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Abstract—Electric power system state estimation is a vital
part of real-time monitoring and management for power grid
operations and control. With increased interest in the effects of
geomagnetically induced currents (GICs) and effective mitigation
strategies therein, similar tools that provide situational awareness
during GMD events are increasingly necessary. Therefore, a GIC
estimator is developed by relating the known system parameters
and measurements to the current “GIC state,” from which the
GIC currents in transformers can be quickly calculated. Due to
the linearity of GIC relationships, the estimator solves quickly
and efficiently. The proposed methods are tested on a small
example and a synthetic Texas 2000 bus scenario. These studies
show the effectiveness of a GIC estimator to provide situational
awareness for real-time operations, as well as sensitivity to
measurement uncertainty and availability.

Index Terms—geomagnetic disturbance (GMD), geomagneti-
cally induced currents (GICs), state estimation

I. INTRODUCTION

Geomagnetic disturbances (GMDs) such as coronal mass

ejections and solar storms cause disturbances in earth’s mag-

netic field. These geomagnetic field variations induce low fre-

quency (quasi-dc, less than 0.1 Hz) electric fields on the earth.

Geomagnetically induced currents (GICs) are produced by

these fields and flow in the earth and high voltage transmission

lines, due to the lines’ low dc resistance [1].

From a power systems perspective, GICs cause half cycle

saturation of transformers and consequently affect the power

grid with harmonics and reactive power losses [2], [3]. The

heating of transformers can lead to transformer damage and the

reactive power losses contribute to suboptimal voltage profile

and even voltage collapse [4], [5]. These issues are the source

of concern for power system operators and planners. The

potential of GMDs to impact power grid operation has been

known for decades and is receiving increased recognition as

the North American Electric Reliability Corporation (NERC)

has mandated vulnerability assessments and mitigation plans

from industry [6]. In efforts to understand and mitigate these

impacts, improved GIC modeling and monitoring is being

pursued in academia and industry, see [7]–[13]. Regarding
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mitigation, short-term operational strategies rely on real-time

visibility of the current system state with respect to GICs [14],

[15], while long-term techniques still require accurate mod-

eling and some measurement availability [16]. Beyond [17],

[18], few accounts of tools for real-time GMD monitoring and

management exist.

State estimation (SE) for transmission systems is a funda-

mental tool, enabling nearly real-time system state awareness

through established techniques for processing measurement

and topology data. The availability and accuracy of this base

state is invaluable for system management, providing key

inputs for a variety of system security and control methods

[19]–[21]. Previous work [22] demonstrated the estimation

error incurred by not incorporating GIC-related measurements

and models in the standard SE formulation during a GMD.

The purpose of the present work, though, is to take a first step

toward integrated and improved monitoring by formulating and

testing an SE-type method for GIC real-time system aware-

ness. This GIC estimator can provide widespread visibility

into GMD-induced system behavior, supplying the data for

visualization of GIC flows and reactive power losses. The

resulting estimates can also be used to provide vital inputs

for operational schemes, such as mitigation strategies which

rely on effective GIC information to leverage line switching,

generation redispatch, and general reactive power support

[14], [15], [23], [24]. Estimated transformer reactive power

losses could be integrated with a standard SE to improve

traditional voltage state estimates despite lack of integrated

GIC modeling.

There is currently a general lack of measurement devices in-

stalled on the electric power grid to meter GMD-related quan-

tities. In practice, only a fraction of transformers are equipped

with GIC neutral current monitors and magnetometer data is

sparse as well. Rather than be measured directly, the key input

of electric field values is often estimated from magnetic field

(magnetometer) measurements and earth conductivity profiles.

Because of regulatory requirements, proliferation of metering

devices is likely to increase as real-time visibility of network

GIC flows will likely play a role in many preparedness plans.

Similar to how traditional SE is used to clean and consolidate

data for use in other processes, comparable techniques for

GMD-related values may soon find wide application among

power system operators as metering increases and as new

tools which rely on advanced metering motivate yet additional

installations.

