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Overview

« Our modern society depends on reliable
electricity; large blackouts can be catastrophic

 |Interconnected electric grids worldwide are in a
period of rapid transition. Examples include
— Integration of large amounts of renewable generation
— Changing load, including more electric vehicles
— Customers having more choice in their electric service
— Inclusion of new technologies for sensing and control,

such as phasor measurement units with “big data”

* There are lots of opportunities for innovation,

including in the area of visualization AT“




Overview, cont.

 Power system operations and planning are
generating more data than ever
— In operations thousands of PMUs are now deployed
— In planning many thousand of studies are now
routinely run, with a single transient stability run
creating millions of values
 How data is transformed into actionable
information is a crucial, yet often unemphasized,
part of the software design process

 Presentation addresses some issues associated
with dealing with this data
’ A]M




Examples of Power System
"Big Data”

 Power system operations and planning are a
rich source of data

— SCADA has traditionally
provided a grid data at scan
rates of several seconds

— Thousands of PMUs are
now deployed providing data
at 30 times per second

— In planning many thousand
of studies are now routinely
run, with a single transient
stability run creating gigabytes




Examples of Power System

‘Big Data”
A 100,000 bus grid solved hourly for one year

generates 100K times 8760 = 876 million values

« Each hourly simulation may have 10,000
contingencies, giving 8.76 trillion bus values

« Each contingencies could also be run as a time
domain simulation, which is sampled at PMU
frequency (30 per second) for 30 seconds each
gives about 8 quadrillion bus values
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Example of 82,000 Bus
Synthetic Grid
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Example of Grid Dynamic
Response

Image animates

Transient Stability Time the frequency
variation following
a generator outage

(Sec): 0.000
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Visualization Software Design

« Key question: what are the desired tasks that
need to be accomplished?

— Needs for real-time operations might be quite different
than what is needed in planning
« Understanding the entire processes in which the
visualizations are embedded is key

« Software should help humans make the more
complex decisions, i.e., those requiring
information and knowledge
— Enhance human capabilities
— Alleviate their limitations (like adding up bus flows) m




Power System Operating States

« Effective data analysis and visualization for
operations requires considering the different
operating states

o Effective visualization is most needed for the
more rare situations and for planning

Image Derived From L.H. Fink and K. Carlsen, Operating under stress and strain, IEEE Spectrum, March 1978, pp. 48-53
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Synthetic Models and Visualization

* Access to actual power grid models is often
restricted, and this can be a particular concern
with data analysis and visualization since its

purpose is provide insight into the model, including
weaknesses

— Models cannot be freely shared with other researchers,
and even presenting results can be difficult

Solution is to create entirely synthetic (fictitious)
models the mimic characteristics of actual models

— We are doing this on a US ARPA-E project, with all
models containing geographic coordinates
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Power System Visualization
ng Information

first used in system dispatch centers, they

e sneasdt - PSE&G Control Center in 1988
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Utility Control Room, 1960’s

Left Source: W. Stagg, M. Adibi, M. Laughton, J.E. Van Ness, A.J. Wood, “Thirty Years of Power Industry

Computer Applications,” IEEE Computer Applications in Power, April 1994, pp. 43-49 T
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Right Source: J.N. Wrubel, R. Hoffman, “The New Energy Management System at PSE&G,” IEEE Computer
Applications in Power, July 1988, pp. 12-15.




Present: PdJM Control Center:
Electronic Strip-Charts
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Image Source: http://tdworld.com/site-files/tdworld.com/files/imagecache/large img/uploads/2013/07/pjmcontrolroom117.jpg




Blackouts and Operator

Intervention
« Many large-scale blackouts have time scales of

several minutes to a few dozen minutes
— this time scale allows for operator intervention, but it

must occur quickly to be effective (extreme
emergency control)

* Operators can’t respond effectively if they do not
know what is going on— they need “situational
awareness’




Extreme Emergency Control

* How the control room environment might be
different during such an event

— advanced network analysis applications could be
unavailable or overwhelmed

— system state could be quite different, with unfamiliar
flows and voltages

— lots of alarms and phone calls

— high level of stress for control room participants with
many tasks requiring their attention

— large number of decision makers might be present

« Designing software for extreme conditions is
challenging since conditions seldom encountersf




Demonstration of Extreme
Situations Using Synthetic Grids

Average Systam Fraquency () [60.cc0 Sedaton TmeOaee f3/5/2008 11

Note: this grid is fictitious and doesn't
represent the real Texas grid

Total Gen P: 67109 MW
Total Gen Q: 11649 Mvar
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Highest GIC Transformers

XF Buses  Effective GIC
1070 - 1071 0 Amps
4146 - 4147 0 Amps
5045 - 5046 0 Amps
5047 - 5048 0 Amps
6234 - 6235 0 Amps
7047 - 7048 0 Amps
7073 - 7074 0 Amps




A Visualization Caution!

