ECEN 667 Power System Stability

Lecture 25: Power System Stabilizers

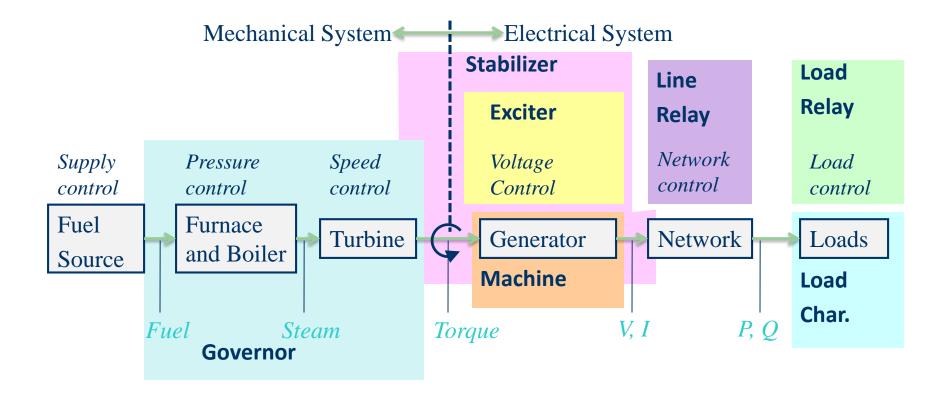
Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

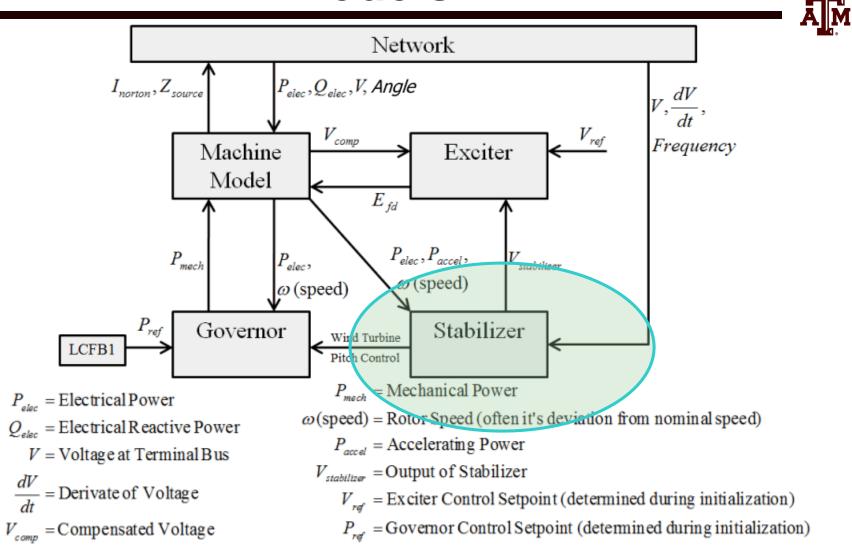
- Read Chapter 9
- Homework 6 is due on Tuesday December 3
- Final is at scheduled time here (December 9 from1pm to 3pm)

Damping Oscillations: Power System Stabilizers (PSSs)

- A PSS adds a signal to the excitation system to improve the generator's damping
 - A common signal is proportional to the generator's speed;
 other inputs, such as like power, voltage or acceleration, can be used
 - The Signal is usually measured locally (e.g. from the shaft)
- Both local modes and inter-area modes can be damped.
- Regular tuning of PSSs is important


Stabilizer References

- A few references on power system stabilizers
 - E. V. Larsen and D. A. Swann, "Applying Power System Stabilizers Part I: General Concepts," in IEEE Transactions on Power Apparatus and Systems, vol.100, no. 6, pp. 3017-3024, June 1981.
 - E. V. Larsen and D. A. Swann, "Applying Power System Stabilizers Part II: Performance Objectives and Tuning Concepts," in IEEE Transactions on Power Apparatus and Systems, vol.100, no. 6, pp. 3025-3033, June 1981.
 - E. V. Larsen and D. A. Swann, "Applying Power System Stabilizers Part III: Practical Considerations," in IEEE Transactions on Power Apparatus and Systems, vol.100, no. 6, pp. 3034-3046, June 1981.
 - *Power System Coherency and Model Reduction*, Joe Chow Editor, Springer, 2013