The contribution of this work is the development and testing

of a quick and versatile GIC estimation methodology. While
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there are a number of real-time GIC simulators covered in

the literature [25], the proposed estimator provides a more

accurate and complete snapshot of the GICs flowing through

the system by leveraging all available measurements in real-

time. Other research related to GIC estimation and monitoring

is either not intended for real-time usage [26], [27] or assumes

a uniform electric field. For example, in [17] a uniform

magnetic field was assumed, as data was only available from

one magnetometer. The present work considers a non-uniform

response mapped to pre-defined electric field zones. This

design is inspired by recent magnetometer installations, such

as that in the state of Texas, and enables improved accuracy

due to the finer granularity of the resulting estimates.

The remainder of the paper is organized as follows: Section

II details the modeling of GICs using dc analysis. Section

III presents a brief overview of traditional SE methods and

the development of the GIC estimation framework. A small

example is also included. Section IV demonstrates the pro-

posed techniques using the synthetic Texas 2000 bus case,

including exploration of method reliability under measurement

uncertainty and varying availability. Areas for future work and

conclusions are presented in Section V.

II. GIC MODELING

Modeling of GIC effects on power systems has been

described in [1], [3] and is summarized in this section in

preparation for the proposed GIC estimation formulation. To

calculate the GICs flowing in the system, first the induced

voltage potential on a transmission line is found by integrating

the electric field over the length of the line. For a uniform

electric field, the (dc) voltage on the line between buses n
and m is modeled as

Vnm = ENLN
nm + EELE

nm (1)

where EN and EE are the northward and eastward compo-

nents of the electric field vector and LN
nm and LE

nm are the

northward and eastward distances of the line between buses

n and m, as described in [28]. The induced voltages are

converted to dc current injections by Norton’s Equivalent and

the total current injection can then be found via Kirchhoff’s

current law. The resulting vector is given by I = HE, where H

depends on the length, resistance, and orientation of the lines.

For a uniform electric field, E ∈ R
2×1 and H ∈ R

(nb+ns)×2,

where nb and ns are the number of buses and substations

in the system, respectively. For a non-uniform electric field,

the system can be divided into k predetermined electric field

zones, which could each be experiencing a different electric

field. The granularity and boundaries of these electric field

zones can be determined based on regional conductivity,

available metering, and/or expected electric field variation.

Expected variation depends on the storm and earth models,

but studies have shown that electric field differences across

geographic distances of 200 km can differ by up to two orders

of magnitude [29]. Non-uniform electric fields necessitate

the creation of a vector E ∈ R
2k×1 of the electric field

components. Correspondingly, the distance components LN
nm

and LE
nm are separated to represent the portion of the line

in each zone. However, H ∈ R
(nb+ns)×2k will still be quite

sparse as the voltage induced on a line between two buses

usually depends on at most a few electric fields. The dc line

voltage calculation of Eq. 1 is now the summation of up to 2k
terms. Furthermore, a disturbance with non-linear magnitude

and uniform direction could be considered, in which case E

would have length k+1, i.e., k magnitudes and one direction.

Whether uniform or non-uniform electric fields are used, the

dc voltage (Vn) at a bus or substation neutral is determined

by solving the dc network

V = G
−1

I = G
−1

HE (2)

where G ∈ R
(nb+ns)×(nb+ns) is a square matrix of line

conductance values augmented to include substation grounding

resistances values.

The GIC flows from node n to node m are determined by

Inm = gnm(Vn − Vm) (3)

where gnm is the connecting line conductance from G. The

effective GIC, It, is the effective per phase current depending

on transformer t’s type and configuration. For simple cases,

such as for GSU transformers, It is merely the current in the

grounded (high-side) winding. Otherwise It depends on the

current in both coils [3]. According to [9],

It =

∣

∣

∣

∣

IH,t +
IL,t

at

∣

∣

∣

∣

(4)

where IH,t is the per phase GIC going into the high side

winding, the series winding for an autotransformer, IL,t is the

per phase GIC going into the low side of the transformer, and

at is the transformer turns ratio. In matrix form, (4) for all

transformers is given by

I =
∣

∣ΦG
−1

HE
∣

∣ (5)

