 4

o [i |

Generator Information (on Generator MVA Base)

General Info A Matrix  Eigenvalues

b | Find By Mame
Find ...

Status
Open

Closed

Area Mame |H|:|me (1)

= "H" .;..;. I .;. ?&D Records = Set = Columns « ' H.E* H&E* b % < i%ﬁ Tl - @ Options
Real Part " Imag Part ‘ Magnitude Damping Ratio | Damped Freq | Damped Period |Undamped Freq ‘ Machine Angle | Machine S5pi
[Hz) w

1 -0.5083 11.1500 11,1625 0.0456 1.7747 0.5635 1.7766 0.7051 0.t
2 -0.5083 -11.1509 11.1625 0.0456 17747 -0.5635 1.7766 0.7051 0.
3 -1,0000 0.0000 1.0000 1.0000 0.0000 1592 0.0000 0
4 -2.6663 0.0000 2.6663 1.0000 0.0000 04244 0.0260 0.0
5 -3.3640 -7.2653 2.0063 0.4202 -1.1563 -0.2643 1.2742 0.0768 0.
& -3.3640 7.2653 8.0063 0.4202 1.1563 0.8648 1.2742 0.0763 o
T-' -14.5743 0.0000 14,5743 1.0000 0.0000 2.3197 0.0031 i
-21.2270 0.0000 21,2270 1.0000 0.0000 3.3784 0.0172 0.

Case Is saved as B4 GENROU EXST1



Example: Bus 4 with
GENROU Model and Exciter

*  With Q, = 25 Mvar the eigenvalues are

A

Real Part T| Imag Part ‘ Magnitude ‘ Damping Ratio | Damped Freq | Damped Period (Undamped Freq | Machine Angle | Machii
[Hz) [Ser) [Hz)
1 0.1239 -10.3955 10,3962 0.0119 -1.6545 -0.6044 1.6546 07021
2 0.1239 10.3955 10,3962 0.011% 1.6545 0.6044 1.6546 0.7021
3 -1.0000 0,0000 1.0000 1.0000 0.0000 0,1592 00000
4 -2.6586 0,0000 1,0000 0,0000 0.4231 0.0209
5 -3.5938 -6.,8530 7.7426 04642 -1.0915 09162 1.2323 31110
& -3.5938 6.8530 7.7426 04642 1.0915 0.9162 1.2323 21110
7 -14,5078 0,0000 14.5078 1.0000 0.0000 23090 0.0045
8 -21.4739 0,0000 214735 1.0000 0.0000 34177 0.0097

* And with Q,=0 Mvar the eigenvalues are

Real Part T| Imag Part ‘ Magnitude ‘ Damping Ratio | Damped Freq | Damped Period |Undamped Freq ‘ Machine Angle ‘ Machil
[Hz) [Sec) [Hz)
1 02704 -9,5336 9.5374 -0.0283 -1.5173 -0,6591 1.5179 06920
2 0.2704 9.5336 5.5374 -0.0283 1.5173 1.5179 0.6920
3 -1.0000 0.0000 1.0000 1.0000 0.0000 0.1592 0.0000
4 -3.0137 0.0000 30137 10000 0.0000 0.4796 00071
5 -3.6849 -6.4281 74054 04973 -1.0231 0.9775 1.1792 01643
& -3.6849 6.4281 74004 0.4973 1.0231 0.9775 1.1792 01643
7 -14.4234 0.0000 14,4234 1.0000 0.0000 2,2956 (0.0054
3 -21.65973 0,0000 21.6973 10000 0.0000 3.4533 00030




Example: Bus 4 with
GENROU Model and Exciter T

« Graph shows response following a short fault when Q4
IS O Mvar

L — Rotor Angle_Gen Bus 4#1'
[~

« This motivates trying to get additional insight into how
to Increase system damping, which is the goal of modal
analysis 9



Modal Analysis - Comments
T
Modal analysis (analysis of small signal stability

through eigenvalue analysis) Is at the core of SSA
software

_ Goal is to
In Modal Analysis one looks at:  determine
~ Eigenvalues how the various
- Eigenvectors (left or right) DEIEIEIfENE
affect the

— Participation factors response of
- Mode shape the system

Power System Stabilizer (PSS) design in a multi-
machine context can be done using modal analysis

method (we’ll see another method later) 10



Eigenvalues, Right Eigenvectors

Al
For an n by n matrix A the eigenvalues of A are the
roots of the characteristic equation:

detfA-Al] = \A—/II\ =0
Assume A,...A, as distinct (no repeated eigenvalues).

