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Measurement Based Modal Analysis

» With the advent of large numbers of PMUs,
measurement based modal analysis is increasingly
used to understand power system behavior

— The goal is to determine the damping associated with the
dominant oscillatory modes in the system

— Approaches seek to approximate a sampled signal by a
series of exponential functions (usually damped sinusoidals)

« Several techniques are available

— Prony is the oldest, dating to 1795, with power system
applications from about 1980's

* Paper discusses an approach to quickly handle a
large number of signals
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Ring-down Modal Analysis

* A variety of different techniques can be used to
approximate a signal, y,4(t), by the sum of other,
simpler signals (basis functions)

— Basis functions are usually exponentials, with linear and
quadratic functions used to detrend the signal

— Properties of the original signal can be quantified from
basis function properties

« Examples are frequency and damping
— Signal is considered over some time window, with t=0
defined as the beginning of the window
» Starting point is time-varying signal, y,(t), that is
then assumed to be uniformly sampled
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Example Application

* An example application is to make sense of the
frequency response following a contingency

— Below example at the shows the frequency variation at
8400 substations




Measurement-Based Modal Analysis

« Vector y consists of m uniformly sampled points
from y,..(t) at a sampling value of DT, starting with
t=0, with values y; for j=1...m

— Times are then t= (j-1)DT
— At each time point j, the approximation of y; is

7, @.b)= Y b (t,.0)

where a 1s a vector with the real and imaginary eigenvalue components,

with ¢,(¢,,a) = e”" for o, corresponding to a real eigenvalue, and
ot ot .
¢.(t;,0)=e "cos(e, t;)and ¢ (o) =e "sin(e;, t))

for a complex eigenvector value
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Measurement-Based Modal Analysis

* Error (residual) value at each point j is

r(t,ab)=y -y (,ab)
* Closeness of fit can be quantified using the
Euclidean norm of the residuals as a cost function

1 & R 1
Ez(yj ~5.(t,,a,b))* = Eurm,b)\\j
j=1

* Hence we need to determineaand b

* Approaches can be used with multiple signals, with a
common to all signals, and b signal specific
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Matrix Pencil Method

* The a vector can be calculated using the Matrix
Pencil Method (MPM)

* First, with m samples, let L=m/2
 Then form a Hankel matrix, Y such that

Vi The computational
Y, complexity increases

M M with the cube of the
number of measurements!

Y =

| V- Vm—r+1 L i
« Calculate its singular values with an economy SVD
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Matrix Pencil Method (MPM)

The ratio of each singular value is then compared to
the largest singular value; retain the M ones with a
ratio greater than a threshold

— This determines the modal order

— Assuming V is ordered by singular values (highest to

lowest), let V; be then matrix with the first M columns of V

Then form the matrices V, and V,, such that
— V, is the matrix consisting of all but the last row of V|
— V, is the matrix consisting of all but the first row of V,

— Discrete-time poles are found as the generalized
eigenvalues of the pair {V,'V,, V,TV.}

Then calculate the eigenvalues m




Computational Considerations

 MPM can be applied to multiple signals, with
computational order scaling according to the cube of
the number of samples and linearly with the number
of signals

The MPM can become computationally difficult with
large numbers of signals

A key insight is just a small number of signals are
needed to calculate a; b can then be quickly
calculated for each signal
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Quick Determination of b

* AKkey insight from a technique know as the variable
projection method (VPM) is M is the
y(a,b) =®(a)b number

And then the residual 1s minimized by selecting of retained
modes,

b=®(a)"y and is usually
where @ (a) 1s the m by M matrix with values  yery small

O ()= e”" if o corresponds to a real eigenvalue,

and @ (a) =™ cos(ar,,t,) and @ ., (0)) =™ sin(a, t,)

for a complex eigenvalue; ¢, = (j—1)AT

Finally, ®(a)" is the pseudoinverse of ®(a)




lterative Matrix Pencill

* The lterative Matrix Pencil (IMP) is used to iteratively
Improve a to better match a large number of signals
by sequentially adding signals to be included in the
calculation of a

— The b for each signal, and its associated costs function,
can be quickly calculated

The paper algorithm arbitrarily selects one signal,

and then sequentially adds the signal with the

highest cost function (i.e., the worst fit); usually only

a small number of signals needs to be considered

(approximately 10)
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38400 Signal Example

* |In previous 8400 signal example if
just one signal is included in the
calculation of a then just four modes :
are found: (0, 0.029, 0.21, 0.42Hz) =

* The best and worst signal matches are shown
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8400 Signal Example

* When ten signals are included there are eight
modes, and the overall match for all the 8400
signals is much improved

Average Match Worst Match

PWDVectorGrid Variables PWDVectorGrid Variables

All 8400 signals
with 190 samples
each takes about
25 seconds on

a laptop
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8400 Signal Example: Contouring the
Cost Functions

The contour

o : | shows the
. locations in
which the signals
are well matched

Cost Functi
-0.006

and where they
are less well

matched (perhaps
' indicating bad
' measurements

or unusual system

behavior)
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Application: Mode Shape Visualization

* The participation of each signal in each mode can
be readily calculated and visualized

displays R
show the

0.218 and

the 0.348

Hz modes;

pruning is

used to

reduce the

number of

vectors




Application: Visualizing the Source of

Oscillations

* The results can also be used to visualize the source
of sustained oscillations




Comparison Between IMP and DMD

Ongoing work is looking comparisons between the
different methods and developing public datasets (image
on the left is cost contour for IMP and the right for
dynamic mode decomposition)
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Conclusion and Questions

Measurement based modal analysis is becoming
widely available for the analysis of power system
data, both from actual measurements and simulation
results

Paper has presented an iterative matrix pencil
approach that can be used to quickly calc

However, much can and should be done to reduce
to reduce this risk

A broad, sustained effort is needed in this area
including the entire electric grid sector

Synthetic electric grids will play a crucial role in thi
effort ?XFQI