where Φ is a sparse matrix with entries consisting of substation

and transformer conductances. GIC flows through a trans-

former effectively increase its reactive power losses linearly

with the respect to the effective GICs. The additional reactive

power loss in Mvar is given by

Qloss,t = ktVpu,tIt (6)

where Vpu,t is the per unit ac terminal voltage for transformer

t, and kt is a scalar specific to the transformer. These losses

due to the GICs in the dc network affect the ac network by

drawing additional reactive power and generally lowering the

system voltage profile.

It is also useful to define the relationship between trans-

former neutral currents, which are sparsely metered, and

the driving electric fields. Let In be the vector of all nt

transformer neutral GIC currents and Φn ∈ R
nt×(nb+ns) be

also a sparse matrix with transformer conductance entries, then

In = ΦnG
−1

HE. (7)

Leveraging modeling of the dc network for monitoring pur-

poses will enable previously unavailable insight which can

assist grid operators during geomagnetic disturbances.
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III. STATE ESTIMATION AND FORMULATION

A. Traditional State Estimation Models

Traditional SE programs utilize system measurements and

topology to provide awareness for real-time monitoring. Typ-

ical frameworks are formulated as overdetermined systems

of nonlinear equations and solved as weighted least squares

(WLS) problems [20]. A model relating the states x to

measurement zi is given by

zi = hi(x) + ei. (8)

The relationship between the ith measurement and the states

x is modeled by the function hi(·), which is nonlinear and

non-convex, while ei is the measurement error, assumed to be

normal with zero mean and variance σ2
i . WLS SE is set up as

a quadratic optimization problem with equality/inequality con-

straints which will minimize the weighted total of the squares

of the measurement residuals. More accurate measurements

are given more weight and under certain assumptions WLS

is also the maximum likelihood method. For power system

SE, the problem is solved by iterative methods, due to the

nonlinearity of the power flow equations.

B. GIC Estimation Model

A process independent of traditional SE, GIC estimation in-

volves leveraging GIC-related measurements and GIC relation-

ship linearity to estimate distinct GIC states. Complex nodal

voltages are neither a measurement nor state, but it should

be noted that GIC-derived values (i.e., transformer reactive

power losses) could be used to improve the estimation of the

typical SE states in post-processing. Other linear estimators

have been introduced in part thanks to increasing installations

of phasor measurement units [30]–[32]. For GIC estimation,

the linear relationship of (7) also enables a linear estimator

with similar benefits such as an iterative-free solution. The

states shall be the underlying electric field, E, specifically the

northward and eastward components of each predetermined

electric field zone. Analogous to the traditional SE, with this

knowledge and an understanding of the system topology one

can calculate all other values of interest pertaining to the

system, namely effective GICs, reactive power losses, and

transformer heating models. The measurement set may include

GIC neutral currents from transformers. Regional electric field,

E, estimates from magnetic field, B, measurements shall also

be available, as illustrated by Emeas in Fig. 1. Depending

on the granularity of available magnetometer measurements

and calculated E therein, gaps in input E are provided via

interpolation [33], [34]. The B to E conversion uses ground

conductivity models to covert magnetic field data to electric

field data. The present models are derived from magnetotel-

luric study results and geological data and are available from

the United State Geological Survey [35]. Here it will be

assumed that the ground model is known such that a B

measurement can be mapped to an E measurement prior to

integration with the GIC estimator. The diagram also shows

how the resulting states provide valuable inputs for GIC

calculators or potential visualization and control tools. Eq. (8)

Fig. 1. GIC estimation in the context of a broader GMD monitoring and
mitigation scheme for power grid operations

in matrix form for GIC estimation is given by

z = hx+ e (9)

where

h =

[

Ij×2k

{ΦG
−1

H}l

]

(10)

and z, x, and e are the vector forms of the measurements,

states, and expected noise, respectively. The identity matrix I

has length corresponding to the number of measured states,

j, and width equal to two times the number of electric field

zones, or the length of E, 2k. The l rows of {ΦG
−1

H}
correspond to the available In measurements. The resulting

linear least squares state estimation optimization problem is

as follows:

min (z− hx)TR−1(z− hx) (11)

where R is the measurement error covariance matrix. The

weight matrix, R
−1, has diagonal elements R−1

i = 1/σ2
i .