Just because information can be shown
graphically, doesn’t mean it should be shown

Three useful design criteria from 1994 EPRI
Vlsuallzatlon report AGE STRUCTURE OF COLLEGE ENROLLMEHT .

1 . natu ral enCOd I ng Percantof Totd Enroliment2S and Oues .
of information | ‘.' .

2. task specific graphics
3. no gratuitous graphics =

Source: E. Tufte, The Visual Display of Quantitative Information, Graphics Press, Cheshire, CT, 1983. AI‘M




Visualization Background:

Preattentive Processing
* Good reference book: Colin Ware,
Information Visualization: Perception for Design,

Third Edition, 2013

« When displaying large amounts of data, take
advantage of preattentive cognitive processing
— With preattentive processing the time spent to find a
“target” is independent of the number of distractors
« Graphical features that are preattentively
processed include the general categories of
form, color, motion, spatial position
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All are Preattentively Processed
Except Juncture and Parallelism
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Source: Information Visualization by Colin Ware, Fig 5.5




Preattentive Processing with
Color & Size
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Use of Color

Some use of color can be quite helpful

— 10% of male population has some degree of color
blindness (1% for females)

Do not use more than about ten colors for

coding if reliable identification is required

Color sequences can be used effectively for data
maps (like contours)
— Grayscale is useful for showing forms

— Multi-color scales (like a spectrum) have advantages
(more steps) but also disadvantages (effectively
comparing values) compared to bi-color sequences

AlM




Color Sequence Example: Blue/
Red, Discrete
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Color Sequence Example:
Spectrum, Continuous
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Visual Working Memory and

Change Blindness
* The visual working memory (what we retain

about images) is limited to a small number of
simple objects or patterns, perhaps 3 to 5.

Because we remember so little, it is possible

to make large changes to displays and people
will generally not notice unless they are
fixated upon it.

Fast animation (without flicker) can help
reduce this.




Change Blindness Example:
With Flicker Hard to Detect

http://hps.elte.hu/Basler/Courses/Consciousness/Change%20Blindness/ AT;{




Large Changes can be Hard to
Dggtectwit Local Disruptions

Source: http://nivea.psycho.univ-paris5.fr/ECS/ECS-CB.html




Change Blindness Comments

Change blindness is most likely under high task
load conditions with improbable events

Less likely to occur when change is more salient
(turning on a light is better than turning it off;
changing “on” to “off” is not very salient).

Changes in main field of vision easiest to detect

Experts in domain are less likely to experience
change blindness

Reference: Wickens, Hollands, Banbury, Parasuraman, Engineering Psychology and Human Performance, 4" Edition, 2013AI‘M




Some Techniques for Dealing with
Time-Varying Data
Need to keep in mind the desired task!

Tabular displays
Time-based graphs (strip-charts for real-time)

Animation loops

— Can be quite effective with contours, but can be used
with other types of data as well

Data analysis algorithms, such as clustering, to

detect unknown properties in the data
— There is often too much data to make sense without

some pre-processing analysis!
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Tabular Displays

* In many contexts, tabular displays (particularly
with interactive features such as sorting, filtering,
drill-down) can be a great way to show data
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Time-based graphs

« Graphs can be quite
helpful for showing exact
values if no more than
about ten individual
signals are shown

— In larger sets outliers may

be missed
Showing more values can i
be helpful in identifying
response envelope

— Graph at bottom left shows
2400 signals

Frequency (Hz




Animation loops

* Animation loops trade-off the advantages of
snapshot visualizations with the time needed to
play the animation loop

— A common use is in weather forecasting

* In power systems applications the length/speed
of the animation loops would depend on
application