For each eigenvalue A, there exists an eigenvector
such that:

AV. = V.

v;Is called a right eigenvector
IT A IS complex, then v, has complex entries
11



Left Eigenvectors

For each eigenvalue A; there exists a left
eigenvector w; such that:

WiA =W;A

Equivalently, the left eigenvector is the right
eigenvector of AT; that is,

A'w, = Aw,

o

12



Eigenvector Properties

o

« The right and left eigenvectors are orthogonal I.e.

wiv; 20, wiv, =0 (i # j)

« We can normalize the eigenvectors so that:

wiv,=1,w,v, =0 (i#])

13



Eigenvector Example

o

1 4 1-2 4
A:{ },\A—/H\:O :>| |:o
3 2 3 2-2

3+\(3)° +4(10) _ 3+/49 _
2 2

A2-31-10=0= A, = 5, — 2

Right Eigenvectors 4, =5

\Y; V.. +4v.. =bv
Av, =5v, = v, :{ 11} — AT choose vV, =1= v, =1
V., 3V, +2V,, =3V, 1
Similarly, V, ={ }

4
/12:—2:>v2={ 3}

14



Eigenvector Example

o

« Left eigenvectors
1 4
A4 =93 W;A = W;5 = [w, W21]|:3 2} =3[wy; W,y ]

W,, +3W,. = 5w
e T = et wy, =4, then w, =3
4w, + 2W21 = DW,,

N R
el

Verify wiv, =7, wiv, =7, w,v, =0, w;v, =0
, t
We would like to make WV, =1.
This can be done in many ways. 15



Eigenvector Example

13 1]
Let W =—
7_4 —1_
Then W'V =1
'3 411 4] [1 0
Verify 1 =
7_1 —1__1 —3_ _O |

e |t can be verified that WT=V"1

« The left and right eigenvectors are used In
computing the participation factor matrix.



Modal Matrices

Alw
« The deviation away from an equilibrium point can be
defined as

AX = AAX
 |f the initial deviation corresponds to a right

eigenvector, then the subsequent response is along this
eigenvector since Av. = AV,

17



Modal Matrices

T
* From this equation ( Ax = AAx) It is difficult to
determine how parameters in A affect a particular x
because of the variable coupling

« To decouple the problem first define the matrices
of the right and left eigenvectors (the modal
matrices)

AV =VA when A = Diag(A)

18



Modal Matrices

It follows that

VAV = A
To decouple the variables define z so
AX=VzZ > AX=Vz=AAx = AVz
Then
2=V 7'AVz =WAVzZ = Az

Since A iIs diagonal, the equations are now uncoupled

with 2 =iz

So Ax(t)=Vz(t)

o

19



Example

Assume the previous system with

1 4
A =
52
1 4
V =
L5
) 5 0
VIAV =
0 -2

o

20



Modal Matrices

T

* Thus the response can be written in terms of the
Individual eigenvalues and right eigenvectors as

AX(t) = D v,z,(0)e™ Note, we are
i~1 requiring that

the eigenvalues

* Furthermore with 19\
be distinct!

Ax=VZ = z=V 'x=W'x
« S0 z(t) can be written as using the left eigenvectors

as %, (1) |
z(t) = Wix@)=[w, w,...w_ ]| :

| Xn .(t)_

21



Modal Matrices

o

We can then write the response X(t) in terms of the
modes of the system

Z;(t) = Witx(t)
z,(0) = WitX(O) é G

so x(t) =D v,ce™
=1

- t t t
Expanding Ax (t) =v,c,e™ +v,,c,e™ +...v, c.e™

SO0 c; Is a scalar that represents the magnitude of
excitation of the i™ mode from the initial conditions

22



Numerical example

AX, 0 1| Ax 1
= , AX(0) =
AX, | |8 2| AX, -4
Eigenvalues are 4, =—4, 1, =2
. 1] 1
Elgenvectors are v, = Al V, =
. 1 1
Modal matrix V =
__4 2_

- 0.2425 0.4472 ]
| —0.9701 0.8944 |

Normalize so V =




Numerical example (contd)

Left eigenvector matrix Is:

T | 13745 ~0.6872"
14908 0.3727

7= WTAVz

2] [-4 0]z,

Z, 0 2|z




Numerical example (contd)

A

7, =-4z, , z(0) =V 7x(0)