Dynamic Models in the Physical Structure

P. Sauer and M. Pai, Power System Dynamics and Stability, Stipes Publishing, 2006.

Power System Stabilizer (PSS) Models

Classic Block Diagram of a System with a PSS

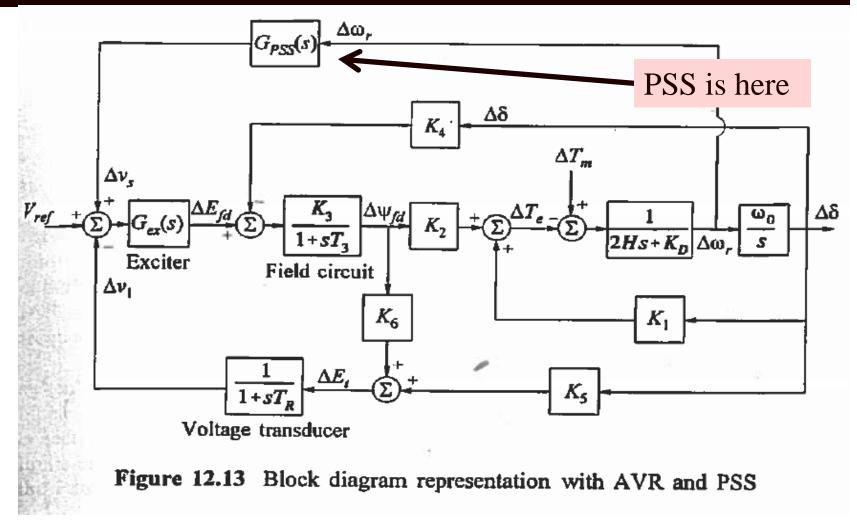


Image Source: Kundur, Power System Stability and Control

AM

PSS Basics

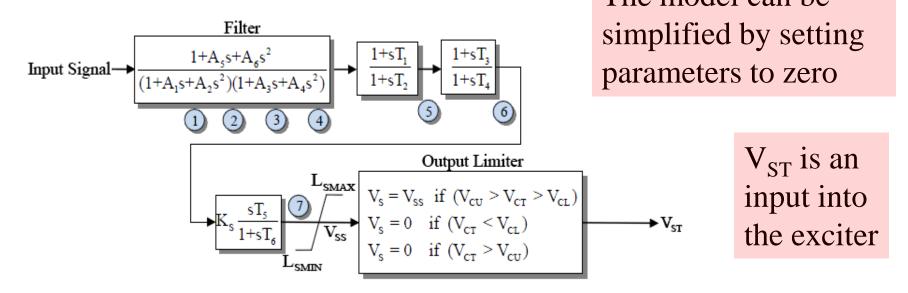
• Stabilizers can be motivated by considering a classical model supplying an infinite bus

$$\frac{d\delta}{dt} = \omega - \omega_s = \Delta \omega$$

$$\frac{2H}{\omega_0} \frac{d\Delta\omega}{dt} = T_M^0 - \frac{E'V_s}{X'_d + X_{ep}} \sin(\delta) - D\Delta\omega$$

- Assume internal voltage has an additional component $E' = E'_{org} + K\Delta\omega$
- This can add additional damping if $sin(\delta)$ is positive
- In a real system there is delay, which requires compensation

PSS Focus Here



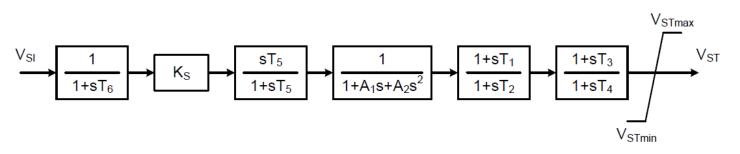
- Fully considering power system stabilizers can get quite involved
- Here we'll just focus on covering the basics, and doing a simple PSS design. The goal is providing insight and tools that can help power system engineers understand the PSS models, determine whether there is likely bad data, understand the basic functionality, and do simple planning level design

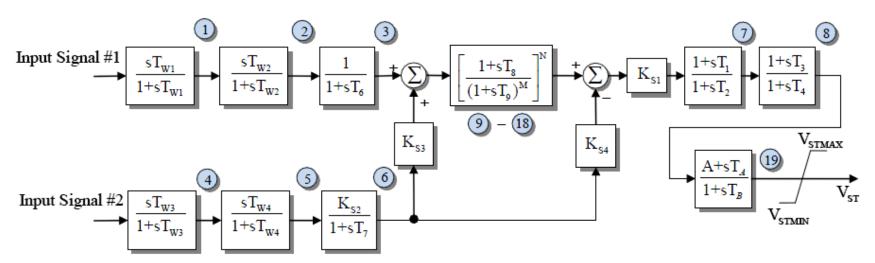
Example PSS

- An example single input stabilizer is shown below (IEEEST)
 - The input is usually the generator shaft speed deviation, but it could also be the bus frequency deviation, generator electric power or voltage magnitude
 The model can be

Another Single Input PSS

• The PSS1A is very similar to the IEEEST Stabilizer and STAB1




Figure 31—Type PSS1A single-input power system stabilizer

IEEE Std 421.5 describes the common stabilizers

Example Dual Input PSS

- Below is an example of a dual input PSS (PSS2A)
 - Combining shaft speed deviation with generator electric power is common
 - Both inputs have washout filters to remove low frequency components of the input signals

Washout Filters and Lead-Lag Compensators

• Two common attributes of PSSs are washout filters and lead-lag compensators

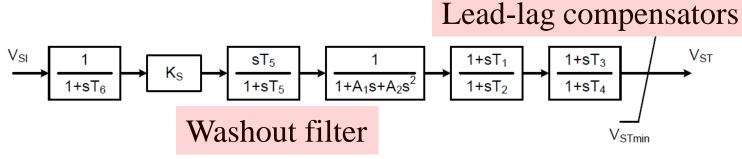
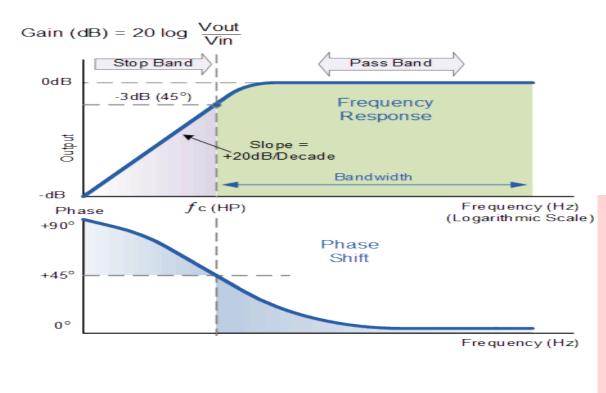
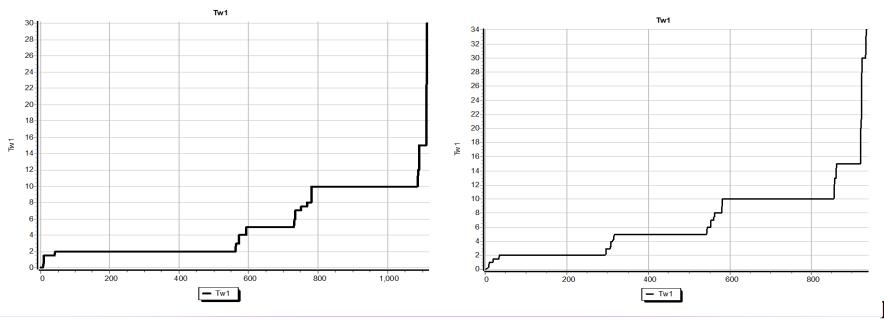