Due to the linear nature of GIC systems, an analytical solution

exists without need for iterating,

x = [hT
R

−1
h]−1

h
T
R

−1
z. (12)

Therefore, solving for the GIC estimate is extremely quick; Eq.

(12) requires simple matrix multiplication and G
−1 is never

explicitly inverted but solved using sparse matrix methods.

Even then, the most computational taxing component, G−1,

does not need to be found again unless the system topology

changes. As with traditional SE, the proposed linear GIC

estimator requires sufficient metering for redundancy and

observability. Redundancy enables better estimates and the

ability to filter out noisy or bad measurements. Observability

is required to even obtain a solution. The results which

follow demonstrate the estimate improvement with increased

metering and future work will explore the minimum metering

required for observability and meaningful results.

To validate this methodology, a synthetic GMD event will

be applied to a test network. “Metered” measurements will be

taken from the GIC solution and synthetic noise added. The

underlying electric field state will be estimated and compared

to the known driving electric field. Additionally, comparison

between actual GIC neutral current values and values calcu-

lated from the estimate will be made. This will show the error

that propagates in the presence of estimation error and the

effect it might have on operating procedure usage. Overall,

the proposed GIC estimator provides previously unavailable

situational awareness to grid operators during a GMD that

will enable improved response to and mitigation of GICs.
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TABLE I
NEUTRAL CURRENTS FOR A GIC CALCULATION/ESTIMATION EXAMPLE

Neutral Current (A)
T1 T2 T3

Actual -297.8 129.4 168.4
Calculated -271.9 106.4 167.2
Estimated -299.9 130.8 171.3

C. A Basic Example

A simple example will show how the proposed method

works and the system understanding improvement enabled

by incorporating additional measurements. Consider the 6-bus

system in Fig. 2 and assume there is an underlying spatially-

varying electric field such that the left half of the system is

experiencing a field with a particular magnitude while the right

half experiences a different magnitude. The direction and size

of the yellow arrows superimposed on the transmissions lines

visualize the direction and magnitude of the resulting GIC

flow. Assume there is one magnetometer installed on the right

side of Fig. 2 from which the electric field in the region can

be estimated, with decreasing certainty the further the value is

applied from the magnetometer site. If no other measurements

were available, someone who wanted an idea of GIC flows or

reactive power losses in the area could calculate In using (7).

The resulting neutral current calculation results are available in

Table I, along with the actual values provided by a power flow

simulation. The sign of the neutral current value indicates the

direction of the current flow, with a positive value indicating

amps flowing from the system into the neutral. A negative

number indicates current flowing from the neutral into the

system.

Because there is a different underlying field on the left side

of the system, there is some error in the GIC calculation. This

reiterates that with magnetometer measurements alone, neutral

currents can be calculated, but data error is not able to be

filtered out and higher granularity of states is not able to be

achieved.

Now consider an available GIC neutral current measurement

at Transformer 1 (T1) with a reading of -300 A. This trans-

former has the highest current in the system and is possibly

monitored for this reason. Assuming this information can be

aggregated with the electric field and topology information,

GIC estimation is run to estimate the electric field of both

the left and right sides of the system. It is assumed that

the neutral current measurement is more heavily weighted

than the electric field information, for which the weight is

Fig. 2. Oneline of GIC estimation example with 6 buses and 3 substations

Fig. 3. Oneline of Texas 2000 synthetic case

Fig. 4. Regional resistivity zones in the state of Texas (figure by Jennifer
Gannon)

stronger on the right side than the left. This is consistent

with the idea that confidence in electric field data is higher

closer to the magnetometer data from which it is derived.