— In real-time displays could update at either SCADA or
PMU rates

— Could be played substantially faster than real-time to
show historical or perhaps anticipated future

conditions m




Animation Loops:
SCADA vs. PMUs
* A potential —

visualization
change is how
much future
displays are

visualized at PMU g
rates (30 times per g
second) versus 8
SCADA rates

(every 4-12
seconds)

Image Source: Jay Giri (Alstom Grid), "Control Center EMS Solutions for the Grid of the Future," EPCC, June 2013A][M




Data Analysis Algorithms

« Usually there is too much data to make sense of
without some type of analysis

 Several terms are used to denote the idea of
discovering insight from data:

— Statistics, data mining,
knowledge discovery,
data analytics, machine
learning, and big data

 Large field, so I'll just
present a few examples

Image source: Colin Ware, Information Visualization, Third Edition, 2013




Clustering Example: Transient
Stability, PMU, or SCADA Analysis

* Asingle transient stability solution can generate
large amounts of output data

* |n real-time a similar situation occurs with PMU
data, or on a longer time frame with SCADA

 How much this data needs to be considered is
application dependent
— In operations the concern may just be OK or Not OK
— In planning more detailed analysis may be required.
Issue is how to determine if the results are “correct™?
» Clustering is an example of unsupervised
machine learning to make data manageable W




Frequency Graph of Data for
2400 Generators

1 2 3 4 = =] 7 3 9 10 11 12 13 14 15 16 17 18 19 20
Time (Seconds)

Questions:

*[s the system responding as expected?
*How to separate out the patterns?
*How to incorporate geographic information in the Visualizatiorm




Solution: Apply Data Mining

Clustering Techniques
« Clustering is the process of grouping a set of

objects so similar objects are together, and
dissimilar objects are not together

* There is no perfect clustering method or even a

single definition for what constitutes a cluster

Two Clusters?

MY
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Clustering Algorithms

* There are a variety of clustering algorithms. Two
common algorithms are

— K-Means
* The number of clusters must be specified
» Very fast and simple in practice
« Different initial clusters may lead to different results

— QT: Quality Threshold

« Form an unknown number of potentially large clusters that
meet a “quality standard” which is a specified threshold
cluster diameter

« Requires more computation

MY




Clustering Applied to Results,
Ten Distinct Responses Identified
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Results Combined with

Visualization with Spark-Lines
« Spark-lines (from E. Tufte, Beautiful Evidence,

20006) are “intense, word-sized graphics”

Frequency:
59.8

\,\/\/\Fregsgncy: Display of value and trend

Display of value and trend

Frequency: | highlighting present value
59.8
Spark-line plot

Display of value only




2400 Generator Results Visualized
in a Geographic Context

Outliers are detected
C10 automatically

60
°N
M‘ * 10 distinct
oy ‘e y frequency
. v - responses identified
590 ™
N N
* Visualized on actual

geographic location
with “spark-lines”

» Different color dots
= generators of a
cluster
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Signal Based Ringdown

Modal Decomoosmon
 |dea is to determine the

frequency and damping
of power system signals
after an event

— Reproduce a signal, such

as bus frequency, using
exponential functions

Actual Input | Sampled Input | Fast Fourier Transform Results | Modal Results | Original and Reproduce
Damping (%) | Frequency (Hz) |Magnitude Scaled|  Magnitude, | Angle (Deg) |

* A number of different oo ] ek | TP
techniques have been E ;J

proposed to do this for

power systems, starting with Prony analysis in

the late 1980's AM




10K Example Transient Stability
Results: Generator Outage

Substation Frequency Results for All Substations

Transient Stability Time Step Results Variables




10K Example Transient Stability
Results: Generator Outage

Movie Shows Spatial Variation in Frequency

Transient Stability Time (Sec): 1.650

This is a synthetic power system model that does NOT represent

the actual grid. It was developed as part of the US ARPA-E

Grid Data research project and contains no CEIL To reference
he model development approach, use:

A.B. Birchfield, T. Xu, K.M. Gegner, K.S. Shetye, and T.).
Overbye, "Grid Structural Characteristics as Validation
Criteria for Synthetic Networks," IEEE Transactions on
Power Systems, vol. 32, no. 4, pp. 3258-3265, July 2017.

For more information, contact abirchfield@tamu.edu.