Figure 31—Type PSS1A single-input power system stabilizer

• Since PSSs are associated with damping oscillations they should be immune to slow changes. These low frequency changes are "washed out" by the washout filter; this is a type of high-pass filter.

Washout Filter

 The filter changes both the magnitude and angle of the signal at low frequencies
 The breakpoint

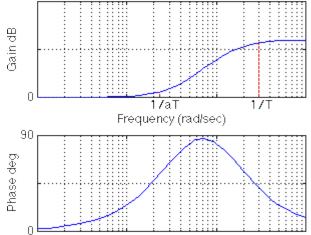

The breakpoint frequency is when the phase shift is 45 degrees and the gain is -3 dB (1/sqrt(2))

A larger T value shifts the breakpoint to lower frequencies; at T=10 the breakpoint frequency is 0.016 Hz

Image Source: www.electronics-tutorials.ws/filter/filter_3.html

Washout Parameter Variation

• The PSS2A is the most common stabilizer in both the 2015 EI and WECC cases. Plots show the variation in T_{W1} for EI (left) and WECC cases (right); for both the x-axis is the number of PSS2A stabilizers sorted by T_{W1} , and the y-axis is T_{W1} in seconds


Lead-Lag Compensators

• For a lead-lag compensator of the below form with $\alpha \le 1$ (equivalently a ≥ 1)

$$\frac{1+sT_1}{1+sT_2} = \frac{1+sT_1}{1+s\alpha T_1} = \frac{1+asT}{1+sT}$$

- There is no gain or phase shift at low frequencies, a gain at high frequencies but no phase shift
- Equations for a design maximum phase shift α at a frequency f are given

$$\alpha = \frac{1 - \sin \phi}{1 + \sin \phi}, T_1 = \frac{1}{2\pi f \sqrt{\alpha}}$$
$$\sin \phi = \frac{1 - \alpha}{1 + \alpha}$$

Stabilizer Design

- As noted by Larsen, the basic function of stabilizers is to modulate the generator excitation to damp generator oscillations in frequency range of about 0.2 to 2.5 Hz
 - This requires adding a torque that is in phase with the speed variation; this requires compensating for the gain and phase characteristics of the generator, excitation system, and power system (GEP(s))
 - We need to compensate for the phase lag in the GEP
- The stabilizer input is often the shaft speed

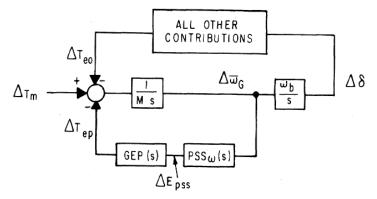


Image Source: Figure 1 from Larsen, 1981, Part 1

Stabilizer Design

- T_6 is used to represent measurement delay; it is usually zero (ignoring the delay) or a small value (< 0.02 sec)
- The washout filter removes low frequencies; T_5 is usually several seconds (with an average of say 5)
 - Some guidelines say less than ten seconds to quickly remove the low frequency component
 - Some stabilizer inputs include two washout filters

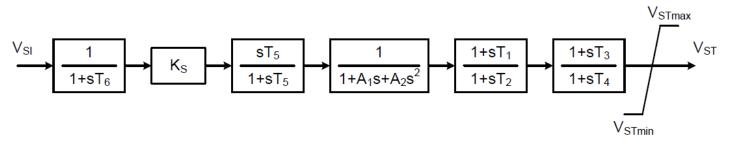


Figure 31—Type PSS1A single-input power system stabilizer

Image Source: IEEE Std 421.5-2016

Stabilizer Design Values

- With a washout filter value of $T_5 = 10$ at 0.1 Hz (s = j0.2 π = j0.63) the gain is 0.987; with $T_5 = 1$ at 0.1 Hz the gain is 0.53
- Ignoring the second order block, the values to be tuned are the gain, K_s , and the time constants on the two lead-lag blocks to provide phase compensation

- We'll assume $T_1=T_3$ and $T_2=T_4$

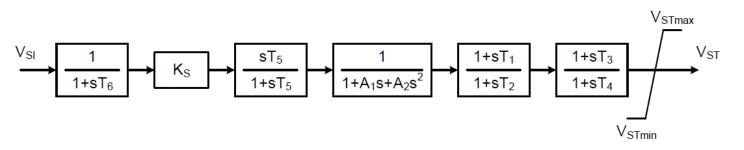
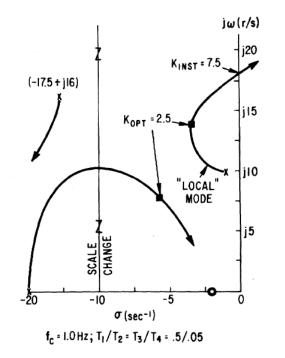


