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Announcements

• Read Chapter 5 and Appendix A

• Homework 2 is due today

• Homework 3 is due on Tuesday October 1

• Exam 1 is Thursday October 10 during class
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Subtransient Models

• The two-axis model is a transient model

• Essentially all commercial studies now use 

subtransient models

• First models considered are GENSAL and 

GENROU, which require X"d=X"q

• This allows the internal, subtransient voltage to be 

represented as 

( )sE V R jX I   

 d q q dE jE j        
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Subtransient Models

• Usually represented by a Norton Injection with

• May also be shown as

 q dd q

d q
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jE jE
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In steady-state  = 1.0
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GENSAL

• The GENSAL model had been widely used to model 

salient pole synchronous generators

– In salient pole models saturation is only assumed to affect the 

d-axis

– In the 2010 WECC cases about 1/3 of machine models were 

GENSAL; in 2013 essentially none are, being replaced by 

GENTPF or GENTPJ

– A 2014 series EI model had about 1/3 of its machines models 

set as GENSAL

– In November 2016 NERC issued a recommendation to use 

GENTPJ rather than GENSAL for new models. See
www.nerc.com/comm/PC/NERCModelingNotifications/Use%20of%20GENTPJ%20Generator%20Model.pdf
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GENSAL Block Diagram

A quadratic saturation function is used; for

initialization it only impacts the Efd value 
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GENSAL Example

• Assume same system as before with same common 

generator parameters: H=3.0, D=0, Ra = 0, Xd = 

2.1, Xq = 2.0, X'd = 0.3, X"d=X"q=0.2, Xl = 0.13, 

T'do = 7.0, T"do = 0.07, T"qo =0.07, S(1.0) =0, and 

S(1.2) = 0.

• Same terminal conditions as before
• Current of 1.0-j0.3286 and generator terminal voltage of 1.072+j0.22 

= 1.0946 11.59 

• Use same equation to get initial d

 
1.072 0.22 (0.0 2)(1.0 0.3286)

1.729 2.22 2.81 52.1

s qE V R jX I

j j j

j

d   

    

    

Same delta as with 

the other models 

Saved as case 

B4_GENSAL
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GENSAL Example

• Then as before

and   

0.7889 0.6146 1.0723 0.7107

0.6146 0.7889 0.220 0.8326

d

q

V

V

       
        

      

0.7889 0.6146 1.000 0.9909

0.6146 0.7889 0.3287 0.3553

d

q

I

I

       
        

      

( )

1.072 0.22 (0 0.2)(1.0 0.3286)

1.138 0.42
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GENSAL Example

• Giving the initial fluxes (with  = 1.0) of

• To get the remaining variables set the differential 

equations equal to zero, e.g.,

0.7889 0.6146 1.138 0.6396

0.6146 0.7889 0.420 1.031

q

d





        
               

    2 0.2 0.3553 0.6396

1.1298, 0.9614

q q q q

q d

X X I

E





        

  

Solving the d-axis requires solving two linear

equations for two unknowns
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GENSAL Example

0.4118

0.5882

0.17

Id=0.9909

d”=1.031

1.8

Eq’=1.1298
d’=0.9614

3.460

Efd = 1.1298+1.8*0.991=2.912

Iq=0.3553
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Comparison Between Gensal and 
Flux Decay
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Nonlinear Magnetic Circuits

• Nonlinear magnetic models are needed because 

magnetic materials tend to saturate; that is, increasingly 

large amounts of current are needed to increase the flux 

density

dt

d
N

dt

d
v

R




 0

When linear  = Li
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Saturation
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Relative Magnetic Strength Levels

• Earth’s magnetic field is between 30 and 70 mT

(0.3 to 0.7 gauss)

• A refrigerator magnet might have 0.005 T

• A commercial neodymium magnet might be 1 T

• A magnetic resonance imaging (MRI) machine 

would be between 1 and 3 T

• Strong lab magnets can be 10 T

• Frogs can be levitated at 16 T (see 

www.ru.nl/hfml/research/levitation/diamagnetic

• A neutron star can have 100 MT!

http://www.ru.nl/hfml/research/levitation/diamagnetic
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Magnetic Saturation and Hysteresis 

• The below image shows the saturation curves for 

various materials

Image Source: en.wikipedia.org/wiki/Saturation_(magnetic)

Magnetization curves of 9 

ferromagnetic materials, showing 

saturation. 1.Sheet steel, 2.Silicon 

steel, 3.Cast steel, 4.Tungsten 

steel, 5.Magnet steel, 6.Cast iron, 

7.Nickel, 8.Cobalt, 9.Magnetite; 

highest saturation materials can 

get to around 2.2 or 2.3T

H is proportional to current
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Magnetic Saturation and Hysteresis 

