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Abstract- It is common knowledge that the power flow can have 
multiple solutions; one is the normal (desired) solution while the 
others are alternative solutions, which are sometimes 
characterized by low voltages. Usually these alternative solutions 
represent erroneous or unstable operation conditions. The paper 
presents a method for quickly assessing whether the power flow 
has likely converged to an alternative solution by considering, on 
a bus by bus basis, the sensitivity of the bus voltage magnitude to 
a change in the bus’s reactive power injection, coupled with 
whether the bus is closely connected with negative reactance 
branches. Sparse vector methods are used to calculate these 
sensitivities quickly even for large systems with 10,000+ buses. 
The paper shows that these solutions can be particularly 
problematic when assessing voltage stability impacts of 
geomagnetic disturbances on the grid, and uses the method to 
identify problematic areas of a system under a GMD event.  
 
Index Terms—alternative solutions, low voltage solutions, 
geomagnetically disturbance, voltage stability, sensitivity 

I. INTRODUCTION 
The power flow is one of the most important power system 

analysis applications. It used to determine the voltage angle 
and magnitude at every bus in an electric grid model such that 
the voltages satisfy the real and reactive power balance 
equations. It has been well known that the power flow 
equations can have multiple solutions [1]. These can be 
divided into one normal (or desired) solution, and a potentially 
large number of alternative solutions. Since they are not 
always characterized by low voltages, here they will be 
referred to as alternative power flow solutions. These 
alternative solutions have sometimes been known as low-
voltage solutions due to the common presence of relatively low 
voltage magnitudes at some buses. Sometimes the alternative 
solutions are actually desired, such as in the use of energy 
methods to assess power system voltage stability [2]. 
However, for the vast majority of solutions they represent an 
erroneous condition. The focus of this paper is on a 
computationally efficient algorithm to detect these solutions. 

Traditionally these alternative power flow solutions were 
identified by the presence of positive eigenvalues in the power 
flow Jacobian [3], [4], with those having a single positive 
eigenvalue denoted as type-one solutions. However, recently in 
[5] it was shown that positive eigenvalues appear in the normal 
power flow solution for systems with negative reactance 

branches. Nowadays such branches are quite common in 
realistic power system models, with the statistics and examples 
provided in Section III.  

This paper presents a method for quickly assessing whether 
the power flow has likely converged to an alternative solution 
by considering, on a bus-by-bus basis, the sensitivity of the bus 
voltage magnitude to a change in the bus’s reactive power 
injection coupled with whether the bus is closely connected 
with negative reactance branches. Since this sensitivity is a 
diagonal element of the power flow Jacobian, we show how it 
can be calculated quickly using sparse vector methods [6].  

While alternative solutions can occur with essentially any 
power flow solution, the paper shows that they are particularly 
problematic when doing power flow studies to assess the 
voltage stability impacts of geomagnetic disturbances (GMDs) 
on the electric grid. GMDs impact power system operation by 
causing quasi-dc geomagnetically induced currents (GICs) to 
flow in transformers and transmission lines; these lead to 
increased reactive power consumption in high voltage 
transformers. Techniques for including GICs in the power flow 
are discussed in [7], [8]. In considering GMDs in the power 
flow, the standard from [9] requires the consideration of a local 
GMD enhancement, which can result in substantially varying 
reactive power injections from one power flow solutions to the 
next. The paper shows how such studies can result in 
convergence to alternative solution, and presents examples 
demonstrating the proposed algorithm. 

The main contribution and novelty of this work is 
essentially two fold, 1) a fast method to detect “candidate” 
alternative solution buses, taking advantage of sparsity 
techniques to calculate sensitivities, and 2) automatically 
detecting the actual alternative solution buses from these 
candidate buses by calculating proximity to negative reactance 
branches. Such a method can be a useful tool in the analysis of 
large-scale systems to quickly detect voltage issues such as a 
local voltage collapse, or undesirable solution due to bad model 
data. Further action can then be taken to “correct” this solution 
by adjusting model parameters, adding var support, etc. 