Figure 31—Type PSS1A single-input power system stabilizer

Stabilizer Design Phase Compensation



- Goal is to move the eigenvalues further into the lefthalf plane
- Initial direction the eigenvalues move as the stabilizer gain is increased from zero depends on the phase at the oscillatory frequency
 - If the phase is close to zero, the real component changes significantly but not the imaginary component
 - If the phase is around -45° then both change about equally
 - If the phase is close to -90° then there is little change in the real component but a large change in the imaginary component

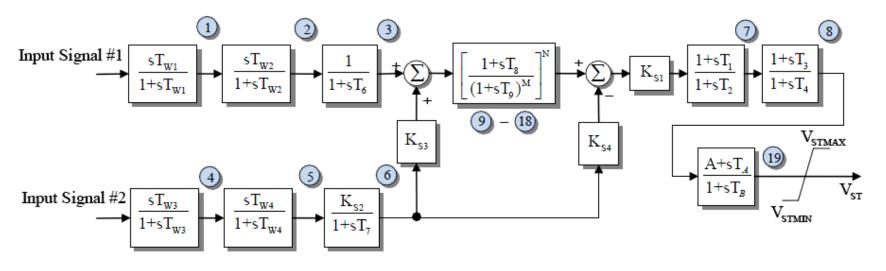
Stabilizer Design Tuning Criteria

• Eigenvalues moves as K_s increases

 K_{OPT} is where the damping is maximized K_{INST} is the gain at which sustained oscillations or an instability occur

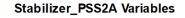
• A practical method is to find K_{INST} , then set K_{OPT} as about 1/3 to $\frac{1}{2}$ of this value

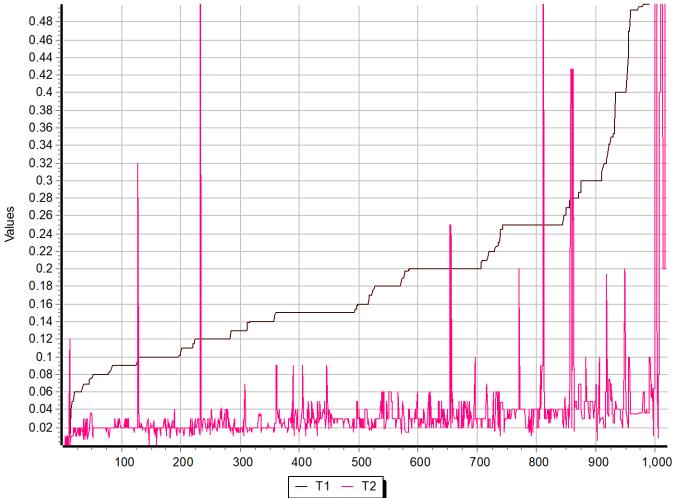
Stabilizer Design Tuning



- Basic approach is to provide enhanced damping at desired frequencies; the challenge is power systems can experience many different types of oscillations, ranging from the high frequency local modes to the slower (< 1.0 Hz usually) inter-area modes
- Usually the PSS should be set to compensate the phase so there is little phase lag at inter-area frequencies
 - This can get modified slightly if there is a need for local stability enhancement
- An approach is to first set the phase compensation, then tune the gain; this should be done at full output

PSS2A Example Values




- Based on about 1000 WECC PSS2A models
 - $T_1=T_3$ about 64% of the time and $T_2=T_4$ about 69% of the time
 - The next page has a plot of the T1 and T2 values; the average T1/T2 ratio is about 6.4

Example T₁ and T₂ Values

23

Example

- As an example we'll use the **wscc_9bus_Start** case, and apply the default dynamics contingency of a selfclearing fault at Bus 8.
- Use Modal Analysis to determine the major modal \bullet frequency Bus 7 Bus 8 Bus 9 Bus 3 Bus 2 and 1.016 pu 85 MW 163 MW 1.025 pu 1.026 pu 1.032 pu 1.025 pu 7 Mvar -11 Mvar damping 100 MW Bus 5 0.996 pu Bus 6 1.013 pu 35 Mvar 125 MW 50 Mvar 1.026 pu 90 MW Bus 4

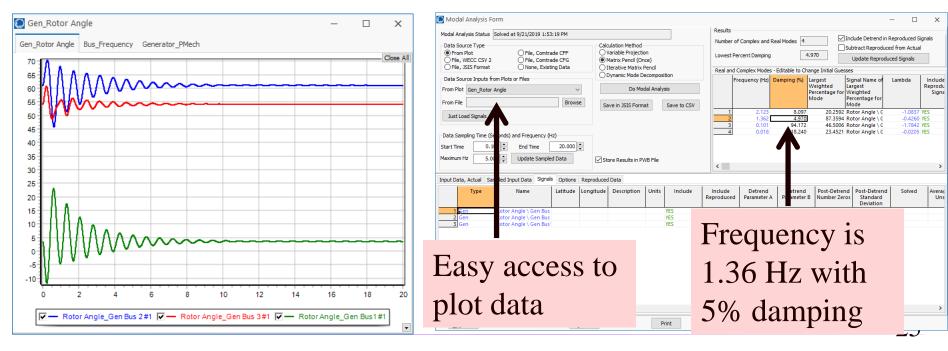
Bus1

30 Mvar

1.040 pu

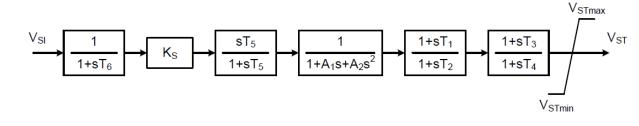
72 MW

27 Mvar


slack

Example: Getting Initial Frequency and Damping

• The new Modal Analysis button provides quick access



PSS Tuning Example: We'll Add PSS1As at Gens 2 and 3

Δδ

- To increase the generator speed damping, we'll add PSS1A stabilizers using the local shaft speed as an input
- First step is to determine the phase difference between the PSS output and the PSS input; this is the value we'll need to compensate
- This phase can be determined either analytically, actually testing the generator or using simulation results
 - We'll use simulation results