, {zl (0)} {4.123}
Z, =22, , =

Z,(0) 0

_ 4.123
Zl(t) — Zl(o)e * 4y (t) = £, (O)eZt’C — WTX(O) :{ 0 }

X=Vz Because of the initial

{xl (t)} B { 1 1}{21('[)} condition, the 2"Y mode does

X, (t) —4 2| z,(t) not get excited

0.2425 0.4472 2 2t
=C Z.(t)+cC Z,(t)=> cv.z(0)e™
25



Mode Shape, Sensitivity and
Participation Factors

o

So we have
X(t) =Vz(t), z(t)=W'X(t)

X(t) are the original state variables, z(t) are the
transformed variables so that each variable Is
associated with only one mode.

From the first equation the right eigenvector gives the
“mode shape™ 1.e. relative activity of state variables
when a particular mode Is excited.

For example the degree of activity of state variable x,
In v; mode Is given by the element V,; of the the right
eigenvector matrix V

26



Mode Shape, Sensitivity and
Participation Factors

T
* The magnitude of elements of v; give the extent of
activities of n state variables in the i mode and
angles of elements (if complex) give phase
displacements of the state variables with regard to

the mode.

* The left eigenvector w; identifies which
combination of original state variables display only
the it mode.

27



Eigenvalue Parameter Sensitivity

Al
* To derive the sensitivity of the eigenvalues to the
parameters recall Av; = A;v;; take the partial derivative
with respect to A; by using the chain rule

OA ov, OA oV,
V.+A—=—="V.+ L —
0Ay OR  Ofy Za%
Multiply by w;
WSSV WA Sl Sy Wi
oA, oA, ' OA oA,
W By WA= A —w Py,
J aAkj aAkJ

28



Eigenvalue Parameter Sensitivity
T
This is simplified by noting that w; (A—A41)=0
by the definition of w; being a left eigenvector
Therefore
 OA 04
5Ak i - OA,

oA
Since all elements of

are zero, except the ki

: . OA;
row, ji columniis 1 A
Thus o4 —W,V,

OA;

29



Sensitivity Example

o

* In the previous example we had

{1 4} {1 4} 1{3 1}
A = , A,=5-2, V= CW==
3 2 ’ 1 -3 714 -1

* Then the sensitivity of A, and A, to changes in A are

%—WV oA 13 3| o4, _114 -3
oA, oA TT7|4 4] AT 7|4 3

 Forexamplewith . [1 4 .
A= 3 3| 4, =95.61-1.61

30



Eigenvalue Parameter Sensitivity
T
This is simplified by noting that w;(A—-A41)=0
by the definition of w; being a left eigenvector
Therefore
 OA 04
5Ak i - OA,

oA
Since all elements of

are zero, except the ki

: . OA;
row, ji columniis 1 A
Thus o4 —W,V,

OA;

31



Participation Factors

Al
The participation factors, P,;, are used to determine how

much the k' state variable participates in the it mode
Ri =ViaWy

The sum of the participation factors for any mode or any
variable sumto 1

The participation factors are quite useful in relating the
eigenvalues to portions of a model

32



Participation Factors

A

* For the previous example with P,; = V ;W,, and

o RS R SR b

 We get

p==
704 3

33



PowerWorld SMIB
Participation Factors

The magnitudes of the participation factors are
shown on the PowerWorld SMIB dialog