The paper is organized as follows. Section II gives some 
background on the concept of multiple power flow solutions 
and their connection to bus 𝑑𝑉/𝑑𝑄 sensitivities. Section III 
delves further into these sensitivities namely 1) what their 
negative values mean, 2) their statistics from power system 
models, and 3) the use of sparsity techniques to quickly 
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calculate them on a bus-by-bus basis. Section IV describes the 
overall method of determining convergence to a low voltage 
solution based on the proximity of the negative sensitivity bus 
to a negative reactance branch. This is shown with some 
examples of large-scale systems. Section V summarizes the 
paper with directions for future work. 

 

II. MULTIPLE SOLUTIONS AND SENSITIVITIES 
A simple way to visualize the existence of multiple 

solutions can be a PV curve, shown in Figure 1. For a given 
load demand, the solution can converge to either a high voltage 
solution 𝑉𝐻 or a low voltage solution 𝑉𝐿, depending on the 
initial values. 𝑉𝐻 is generally the desrired solution as it is 
usually in the power grid operating range, i.e. closer to 1 pu. 
When we refer to alternative solutions which are not necessary 
very low in voltage, we can see that they appear closer to the 
point of maximum loadability point, 𝑃𝑚𝑎𝑥  (also called the 
stability boundary). This point is known to lie at the midpoint 
of high and low voltage solutions [10]. 
 

 
Figure 1. Relationship between real power demand versus voltage magnitude 
at a bus, from [12] 

For a purely reactive load, as in the case of GMD induced 
losses, which is discussed further, consider the following 
example depicted in Figure 2.  
 

 
Figure 2. Relationship between Var injection and voltage magnitude at a bus, 
from [13] 

 

There are several well-established methods for finding 
multiple power flow solutions [11], one of them being the 
exhaustive method from [12]. This was implemented in [13] to 
obtain the three low-voltage solutions 𝐴’, 𝐵’, 𝐶’ corresponding 
to the “desired” solutions 𝐴, 𝐵, and 𝐶 respectively. This paper 
was one of the earliest ones to make a reference to voltage 
sensitivities in this context, and noted that the 𝑑𝑉/𝑑𝑄 
sensitivities for the high and low voltage solutions were 
opposite in sign. 

At the maximum reactive loadability point, 𝑄𝑚𝑎𝑥, the 
sensitivity i.e. the slope tends to infinity. Beyond this load 
value there is no solution, and the slope becomes negative 
when the load is decreased. This is the key concept used in this 
paper to detect alternative power flow solutions based on 
negative 𝑑𝑉/𝑑𝑄 sensitivities. However, some special cases 
need to be considered where system parameters can cause 
negative sensitivity values for a “regular” solution. The 
proposed alternative solution detection method accounts for 
these exceptions to isolate the “actual” alternative solutions. 

 
III. NEGATIVE SENSITIVITIES AND REACTANCES  

A. Interpretation and Statistics 
The main reason behind negative 𝑑𝑉/𝑑𝑄 sensitivities 

despite the convergence to 𝑉𝐻 is the presence of a negative 
series reactance at or near the bus(es) being analyzed. Hence 
in order to detect a true alternative solution convergence, our 
method needs to calculate and rule out proximity to these 
branches when a negative 𝑑𝑉/𝑑𝑄 sensitivity is encountered at 
a bus. As seen later, these systems can have up to 5% of their 
total number of branches with negative reactance values, 
accounting for hundreds or thousands of branches, hence 
including them in the methodology is of utmost importance. 

The main sources of negative reactance branches are 1) 
series capacitors, and 2) fictitious “star” buses of three-
winding transformers, and 3) equivalent (EQ) lines. These 
parameters are appearing more commonly in models of real, 
large-scale power systems. The details of these systems cannot 
be shared due to confidentiality concerns; however we have 
summarized some of the statistics in this section to 
demonstrate the prevalence of this issue and why our method 
is important. Such statistics have been used to build synthetic 
but realistic test systems that can be made publicly available 
for education and research, including reproducibility of results. 