Δт

GEP (s)

Figure 31—Type PSS1A single-input power system stabilizer

Δ_ω_c

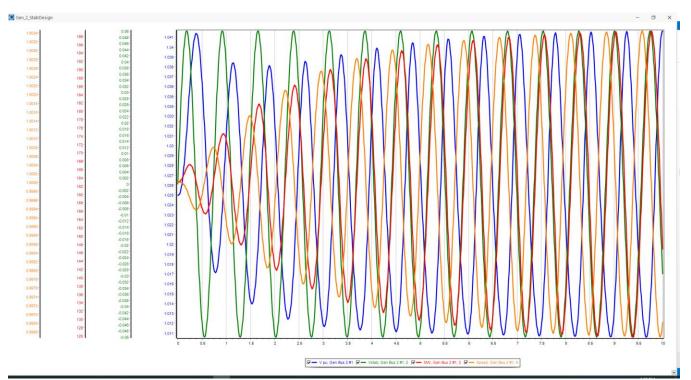
 $\frac{\omega_{b}}{s}$

PSS Tuning Example: Using Stabilizer Reference Signals

- PowerWorld now allows reference sinusoidals to be easily played into the stabilizer input
 - This should be done at the desired modal frequency
- Modal analysis can then be used to quickly determine the phase delay between the input and the signal we wish to damp
- We'll use the wscc_9Bus_Stab_Test
 - This has SignalStab stabilizers modeled at each generator; these models can play in a fixed frequency signal

SignalStab Input and Results

• Enable the SignalStab stabilizer at the bus 2 generator and run the simulation


Print

🔘 Generat	or Information for Present		_		×	
Bus Number	2 V Find By Number	Status O Open				
Bus Name	Bus 2 V Find By Name	Closed				
ID	1 Find	Energized				
Area Name	1 (1)	• YES (Online)				
Labels	no labels	Fuel Type Unkn	Iown		~	
	Generator MVA Base 250.00	Unit Type UN (Unknown)		\sim	
Power and Vo	oltage Control Costs OPF Faults Owners, Are	a, etc. Custom	Stability			
Machine Mod	dels Exciters Governors Stabilizers Other Models	Step-up Transfo	rmer Terminal an	d State		
Ins	Pert Delete Gen MVA Base 250.0	Show Block	Diagram Creat	e VCurve		
Type SIGNA	ALSTAB V Active (only one may be a	active) Set to De	efaults			
Parameters						
PU values :	shown/entered using device base of 250.0 MVA $~~{\sim}~$					
DoRamp	0 🔷 dVolt4 0.00000 🗢	• • •	•	0	1	. 1 •1•
StartTime	0.00000	At t	ime=	=U t	the	stabilizer
dVolt1	0.05000 Duration4 0.00000		•			
Freq1	1.36000 - dVolt5 0.00000 -	rece	eives	as	in	usoidal input
Duration 1	0.00000 + Freq5 0.00000 +	1000				
dVolt2	0.00000 Duration5 0.00000	with	n a m	$a\sigma$	nit	ude of 0.05
Freq2	0.00000			\sim		
Duration2	0.00000	and	o fro		on	cy of 1.36 Hz
dVolt3	0.00000	anu	anc	qu	CII	Cy 01 1.30 112
Freq3	0.00000					
Duration3	0.00000					
	J seeiiid					

Cance

PSS Tuning Example: Gen2 Reference Signal Results

- A M
- Graph shows four signals at bus 2, including the stabilizer input and the generator's speed
 - The phase relationships are most important

Use modal analysis to determine the exact phase values for the 1.36 Hz mode; analyze the data between 5 and 10 seconds

PSS Tuning Example: 1.36 Hz Modal Values

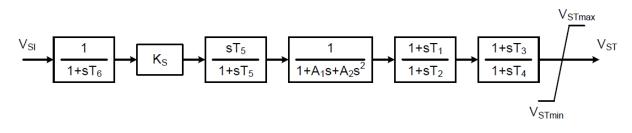
- The change in the generator's speed is driven by the stabilizer input sinusoid, so it will be lagging. The below values show is lags by (-161+360) (-81.0) = 280 degrees
 - Because we want to damp the speed not increased it, subtract off 180 degrees to flip the sign. So we need 100 degrees of compensation; with two lead-lags it is 50 degrees each

requency (Hz) and Da	mping (%) 1.359 Hz, D	amping = -0.1	44% ~	~1	Results from Sele		Object Custom Fl	loating Pont Field
≣ 🔚 🎬 🚸 🕻	0 +00 👬 👬 Recor	ds 👻 Geo 👻 S	iet 👻 Columns 🕯		SORT	f(x) ▼ ⊞ 0	otions 👻	
Туре	Name	Units	Description	Post-Detrend Standard Deviation	Angle (Deg)	Magnitude, Unscaled	Magnitude Scaled by SD	Cost Function
	V pu \ Gen Bus 2 #1			0.011	69.015	0.015	1.364	0.0158
1 Gen				0.035	-160.952	0.048	1.377	0.0049
2 Gen	Vstab \ Gen Bus 2 #1			0.035	-100.552	01010		
	Vstab \ Gen Bus 2 #1 MW \ Gen Bus 2 #1			25.013	-171.078	34.460	1.378	0.0073