• Magnetic materials also exhibit hysteresis, so there is 

some residual magnetism when the current goes to 

zero; design goal is to reduce the area enclosed by the 

hysteresis loop

Image source: www.nde-ed.org/EducationResources/CommunityCollege/MagParticle/Graphics/BHCurve.gif

To minimize the amount

of magnetic material,

and hence cost and

weight, electric machines

are designed to operate

close to saturation
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Saturation Models

• Many different models exist to represent saturation

– There is a tradeoff between accuracy and complexity

• One simple approach is to replace

• with

 
'

' '
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Saturation Models

• In steady-state this becomes

• Hence saturation increases the required Efd to get a 

desired flux

• Saturation is usually modeled using a quadratic 

function, with the value of Se specified at two points 

(often at 1.0 flux and 1.2 flux)

' ' '( ) ( )fd q d d d qE E X X I Se E   

2

2

( )

( )
An alternative model is 

q

q

q

Se B E A

B E A
Se

E

 

 




A and B are

determined from

two provided 

data  points
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Saturation Example

• If Se = 0.1 when the flux is 1.0 and 0.5 when the flux is 

1.2, what are the values of A and B using the
' 2( )qSe B E A 

2

2 2

2 2

2

To solve use the Se(1.2) value to eliminate B

(1.2) (1.2)
(1.0) (1.0 )

(1.2 ) (1.2 )

(1.2 ) (1.0) (1.2)(1.0 )

With the values we get

4 7.6 3.56 0 0.838 or 1.0618

Use A=0.838, which g

Se Se
B Se A

A A

A Se Se A

A A A

   
 

  

    

ives B=3.820
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Saturation Example: Selection of A

When selecting which of the two values of A to use, we 

do not want the minimum to be between the two specified 

values.  That is Se(1.0) and Se(1.2).
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Implementing Saturation Models

• When implementing saturation models in code, it is 

important to recognize that the function is meant to 

be positive, so negative values are not allowed

• In large cases one is almost guaranteed to have 

special cases, sometimes caused by user typos

– What to do if Se(1.2) < Se(1.0)?

– What to do if Se(1.0) = 0 and Se(1.2) <> 0

– What to do if Se(1.0) = Se(1.2) <> 0

• Exponential saturation models have also been used
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GENSAL Example with Saturation

• Once E'q has been determined, the initial field current 

(and hence field voltage) are easily determined by 

recognizing in steady-state the E'q is zero 

   

    

  

2

2

1 ( )

1.1298 1 1.1298 2.1 0.3 (0.9909)

1.1298 1 3.82 1.1298 0.838 1.784 3.28

fd q q d d DE E Sat E X X I

B A

     

    

    

Saturation

coefficients

were 

determined

from the two

initial values

Saved as case B4_GENSAL_SAT
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GENROU

• The GENROU model has been widely used to model 

round rotor machines

• Saturation is assumed to occur on both the d-axis and 

the q-axis, making initialization slightly more difficult
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GENROU

The d-axis is

similar to that

of the 

GENSAL; the 

q-axis is now

similar to the 

d-axis.  Note 

that saturation 

now affects 

both axes.  
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GENROU Initialization

• Because saturation impacts both axes, the simple 

approach will no longer work

• Key insight for determining initial d is that the 

magnitude of the saturation depends upon the 

magnitude of ", which is independent of d

• Solving for d requires an iterative approach; first get a 

guess of d using the unsaturated approach

( )sV R jX I     This point is crucial!

 s qE V R jX Id   
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GENROU Initialization

• Then solve five nonlinear equations for five unknowns

– The five unknowns are d, E'q, E'd,  'q, and  'd

• Five equations come from the terminal power flow 

constraints (which allow us to define d " and q" as a 

function of the power flow voltage, current and d) and 

from the differential equations initially set to zero

– The d " and q" block diagram constraints 

– Two differential equations for the q-axis, one for the d-axis (the 

other equation is used to set the field voltage

• Values can be determined using Newton’s method, 

which is needed for the nonlinear case with saturation
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GENROU Initialization

• Use dq transform to express terminal current as

• Get expressions for  "q and  "d in terms of the 

initial terminal voltage and d 

– Use dq transform to express terminal voltage as

– Then from 

sin cos

cos sin

d r

q i

I I

I I

d d

d d

     
    

    

sin cos

cos sin

d r

q i

V V

V V

d d

d d

     
    

    

   ( )q d d q s d q

q d s d q

d q s a d

j V jV R jX I jI

V R I X I

V R I X I

 





        

    

   

Recall X "d=X "q=X"

and =1 (in steady-state)

Expressing complex 

equation as two real 

equations

These values will change during the 

iteration as d changes
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GENROU Initialization Example

• Extend the two-axis example

– For two-axis assume H = 3.0 per unit-seconds,  Rs=0, Xd

= 2.1, Xq = 2.0, X'd= 0.3, X'q = 0.5, T'do = 7.0, T'qo = 0.75 

per unit using the 100 MVA base.