The star buses mentioned above arise from star equivalents 
of three-winding transformers, which are actually delta 
connected out in the real grid. The reactances of these 
mathematically equivalent branches can, hence, be negative at 
times. The star equivalent is able represent a 3-winding 
transformer as three 2-winding transformers and simplify 
calculations. Similarly, equivalent lines also do not represent 
an actual, physical reactance value but are important to track 
in proximity to negative sensitivities. 

Table 1 shows some relevant statistics of negative 
reactance (NR) branches from three actual power grid models, 
and two synthetic but realistic test systems of similar scale as 
the actual grid (10,000 buses and 70,000 buses) derived from 



[14], [15]. Due to confidentiality requirements, the authors are 
unable to reveal the source(s) of the actual grids’ data. The 
purpose of this subsection is just to demonstrate some 
properties compared to synthetic grids. A key difference 
between the real and the synthetic systems is that the latter do 
not have series capacitors modeled in them. Another 2000-bus 
synthetic system (not mentioned in this table since it has no 
NR branches) is considered later in the paper as a simple 
example to illustrate the method. 

 
TABLE I. Negative reactance (NR) branch statistics 

 Actual 
Grid 1 

Actual 
Grid 2 

Actual 
Grid 3 10K 70K 

Number of 
branches 97344 26397 8972 12707 88207 

Number of 
branches 
with NR 

2114 
(2.17%) 

698 
(2.64%) 

187 
(2.08%) 

193 
(1.52%) 

1365 
(1.55%) 

Number of 
transformer 
branches 
with NR 

2004 
(2.06%) 

529  
(2%) 

166 
(1.85%) 

193 
(1.52%) 

1365 
(1.55%) 

Number of 
line branches 
with NR  
(EQ lines) 

50  
(0.05%) 9 (0.03%) 1 

(0.01%) 0 0 

Number of 
series 
capacitor 
branches 

60  
(0.06%) 

160 
(0.61%) 

20 
(0.22%) 0 0 

EQ = Equivalent 
 

B. Sensitivity Calculations 
Here we discuss how these sensitivities are calculated, and 

how quickly it is possible to do so even for systems with tens 
of thousands of buses. Sensitivities are linearized relationships, 
which are used to determine the impact of small changes in a 
variable on the system [16]. The negative inverse of the power 
flow Jacobian, 𝐉, describes the way the power flow solution 
state variables 𝜽, 𝑽 i.e. the voltage angle and magnitude, 
change due to bus power injection mismatch. 

 
 𝚫𝒔(𝜃,𝑉) = [−𝐉]−1 ∙ 𝒇(𝑝,𝑞) (1) 

 
The sensitivity of the voltage magnitude 𝑽 to the injected 

reactive power 𝑸 at all buses is given by the block matrix 𝚲𝑽𝑸 
of  𝐉−1 as, 

 
 

𝐉−1 =

[
 
 
 
𝜕𝜽

𝜕𝑷

𝜕𝜽

𝜕𝑸
𝜕𝑽

𝜕𝑷

𝜕𝑽

𝜕𝑸]
 
 
 

= [
𝚲𝜽𝑷 𝚲𝜽𝑸

𝚲𝑽𝑷 𝚲𝑽𝑸
] (2) 

 
Thus, we only need to calculate a portion of the diagonal of 

𝐉−1. Inverting this matrix, however is a computationally 
challenging task. Factorizing a full matrix is an O(n3) 
operation. However, recognizing that 𝐉 is also a sparse matrix 
similar to the network admittance matrix or 𝐘𝒃𝒖𝒔, we can 
leverage sparse vector methods [6], which can bring down the 
computational complexity to about O(n1.5). The main steps 

involved in applying sparse vector methods here are 
performing, 1) LU factorization of 𝐉, 2) fast forward 
substitution with the lower triangular matrix 𝐋, and 3) a fast 
backward substitution using the upper triangular matrix 𝐔 [17], 
[18]. In this case, the factorization is O(n1.4) whereas the 
forward/backward substitution is O(n1.2) [19]. This especially 
makes a huge difference while dealing with large-scale 
systems of tens of thousands of buses. Both these substitutions 
take advantage of the fact that we need only certain elements 
of the sensitivity vector 𝚫𝒔 and the diagonal elements of the 
sparse Jacobian matrix 𝐉. 