PSS Tuning Example: 1.36 Hz Lead-Lag Values

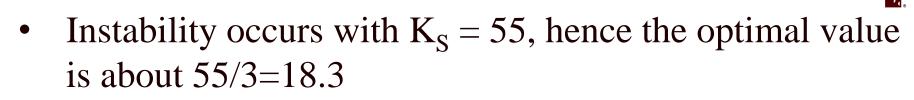
In designing a lead-lag of the form $\frac{1+sT_1}{1+sT_2} = \frac{1+sT_1}{1+s\alpha T_1}$

to have a specified phase shift of ϕ at a frequency f the value of α is


$$\alpha = \frac{1 - \sin \phi}{1 + \sin \phi}, \ T_1 = \frac{1}{2\pi f \sqrt{\alpha}}$$

In our example with $\phi = 50^{\circ}$ then

$$\frac{1 - \sin \phi}{1 + \sin \phi} = 0.132, \ T_1 = 0.321, \ T_2 = \alpha T_1 = 0.042$$


PSS Tuning Example: 1.36 Hz Lead-Lag Values

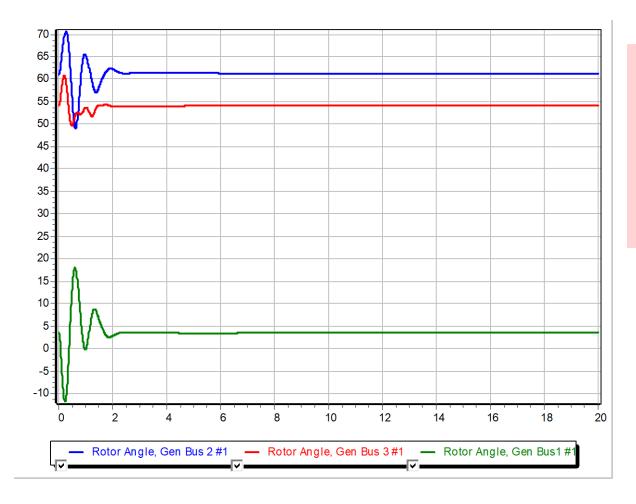
- A M
- Hence $T_1 = T_3 = 0.321$, $T_2 = T_4 = 0.042$. We'll assumed $T_6 = 0$, and $T_5 = 10$, and $A_1 = A_2 = 0$

- The last step is to determine K_s . This is done by finding the value of K_s at just causes instability (i.e., K_{INST}), and then setting K_s to about 1/3 of this value
 - Instability is easiest to see by plotting the output (V_{ST}) value for the stabilizer

PSS Tuning Example: Setting the Values for Gen 2

• This increases the damping from 5% to about 16.7%

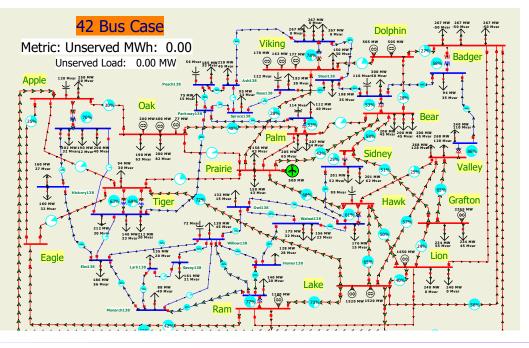
PSS Tuning Example: Setting the Values for Gen 3


• The procedure can be repeated to set the values for the bus 3 generator, where we need a total of 68 degrees of compensation, or 34 per lead-lag

🔘 Modal Analysis	Mode Details							- 🗆	×
Frequency (Hz) and D	amping (%) 1.359 Hz, E	∂amping = -0.0	98% ~	T	Results from Sele loating Point Fiel		Object Custom F	-	1
: 📰 🛅 🏪 ୬၉ '	+.0 .00 ₫₲ ₫₲ Reco	rds 👻 Geo 👻 S	Set 👻 Columns -			f(x) ▼ ⊞ 0	ptions 🕶		
Туре	Name	Units	Description	Post-Detrend Standard Deviation	indard Unscaled S		Magnitude Scaled by SD	Cost Function	
1 Gen	V pu \ Gen Bus 3 #1			0.007	91.689	0.009	1.387	0.0032	
2 Gen	Vstab \ Gen Bus 3 #1			0.035	-161.183	0.049	1.392	0.0021	
3 Gen	MW \ Gen Bus 3 #1			3.925	-139.661	5.462	1.392	0.0038	
4 Gen	Speed \ Gen Bus 3 #1			0.001	-49.263	0.001	1.386	0.0022	
4 Gen	speed \ Gen Bus 3 #1			0.001	-49.263	0.001	1.386	0.0022	

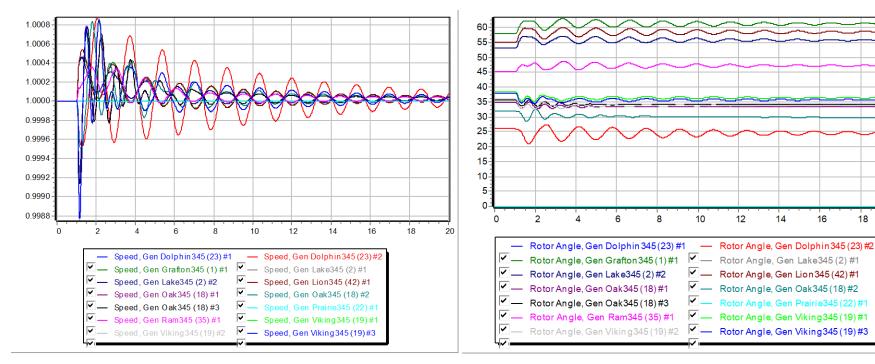
• The values are $\alpha = 0.283$, T₁=0.22, T₂=0.062, K_s for the verge of instability is 36, so K_s optimal is 12.