Frequency
60.00 Hz !
—59.93 Hz

~59.86 Hz




10K Example Transient Stability
Modal Analysis of Results

Results Can Be Grouped into Associated Modes

W vio0d .
[®) Modal Analy

Result:
Modal Analysis Status |Solved e N
Number of Complex and Real Modes |10 Indude Detrend in Reproduced Signals
Data Sq’;‘" Type - Cd-:ula::;v\emc [[Jsubtract Reproduced from Actual
() From Plot () File, Comtrade CFF () Vari Projection
. Fie, - Lowest Percent Damping 3.048
(O File, WECC CSV 2 OpFie, Comtrade CFG O Matrix Pendl (Once) Update Reproduced Signals
( SIS F (@ 5 (
Fle, JSIS Format None, Exsting Deta @ Optimal Matrix Pendl Real and Complex Modes - Editable to Change Initial Guesses
Data Source Inputs from Plots or Fies (O Dynamic Mode Decomposition Frequency (Hz)| Damping (%) |Largest V| Signal Name of Largest Weighted Lambda Include
Weighted Percentage for Mode Reprody
Do Modal Analysis Percentage Signi
Mode
Save in JSIS Format Save to CSV 7 66,8109 Substation NEAH BAY Frequency Ay
3 66.3514 Substation GLASGOW 2 Frequency
Optimal Matrix Pendl Options 61.9700 Substation POINT OF ROCKS Frequ
£1 0ls 11.05 58.9872 Substation SAINT JOHNS 2 Frequer
Number of Iterations - 55.2690 Substation NEAH BAY Frequency Al
[ nitial Al Signals to be Not Induded 4 50.6484 Substation EL PASO 37 Frequency /
End Time 20.000/ 5 7 4 36.2199 Substation GLASGOW 1 Frequency
Currrent Iteration (10 23,1437 Substation EL PASO 37 Frequency /
Maximum Hz 5.000| 5 Update Sampled Data 8.653 13.5712 Substation SPRINGERVILLE 2 Frequ
1 8.4314 Substation SPRINGERVILLE 2 Frequ

Group Disabled for Existing Data

Data Sampling Time (Seconds) and Frequency (Hz)

Start Time 1.000[%

Input Data, Actual Sampled InputData Signals Options Reproduced Data

Type Name Units Description Include Include Standard Number Zeros Solved Average Error, | Average Error, | Maximum Cost Function Set as
Reproduced Deviation Unscaled Scaled by SD |Error, Unscale Refereni
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Visualization of the Lightly Damped
0.73 Hz Mode

Transient Stability Data Not Transferred
N AU AN

‘M

\ \

o \ % \\‘r‘
\\1 t ]

.. ‘F' ‘ *

bt

This is a synthetic power system model that does NOT represent

the actual grid. It was developed as part of the US ARPA-E

Grid Data research project and contains no CEII. To reference
——the model development approach, use:

A.B. Birchfield, T. Xu, K.M. Gegner, K.S. Shetye, and T.J.
Overbye, "Grid Structural Characteristics as Validation
Criteria for Synthetic Networks," IEEE Transactions on
Power Systems, vol. 32, no. 4, pp. 3258-3265, July 2017.

For more information, contact abirchfield@tamu.edu.
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Visualization of the Lightly Damped
0.73 Hz Mode

Transient Stability Time (Sec): 2.000

Ihs & 3 synthelx power system moddd that does NOT represent
the actual grid. It wasz devoloped 3z part of the US ARPA-E
Grid Data ressarch project and contains no CFTLL To reléarsndce
pethie model development spproach, use

AB. Bardhiliedd, T, Xu, KM, Gegner, K.S, Shelys, and 1.).
Overbye, “Gnd Structural Charactersts 3s Valdation
Critoria tor Synthetic Natworks,” TFFF Trancactions on
Power Systems, vol. 32, no. 4, pp. 3258-3265, July 2017.

For more mformation, contact sbirchfickd@tamu.edu.

Mode Freq
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Conclusions

« We've reached the point in which there is too
much data to handle most of it directly

— Certainly the case with much time-varying data
 How data is transformed into actionable
information is a crucial, yet often unemphasized,
part of the software design process
 There is a need for continued research and
development in this area

— Synthetic power grid cases, including dynamics, are
now emerging to provide input for this research
AlM




Thank You!

Questions?

Fpos s o
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