– For subtransient fields assume X"d=X"q=0.28, Xl = 0.13, 

T"do = 0.073, T"qo =0.07

– for comparison we'll initially assume no saturation 

• From two-axis get a guess of d

  1.0946 11.59 2.0 1.052 18.2 2.814 52.1

52.1

E j

d

        

  

Saved as case B4_GENROU_NoSat
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GENROU Initialization Example

• And the network current and voltage in dq

reference

• Which gives initial subtransient fluxes (with Rs=0),

0.7889 0.6146 1.0723 0.7107

0.6146 0.7889 0.220 0.8326

d

q

V

V

       
        

      

0.7889 0.6146 1.000 0.9909

0.6146 0.7889 0.3287 0.3553

d

q

I

I

       
        

      

     ( )

0.7107 0.28 0.3553 0.611

0.8326 0.28 0.9909 1.110

q d d q s d q

q d s d q

d q s a d

j V jV R jX I jI

V R I X I

V R I X I
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GENROU Initialization Example

• Without saturation this is the exact solution

Initial values are: 
d = 52.1, 
E'q=1.1298, 

E'd=0.533, 

 'q =0.6645, 

and  'd=0.9614

Efd=2.9133
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Two-Axis versus GENROU Response

Figure compares rotor angle for bus 3 fault, cleared after 0.1 seconds
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GENROU with Saturation

• Nonlinear approach is needed in common situation in 

which there is saturation

• Assume previous GENROU model with S(1.0) = 0.05, 

and S(1.2) = 0.2.

• Initial values are: d = 49.2, E'q=1.1591, E'd=0.4646,  'q =0.6146, 

and  'd=0.9940

• Efd=3.2186

Same fault as before

Saved as case 

B4_GENROU_Sat
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GENTPF and GENTPJ Models

• These models were introduced in 2009 to provide a 

better match between simulated and actual system 

results for salient pole machines

– Desire was to duplicate functionality from old BPA TS 

code

– Allows for subtransient saliency (X"d <> X"q)

– Can also be used with round rotor, replacing GENSAL 

and GENROU

• Useful reference is available at below link; 

includes all the equations, and saturation details

https://www.wecc.biz/Reliability/gentpj-typej-definition.pdf
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Motivation for the Change: 
GENSAL Actual Results

Image source :https://www.wecc.biz/library/WECC%20Documents/Documents%20for

%20Generators/Generator%20Testing%20Program/gentpj%20and%20gensal%20morel.pdf

Chief Joseph

disturbance 

playback

GENSAL

BLUE = MODEL

RED = ACTUAL

(Chief Joseph is a 

2620 MW hydro 

plant on the 

Columbia River in 

Washington)
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GENTPJ Results

Chief Joseph

disturbance 

playback

GENTPJ

BLUE = MODEL

RED = ACTUAL
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GENTPF and GENTPJ Models

Most of 

WECC 

machine 

models 

are now 

GENTPF 

or 

GENTPJ

If nonzero, Kis typically ranges from 0.02 to 0.12
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Theoretical Justification for 
GENTPF and GENTPJ

• In the GENROU and GENSAL models saturation 

shows up purely as an additive term of E'qand E'd
– Saturation does not come into play in the network interface 

equations and thus with the assumption of X"q = X"d a simple 

circuit model can be used

• The advantage of the GENTPF/J models is saturation 

really affects the entire model, and in this model it is 

applied to all the inductance terms simultaneously

– This complicates the network boundary equations, but since 

these models are designed for X"q ≠ X"d there is no increase 

in complexity
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GENROU/GENTPJ Comparison

Saved as case B4_GENTPJ_Sat
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GENROU, GenTPF, GenTPJ

Figure compares gen 4 reactive power output for the 0.1 second fault
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Why does this even matter?

• GENROU and GENSAL models date from 1970, and 

their purpose was to replicate the dynamic response the 

synchronous machine

– They have done a great job doing that

• Weaknesses of the GENROU and GENSAL model has 

been found to be with matching the field current and 

field voltage measurements

– Field Voltage/Current may have been off a little bit, but that 

didn’t effect dynamic response

– It just shifted the values and gave them an offset

• Shifted/Offset field voltage/current didn’t matter too 

much in the past