PSS Tuning Example: Final Solution



With stabilizers at buses 2 and 3 the damping has been increased to 25.7%

Example 2: Adding a PSS to a 42 Bus System

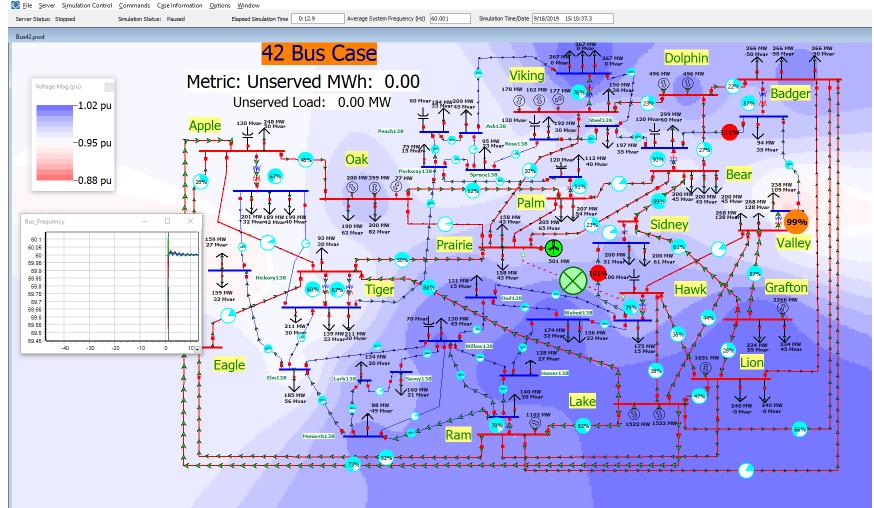

- A M
- Goal is to try to improve damping by adding one PSS1A at a large generator at Lion345 (bus 42)
 - Example event is a three-phase fault is applied to the middle of the 345 kV transmission line between Prairie (bus 22) and Hawk (bus 3) with both ends opened at 0.05 seconds

The starting case name is **Bus42_PSS**

Example 2: Decide Generators to Tune and Frequency

- Generator speeds and rotor angles are observed to have a poorly damped oscillation around 0.6 Hz.

16

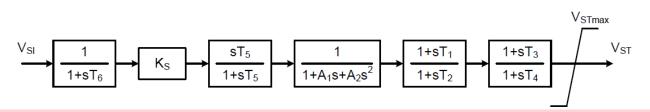

18

20

Aside: Visualizing the Disturbance in PowerWorld Dynamics Studio (DS)

PowerWorld Dynamics Studio (DS) Version 21 - [Bus42.pwd]

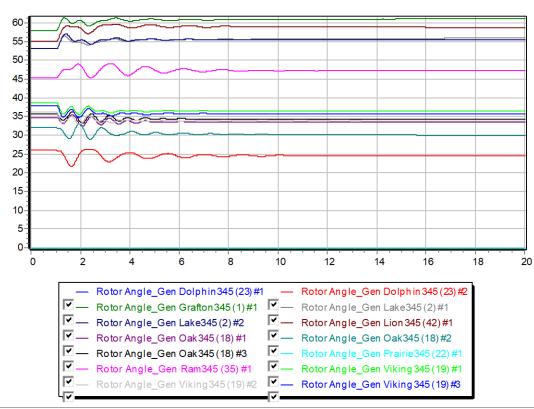
Example 2: Response Quantified Using Modal Analysis