The below values are shown for the four bus
example with Q, =

Generator SMIB Eigenvalue Information

=}
Bus Number 4 - % Find By Number Status
Bus Mame  Bus 4 - Find By Name i
D 1 Find ... Area Name Home (1)
Generator Information (on Generator MVA Base)
General Info | A Matrix | Bigenvalues
% '>||" to'g ;0_8 f&n Records ~ Set v Columns ~ - g' "!&HE' Y &3 Options -
RealPart W Imag Part Magnitude Damping Ratio  [Damped Freq (Hz)| Damped Period | Undamped Freg | Machine Angle |Machine Speed Machine Eqp Machine PsiDp | Machine PsiQpp Machine Edp Exciter EField Exciter VF
(Sec) (Hz) before limit
i 0.2704 -8.5336 9.5374 -0.0283 -1.5173 -0.6591 1.5179] 0.6920) 0.6810 0.1642 0.0250 0.0137 0.0139 0.1714 0.0000
2 0.2704 9.5336 9.5374 -0.0283 1.5173 0.6591 1.5179 0.6920 0.6810 0.1642 0.0250 0.0137 0.013% 0.1714 0.0000
3 -1.0000 0.0000 1.0000 1.0000 0.0000 0.1592 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
4 -3.0137 0.0000 3.0137 1.0000 0.0000 0.4796 0.0071 0.0098 0.0573 0.0011 0.1263 0.9865 0.0865 0.0000
5 -3.6849 -6.4281 7.4094 0.4973 -1.0231 -0.9775 11792 0.1643 0.1764 0.6494 0.0534 0.0350 0.0964 0.7120 0.0000
[ -3.6849 6.4281 7.4094 0.4973 1.0231 0.9775 1.1792 0.1643 0.1754 0.6494 0.0534 0.0350 0.0964 0.7120 0.0000
7 -14.4234 0.0000 14,4234 1.0000 0.0000 2.2956 0.0054 0.0049 0.0219 0.9995 0.0013 0.0028 0.0226 0.0000
8 -21.6978 0.0000 21.6978 1.0000 0.0000 3.4533 0.0030 0.0037 0.000% 0.0006 0.9971 0.0752 0.0011 0.0000
‘ o oK | | Save ‘ | X cancel ‘ | ? Help | | Frint

Case Is saved as B4 GENROU_Sat SMIB_QZero



Osclillations

T

* An oscillation is just a repetitive motion that can be
either undamped, positively damped (decaying with
time) or negatively damped (growing with time)

* |f the oscillation can be written as a sinusoid then

e (acos(a)t)+bsin (a)t)) =e“'Ccos(awt+6)

where C =+ A% +B? and 0 = tan (_—bj
a

« And the damping ratio is defined as (see Kundur 12.46)

__ —a The percent damping is just the damping
- Joi + & ratio multiplied by 100; goal is sufficiently
positive damping

S

39



Power System Oscillations

T
Power systems can experience a wide range of
oscillations, ranging from highly damped and high
frequency switching transients to sustained low
frequency (< 2 Hz) inter-area oscillations affecting an
entire interconnect

Types of oscillations include

— Transients: Usually high frequency and highly damped
— Local plant: Usually from 1 to 5 Hz

— Inter-area oscillations: From 0.15to 1 Hz

— Slower dynamics: Such as AGC, less than 0.15 Hz

— Subsynchronous resonance: 10 to 50 Hz (less than

synchronous) 26



Example Oscillations

The below graph shows an oscillation that was

observed during a 1996 WECC Blackout

4600

4400

4200

4000

4600

4400

4200

4000

Observed COIl Power (Dittmer Control Center)

Simulated COI Power (initial WSCC base case)

10 20 30 40 50 60

Time in Seconds

a0

A

37



Example Oscillations

* The below graph shows oscillations on the
Michigan/Ontario Interface on 8/14/03

MW MVAr -
4000 T 300
3000 V T 250
2000 | | " . + 200
1000 / \v« ‘~" M“H“mmmmh... L 4

0‘2 MVAr + 100
1000 § 1 50
-2ooo:.....\N.l...............0

16:10:38 16:10:40 16:10:42 16:10:44 16:10:46 16:10:48
Time - EDT



Fictitious System Oscillation

o

Movie shows
an example
of sustained
oscillations in
an equivalent
system

39



Forced Oscillations in WECC (from [1])
T

« Summer 2013 24 hour data: 0.37 Hz oscillations
observed for several hours. Confirmed to be forced

oscillations at a hydro plant from vortex effect.

« 2014 data: Another 0.5 Hz oscillation also
observed. Source points to hydro unit as well. And
0.7 Hz. And 1.12 Hz. And 2 Hz.

* Resonance iIs possible when a system mode is
poorly damped and close. Resonance can be
observed in model simulations

1. M. Venkatasubramanian, “Oscillation Monitoring System”, June 2015
http://www.energy.gov/sites/prod/files/2015/07/f24/3.%20Mani%200scillation%20Monitoring.pdf 40



Inter-Area Modes in the WECC

T
The dominant inter-area modes in the WECC have
been well studied
A good reference paper is D. Trudnowski,
“Properties of the Dominant Inter-Area Modes In
the WECC Interconnect,” 2012 Below figure from
~ Four well known modes are paper shows NS Mode A
NS Mode A (0.25 Hz), On May 29, 2012
NS Mode B (or Alberta Mode), ]

(0.4 Hz), BC Mode (0.6 Hz),
Montana Mode (0.8 Hz)