As an example, consider the systems discussed in Table I. 
For the Actual Grid 1 (AG1), calculating the 𝑑𝑉/𝑑𝑄 
sensitivities at all the 77,000 buses took around 28 seconds on 
an Intel® Core™ i7-7820HQ CPU @ 2.90GHz with 32.0 GB 
RAM, 64-bit OS, x-64 based processor. For the synthetic 2000 
bus system, this takes less a second. This clearly indicates how 
quick and computationally efficient this method is. In the next 
section, we consider certain systems and intentionally “stress” 
them from a reactive power perspective to induce unusual 
operating points, more specifically push them towards 
converging to alternative solutions, so that we can detect them 
using our proposed method. 

 
IV. METHOD AND EXAMPLES 

A. Overall Method 
As mentioned earlier, the key to detecting an alternative 

solution at a bus is to rule out the possibility that the negative 
𝑑𝑉/𝑑𝑄 sensitivity (if it is negative that is) at the bus is being 
caused by a nearby negative reactance branch. In other words, 
the negative sensitivity should be a property of the system or 
operating point, and not due to the negative reactance. 
Naturally, this process can be sped up if it is already known 
that there is no negative reactance branch in the power system 
model as we do not need to check for proximity to these 
branches. Following this approach, the overall process of 
automatically determining convergence to an alternative 
power flow solution can be summarized as follows- 

 
Calculate 𝑑𝑉/𝑑𝑄 sensitivities at all buses 

If negative sensitivities exist 
If the case has NR branches 

For each bus in the set of negative 𝑑𝑉/𝑑𝑄 
- If it is connected directly or through one 
neighbor bus to a NR branch, reject that bus 
(as likely alternative solution)  

- If not, flag this bus as converged to a likely 
alternative solution 

End 
 If there are no NR branches 

Flag all buses with negative 𝑑𝑉/𝑑𝑄 as likely 
alternative solution 

If no buses have negative sensitivities 
There are likely no alternative solutions 

End 
 



Here, we chose number of bus hops as the metric to decide 
whether a bus is close to a NR branch. Other metrics such as 
electrical distance could be used as well. The common element 
among both these metrics is that if the value is large enough, 
the reason for negative sensitivity can be considered to be 
arising from a genuine alternative solution at that bus. In our 
experimental testing, the first neighbor metric has worked well 
to detect the proximity to NR branches. 

 
B. Example 1 – 2000 bus system with a GMD 

To illustrate the concept, we begin with a simple example 
i.e. the 2000 bus synthetic test system from [14]. This is based 
geographically on the footprint of Texas. As mentioned earlier, 
this simple model does not have a NR branch i.e. no three-
winding transformer, series capacitor, or equivalent lines. 
Hence a negative 𝑑𝑉/𝑑𝑄 in this case can be solely attributed 
to an alternative solution, eliminating the intermediate step of 
calculating the distance of the bus from the NR source. 
Calculating the sensitivities of the system as is, yields no 
negative values, indicating a “normal” operating point.  

Now consider a stressed version of this system, where it is 
facing a major GMD event. GMDs are caused by solar winds 
and coronal mass ejections, which alter the earth’s magnetic 
field, inducing electric fields at the earth’s surface. These in 
turn induce quasi-dc GICs in grounded conducting paths of the 
power grid. The major effects of GICs are increased reactive 
power absorption by transformers, as well as harmonics that 
can lead to relay misoperation and tripping of var support 
devices when they are most needed. The goal of this subsection 
is to illustrate, 1) how a steady-state voltage stability study of 
a system under a GMD can cause multiple power flow 
solutions and, 2) whether our method is able to detect them.  