						- 🗆	×
	Results						
Calculation Method Variable Projection Matrix Pencil (Once) Iterative Matrix Pencil Dynamic Mode Decomposition	Lowest Percent Damping Real and Complex Modes		-100.000 -100.000 s - Editable to Change Initial Gue Damping (%) Largest Weighted		Subtract Reprodu Update Reprod sses Signal Name of Largest	iced from Actua	-
Save in JSIS Format Save to CSV				Mode	Percentage for Mode		
Optimal Matrix Pencil Options	1	1.514					
Number of Iterations 10	3						
✓ Initial All Signals to be Not Included	4						
Currrent Iteration 10	6						
Store Results in PWB File	<	-					>
	○ Variable Projection ○ Matrix Pencil (Once) ④ Iterative Matrix Pencil ○ Dynamic Mode Decomposition Do Modal Analysis Save in JSIS Format Save in JSIS Format Save to CSV Optimal Matrix Pencil Options Number of Iterations 10 ☑ Initial All Signals to be Not Included Currrent Iteration	Calculation Method Variable Projection Matrix Pencil (Once) Iterative Matrix Pencil Dynamic Mode Decomposition Do Modal Analysis Save in JSIS Format Save to CSV Optimal Matrix Pencil Options Number of Iterations Number of Iterations Number of Iterations Currrent Iteration Store Results in PWB File	Calculation Method Variable Projection Matrix Pencil (Once) Iterative Matrix Pencil Do Modal Analysis Save in JSIS Format Save to CSV Optimal Matrix Pencil Options Number of Iterations Unitial All Signals to be Not Included Currrent Iteration Store Results in PWB File	Calculation Method Number of Complex and Real Modes 6 Variable Projection Matrix Pencil (Once) 1 Iterative Matrix Pencil Dynamic Mode Decomposition 1 Do Modal Analysis Real and Complex Modes - Editable to Ch Do Modal Analysis Frequency (Hz) Damping (%) Optimal Matrix Pencil Options 1 1.514 8.920 Quitable Projection 1 1.514 8.920 Optimal Matrix Pencil Options 1 2 1.324 8.159 Number of Iterations 10 3 0.744 9.242 4 0.605 2.890 5 0.056 60.018 Currrent Iteration 10 5 0.000 -100.000	Calculation Method Variable Projection Image: Calculation Method Image: Calculation Method Variable Projection Matrix Pencil (Once) Image: Calculation Mode Projection Image: Calculation Mode Projection Matrix Pencil Dynamic Mode Decomposition Image: Calculation Mode Projection Image: Calculation Mode Projection Do Modal Analysis Image: Calculation Mode Projection Image: Calculation Mode Projection Image: Calculation Mode Projection Save in JSIS Format Save to CSV Image: Calculation Mode Projection Image: Calculation Mode Projection Optimal Matrix Pencil Options Image: Calculation Mode Projection Image: Calculation Mode Projection Image: Calculation Mode Projection Visitial All Signals to be Not Included Image: Calculation Mode Projection Image: Calculation Projection Image: Calculation Projection Visitial All Signals to be Not Included Image: Calculation Projection Image: Calculation Projection Image: Calculation Projection Visitian All Signals to PWB File Image: Calculation Projection Image: Calculation Projection Image: Calculation Projection Visitian All Signals to PWB File Image: Calculation Projection Image: Calculation Projection Image: Calculation Projection Visitian All Signals to PWB File	Calculation Method Include Detrend i Variable Projection Subtract Reproduction Matrix Pencil Lowest Percent Damping -100.000 Weighted Update Reproduction Do Modal Analysis Save in JSIS Format Save to CSV Optimal Matrix Pencil Options Save to CSV Imagest Optimal Matrix Pencil Options 1 1.514 8.920 10.4844 Speed \ Gen Vi Q Initial All Signals to be Not Included 10 3 0.744 9.242 29.2527 Speed \ Gen Ra Q Store Results in PWB File 10 Store Results in PWB File Store Results in PWB File Store Results in PWB File	Calculation Method Variable Projection Include Detrend in Reproduced S Matrix Pencil (Once) Iterative Matrix Pencil Subtract Reproduced Signals Dynamic Mode Decomposition Frequency (Hz) Damping (%) Largest Save in JSIS Format Save to CSV Optimal Matrix Pencil Options 1 1.514 8.920 10.4844 Speed \ Gen Vi -0.6812 Mumber of Iterations 10 3 0.744 9.242 29.2527 Speed \ Gen Vi -0.6812 Mumber of Iteration 10 6 0.000 -100.000 12.3306 Speed \ Gen Ra -0.26300 Store Results in PWB File 10 10 -0.000 12.3306 Speed \ Gen Ra 0.3396

Input Data, Actual Sampled Input Data Signals Options Reproduced Data

	Туре	Name	Latitude	Longitude	Description	Units	Include	Include Reproduced	Detrend Parameter A	Detrend Parameter B	Post-Detrend Number Zeros	Post-Detrend Standard Deviation	Solved	Averaç Uns
1	Gen	Speed \ Gen Dolphin34					YES	YES	1.0001	-0.0000	0	0.000	YES	
2	Gen	Speed \ Gen Dolphin34					NO	YES	1.0001	-0.0000	0	0.000	YES	
3	Gen	Speed \ Gen Grafton34					NO	YES	1.0001	-0.0000	0	0.000	YES	
4	Gen	Speed \ Gen Lake345 (2					NO	YES	1.0001	-0.0000	0	0.000	YES	
5	Gen	Speed \ Gen Lake345 (2					NO	YES	1.0001	-0.0000	0	0.000	YES	
6	Gen	Speed \ Gen Lion345 (4					NO	YES	1.0001	-0.0000	0	0.000	YES	
7	Gen	Speed \ Gen Oak345 (1					NO	YES	1.0001	-0.0000	0	0.000	YES	
8	Gen	Speed \ Gen Oak345 (1					NO	YES	1.0001	-0.0000	0	0.000	YES	
9	Gen	Speed \ Gen Oak345 (1					NO	YES	1.0001	-0.0000	0	0.000	YES	
10	Gen	Speed \ Gen Prairie345					NO	YES	1.0000	0.0000	0	0.000	YES	
11	Gen	Speed \ Gen Ram345 (3					YES	VEC	1 0001	0 0000	0	0.000	VEC	
12	Gen	Speed \ Gen Viking345					YES		~	_				
13	Gen	Speed \ Gen Viking345					YES	For	1 A L	$J_7 m$	odo t	ha da	mni	na
14	Gen	Speed \ Gen Viking345					YES	I'UI	0.6 H		oue i		ampi	пg
:	<u>C</u> lose			P Help		Р	rint	is 2.	.89%				•	

Example 2: Determine Phase Compensation


- Using a SignalStabStabilizer at bus 42 (Lion345), the phase lag of the generator's speed, relative to the stabilizer input is 199 degrees; flipping the sign requires phase compensation of 19 degrees or 9.5 per lead-lag
- Values are $\alpha = 0.72$; for 0.6 Hz, $T_1 = 0.313$, $T_2 = 0.225$; set T_3 and T_4 to match; gain at instability is about 450, so the gain is set to 150.

The case with the test signal is **Bus42_PSS_Test** Adding this single stabilizer increases the damping to 4.24%

Example 2: Determine Phase Compensation For Several Generators

 Adding and tuning three more stabilizers (at Grafton345 and the two units at Lake345) increases the damping to 8.16%

However, these changes are impacting modes in other areas of the system