The neutral current calculations resulting from the estimate

are also shown in Table I. Note that with just the two

measurements but without the GIC estimator, the current in T3

can be calculated and the measurement at T1 can override the

wrong value calculated from the electric field measurement,

but the current at T2 will have sizeable error without additional

analysis. As seen in Table I, adding additional measurements

or incorporating all available information into a tool like GIC

estimation allows for a better understanding of In across the

system. The next section provides more sophisticated analysis

of the proposed methodology.

IV. RESULTS

A. Test Case

To demonstrate the proposed GIC estimation method, the

process is tested on a 2000-bus synthetic system set on the

footprint of the state of Texas [36]. The system has voltages

ranging from 13.2 kV to 500 kV, nominal, and over 850

transformers, almost half of which are autotransformers. When

electric field information is provided, GICs can be calculated

in the system as the case, shown in Fig. 3, contains the
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TABLE II
GIC ESTIMATION ERROR

Electric Field (V/km) Effective GICs (A/phase)

Mean Error 0.0605 0.2210
Max Error 0.1510 1.9911

necessary substation, transformer, and geographic data. The

electric field is first assumed to be uniform within the 1D earth

resistivity model regional zones shown in Fig. 4. In reality, the

actual electric field variation across the region could be more

complicated, which the example in Section IV-D addresses.

To generate artificially noisy measurements for use in the

estimator, a subset of the GIC neutral current results are

exported and random Gaussian noise is superimposed with

varying variance. In practical applications, studies would need

to be done and meter documentation referenced to deduce

the error variances. In each of the following simulations, the

installation locations of “measured” transformers are randomly

chosen such that the pre-defined number of measurements is

achieved with a balanced distribution of meters across zones.

In these first studies, the number of such measurements spans

from 0 to 100.

Six synthetic magnetic field meters are placed to emulate

the number recently installed for the Texas magnetometer net-

work. The location of the field meters is chosen to provide visi-

bility in each of the regional resistivity zones and redundancy

in the larger zones (by area). To generate synthetic electric

field “measurements,” the electric field information which was

applied to the system to simulate a GMD is exported. Specifi-

cally it is saved at the locations of the synthetic magnetometers

and random Gaussian noise is superimposed with varying

variance. The actual process of determining geoelectric field

from magnetic field measurements from magnetometers is

covered in other literature and it is assumed that it can be

carried out online. Since the underlying electric field state

is known, the sensitivity of the GIC estimator to realistic

conditions can be explored by comparing the estimated and

actual states in different scenarios. The conditions covered

here include varying of measurement noise and number of

measurements.

The first result (Fig. 5) shows the potential situational

awareness provided to grid operators from a particular instance

of a limited set of 6 magnetometer and 16 transformer mea-

surements, denoted by diamonds, using GIC estimation. Hence

from 22 measurements the northward and eastward electric

field components in the four resistivity zones (8 states) are

estimated and the resulting GICs across the system calculated.

Without comparable tools or metering all 800+ transformers

in the system, it would not be known that 8 substations in

the system have transformers with effective GICs over 50

A, denoted by red circles, or which transformers are at risk

of having high GICs, denoted by yellow circles. Comparing

these estimation results to the known actual values gives Table

II. The resulting maximum and mean error (in V/km) are

reasonable given noisy measurements, the effective GIC results

which follow, and with respect to the magnitude of the true

signal. Initial studies also show that the estimate error does

Fig. 5. Situational awareness for all transformers in the system (circles) from
a limited set of measurements (diamonds) consisting of 6 magnetometers and
16 transformer neutral currents

not seem to be dependent on storm size or direction.