We perform a voltage stability study of this system 
applying a GMD scenario, using the methodologies described 
in [8], [20]. Similar to a QV analysis, the GIC-induced reactive 
load at transformer buses is increased slowly by increasing the 
input electric field for the simulation from 0 V/km in steps of 
0.5 V/km. At each step, the dc GICs are calculated, followed 
by the GIC-induced transformer reactive power losses, and 
then the power flow is solved including these losses. In this 
example, a uniform electric field was assumed over the entire 
footprint. At an input of 4 V/km, a switched shunt in San 
Antonio was opened as a possible GIC harmonic-induced relay 
misoperation contingency. Then gradually increasing the field 
by 0.5 V/km, the solution failed to converge at 7.5 V/km. 
Hence, 7 V/km was noted as the maximum GIC reactive 
loadability point. From 7.5 V/km, reducing the electric field 
back to 7 V/km caused the system to converge to another 
solution, with slightly lower voltages. Sensitivities at this 
“load” value i.e. electric field = 7 V/km, before and after the 
loss of convergence were calculated.  

Figure 3 describes this process and the solutions in more 
detail, considering one bus (Dallas #5252) as an example. Its 
voltage is close to 1 pu before the GMD i.e. before the electric 
field is applied. The pu voltage magnitude at this bus from each 
power flow solution, following the increase in electric field is 
shown by the markers on the “Forward” curve. Point 𝑉𝑚, i.e. 

when the input is 7 V/km, is where the last convergence occurs. 
At this stage, the 𝑑𝑉/𝑑𝑄 sensitivities are calculated and they 
are all positive. The lowest voltage in the system is 0.91 pu at 
this point. The solution does not converge at the next step of 
7.5 V/km, following which the electric field is reduced to 7 
V/km and the solution 𝑉𝑚′  is obtained at this bus. Continuing in 
this way, gradually reducing the electric field in steps of 0.5 
V/km traces out the “Reverse” curve shown in the figure. 

 

 
Figure 3. Steady state voltage stability analysis curve for a bus (Dallas, Bus 
number 5252) from the 2000 bus synthetic system 

TABLE II. Ten lowest 𝑑𝑉/𝑑𝑄 buses at solution 𝑉𝑚
′  for the 2000 bus system 

No. Name Nom 
kV 

Area 
Name 

dV/dQ Negative 
reactance 
lines 

Likely 
Alternative 
Solution 

PU 
Volt 

5322 DALLAS 2 
0 

500 North 
Central 

-4.46E-
05 

NO YES 0.924 

5384 DALLAS 3 
0 

500 North 
Central 

-4.32E-
05 

NO YES 0.924 

5464 FRISCO 2 0 500 North 
Central 

-4.32E-
05 

NO YES 0.919 

5063 ARLINGTO
N 1 0 

500 North 
Central 

-4.20E-
05 

NO YES 0.927 

5102 RICHARDS
ON 2 0 

500 North 
Central 

-4.18E-
05 

NO YES 0.917 

5304 ALLEN 1 0 500 North 
Central 

-4.11E-
05 

NO YES 0.923 

5083 MCKINNE
Y 3 0 

500 North 
Central 

-4.10E-
05 

NO YES 0.923 

5448 GRAND 
PRAIRIE 3 

0 

500 North 
Central 

-4.04E-
05 

NO YES 0.921 

5295 MCKINNE
Y 1 0 

500 North 
Central 

-3.97E-
05 

NO YES 0.926 

5033 DALLAS 1 
0 

500 North 
Central 

-3.96E-
05 

NO YES 0.929 

 
Sensitivities calculated at point 𝑉𝑚′  indicate 70 buses with 

negative sensitivities, from a total of 2000 buses in the system. 
As mentioned earlier, this system has no NR branches. Hence 
there are 70 likely alternative solution buses. They all belong 
to the North Central area of the system, indicating a local 
voltage collapse.  Some more interesting observations are: 
1. Buses with the lowest voltages do not necessarily 