B. Sensitivity to Electric Field Estimate Error

Determining the estimator’s sensitivity to noise in the

electric field input is valuable to understanding the practical

usefulness of the tool under realistic conditions. Procuring

these electric field inputs involves converting magnetic field

data, likely from a magnetometer, into electric field data, using

ground conductivity models. Error can be introduced both

from noise in the magnetometer measurement and the con-

ductivity transfer function. Here, the estimator’s robustness to

this variance is shown in Fig. 6. For a given storm represented

by a uniform electric field (2 V/km east, 2 V/km north), the

noise applied to the electric field is varied. Holding the number

of electric field inputs, GIC neutral current measurements,

and states to be estimated consistent with the scenario in

Section IV-A, the resulting electric field estimate deviations

are averaged over 1000 Monte Carlo simulations at each noise

level. Fig. 6 shows that while extremely noisy or low confi-

dence inputs may produce less-than desired results, generally

the estimator provides useful results for grid operators. This

motivates data quality standards for magnetometer installations

and model accuracy standards for the online conversion from

magnetic to electric field inputs.

C. Sensitivity to Measurement Availability

While GIC neutral current measurements are not currently

very common, with developments like the proposed GIC

estimator and increasing availability of magnetic field mea-

surements, future installations are increasingly motivated. As

in Section IV-A, the same states are estimated using the same

electric field inputs. But in these scenarios, the number of

available GIC measurements are varied. Fig. 7 shows the

absolute value of the deviation between the estimated and
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Fig. 6. Average electric field deviation (from 2 V/km) decreases as the noise
of the electric field estimate (used as input) decreases

actual electric field averaged over 1000 Monte Carlo simu-

lations. It shows that as more GIC measurements are made

available (out of a possible 861, for this particular scenario),

the resulting electric field estimation is more accurate, which is

to be expected as similar results are found in mainstream state

estimation literature. Note that the greatest improvement in av-

erage electric field estimate deviation (denoted by the steeper

slope) is found amongst the first 20% or so of measurements.

While additional measurements do make a difference, for an

already highly visible system it may not be cost effective to

invest in additional meters for such a minuscule improvement

at that point. It should be noted that these results would

vary with differently defined electric field states, i.e. more

measurements are required to estimate the electric field with

finer granularity well. Continuing research on observability

for GIC estimation methods will open interesting research

questions as well as provide practical tools for electric utilities

considering new metering installations.

D. Sensitivity to Granularity of Electric Field Zones

To recover and estimate smaller (more) zones requires ad-

ditional metering to maintain observability. While the regional

resistivity zones provide an idea of electric field variation

due to geology, it is realistic to realize that the electric field

may vary more than that, spatially speaking. With limited

available magnetometer measurements, the usage of electric

field “pseudomeasurements” may be utilized. To illustrate the

estimation of more electric field zones on the same geographic

footprint, an electric field with higher granularity of change

is simulated. This electric field varies every 2 degrees latitude

and longitude. In this example, the electric field magnitude and

angle will be estimated for 20 distinct zones, where the zones

are defined along the boundaries of a square grid. Along the

perimeter of the system zones may be widened or lengthened

by up to 0.25◦ to prevent the creation of an additional zone

that would likely have limited measurement visibility due to
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Fig. 7. Average electric field magnitude error decreases as the number of
available GIC neutral measurements increases

its smaller area. These zones and their normalized electric field

magnitude for a hypothetical snapshot in time are shown in

Fig. 8; this is the actual state of the system. Given limited

metering, pseudomeasurements are used in zones not directly

metered. These values are determined by proximity to actual

meters and influenced by the regional resistivity zones. Fig.

9 shows the pseudomeasurements and measurements used as

input. The objective of the estimator is to recover the 20

zones/states as seen in Fig. 8.

The resulting absolute error for both electric field magni-

tude and angle estimates, averaged over 1000 Monte Carlo

simulations, is shown in Fig. 10 for increasing penetration of

transformer neutral metering. This is compared to the error of

the noisy pseudomeasurements that have not been filtered by

an estimation process or augmented with additional metering.

Note that the error in Fig. 10 is greater than that in Fig. 7.

This is due to the fact that, in this example, the underlying

electric field is more spatially varying and thus more states

are being estimated from roughly the same amount of data. As

more meters are installed in a particular area, future research

will provide more insight into the spatially varying properties

of electric fields in that region and inform estimator design

decisions with respect to estimation specificity.

Initial research on the trade-offs between estimating more

or fewer zones shows that increasing the number of zones can

better match the spatial variability of a realistic geomagnetic

storm. This is dependent on there being sufficient metering to

estimate all zones with reasonable accuracy. As seen in Fig. 11,

for less than 30% of transformers (randomly) metered and the

same 7 electric field inputs, estimating 12 zones provides better

results than estimating 20 zones. This is due to the higher input

needs of estimating more states.

E. Practical Considerations of Results

In practice, the estimated electric field states would be used

to calculate GICs flowing through the system, which could be
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Fig. 8. An electric field with more spatial variation. In this example, the
estimator will recover twenty zones, as opposed to just four in Fig. 4

Fig. 9. Using 7 electric field inputs, this figure shows the electric field
measurements and “pseudomeasurements” for zones without a magnetometer

fed to some display providing situational awareness to grid

operators. Effective GICs across the system are a powerful

input to a variety of mitigation algorithms; hence an accurate

estimate compared to merely considering the measured values

could be the difference between taking the optimal action

to mitigate GMD damage and taking actions that don’t help

or make the situation worse. It is prudent to have alarms

tied to these values which would trigger for currents high

enough to warrant closer consideration from grid operators.

To validate the GIC estimation method under the realistic

situation of high current alarms, a threshold of 50 A is set

and the effective GICs across the system calculated from both

the input “measurements” and the estimated states. Over 200

Monte Carlo simulations, the number of times that either

technique produces a false alarm or fails to recognize a

high current transformer is recorded and shown in Fig. 12.

Without estimation, an average of two false positives and
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estimating 20 zones with 7 magnetometers

0 10 20 30 40 50 60 70 80 90 100

Percentage of Transformers Metered (%)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

G
IC

 N
e
u
tr

a
l 
M

e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

4 Zones

12 Zones

20 Zones

Fig. 11. GIC neutral mean absolute error for different number of zones with
increasing transformer metering penetration

one missed alarm are encountered per simulation, regardless

of the number of (random) available GIC measurements.

With sufficient metering (about 15 GIC neutral meters) and

estimation abilities, the potential of encountering an alarm

error drops to less than once each per estimation run, and

decreases with more measurements. On average, using GIC

estimation does not create alarm errors that do not already

exist as a result of using just the electric field inputs. This

confirms that GIC estimation is a value-added process that is

low risk in addition to low effort.

A common concern with SE algorithms is computational

efficiency and run time. Because of the linear nature of GICs,

this is not a worry for GIC estimation. In practice, the bigger

barrier to generating estimates quickly lies in measurement

latency. The estimation problem itself takes less than 0.0005

seconds using MATLAB on a PC with a processor Intel(R)

Xeon(R) E5-1650 @ 3.6 GHz. The most computationally

expensive part is the inverse in Eq. (12), which could be-

come intensive as matrix size increases if no special matrix
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properties are exploited. Fortunately the size of the matrix is

two times the number of electric field areas, which would be

naturally limited by available meters and the impracticability

of estimating too many zones.

V. SUMMARY AND FUTURE WORK

To improve situational awareness during geomagnetic dis-

turbances, a state estimation method was developed to provide

an estimate of the state of GIC-related values in the system.

It takes as input electric field and GIC neutral current data

to return an estimate of the underlying electric field, from

which GIC currents and resulting reactive power losses can be

calculated. Because of GIC relationship linearity, the problem

has an analytical solution. The methodology is demonstrated

on a small scenario and on the synthetic Texas 2000-bus

case. It is shown to be fast and accurate with sufficient

metering. The solution alone can be provided to power grid

operators to impart awareness and intuition during a GMD,

or used as an input to a mitigation application or full ac

state estimator to further inform operator response. Future

work includes optimal placement of GIC meters as well as

observability and bad data detection analysis. Additional study

regarding more realistic models of the phenomena will also be

undertaken, including improved measurement noise and error

modeling, and estimator sensitivity to imperfect noise models.

The proposed technique will be integrated into a simulated

energy management system (EMS) environment for the real-

time control and monitoring of the grid under GMDs.
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