converge to alternative solutions. In fact, the 53 lowest 
voltage buses (0.88 pu – 0.89 pu) had positive 𝑑𝑉/𝑑𝑄 
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values. For the overall system, there are 162 low voltage 
(< 0.9 pu) buses in total. Only 16 out of 70 negative 
sensitivity buses had voltages < 0.9 pu. Hence, focusing 
on the lowest voltage bus(es) may not be a good heuristic 
measure to detect alternative solutions. 

2. On the other hand, several seemingly “normal” voltage 
level buses seem to converge to alternative solutions, in 
this GMD scenario. E.g. for the 70 negative sensitivity 
buses, the average voltage was 0.913 pu, with a maximum 
value of 0.948 pu and minimum of 0.893 pu Table II 
shows 10 buses with the lowest sensitivity values. 

3. There are 36 buses with voltage < 0.9 pu in the East area 
but all have 𝑑𝑉/𝑑𝑄 >  0. Hence, not considering 
sensitivities could also lead to a wider search space for 
alternative solutions. 

Note that it is not necessary that a system will converge to 
an alternative solution when the electric field is reduced after 
the maximum GIC reactive loadability point is reached. This 
was confirmed by keeping the shunt capacitor in San Antonio 
closed (that was opened in the previous simulation as a GIC 
contingency) and repeating the voltage stability study. In this 
case, there is only one solution at 7 V/km, which is the desired 
high voltage solution. Solution characteristics in GMD voltage 
assessments can thus vary depending on the reactive support 
in the system, for a given electric field profile. 
 
C. 70,000 bus system 

Next, we consider a more complex example consisting of 
more than 30 times the number of buses in the previous case. 
This is the same 70K bus synthetic system mentioned earlier 
in Section III. Unlike the 2000 bus example, this case has NR 
branches due to the presence of three-winding transformers. 
Here we can show how buses close to NR branches are used in 
the process of determining buses with alternative solutions.  

The 70K system covers a major portion of the Eastern part 
of the US. A procedure similar to the previous GMD study was 
applied to study the voltage impacts. Due to the complexity of 
the case in terms of interconnected areas, and differences in 
reactive power planning across generators and other devices, 
the last convergence point was obtained at a much lower 
electric field input of 0.5 V/km, compared to the 2000 bus 
system. The main cause for the non-convergence was 
generators reaching their reactive power limits. Note that this 
does not mean that the power grid of similar scale or 
geographic location would experience a blackout at this 
electric field magnitude. It most likely points to the need for 
additional reactive power planning in designing this synthetic 
system, especially under the influence of a specific event such 
as a GMD. Another point to consider is whether performing a 
voltage stability study across such a large footprint is practical, 
since reactive power is a localized phenomenon. We use this 
example purely for illustrative purposes. 

The algorithm identified a total 167 likely alternative 
solution buses from the 508 buses with 𝑑𝑉/𝑑𝑄 < 0, i.e. about 
a third of these, and 0.24% of the total number of buses in the 
system. In other words, these 167 buses were not found to be 
near any NR branch. The 15 lowest 𝑑𝑉/𝑑𝑄 values were from 

buses near NR branches, with relatively high voltages between 
1.02 pu and 1.06 pu. These branches are in fact connected to 
the fictitious star buses of three-winding transformers. These 
star buses are typically represented in real  power grid cases by 
a nominal voltage level of 1 kV. Table III shows these 15 
lowest-sensitivity-valued buses, plus five more for reference. 
We can see among the five that are included, four buses (i.e. 
Gulfport) are not near negative reactances and are hence 
flagged as alternative solutions. Note the difference in voltages 
between the first alternative solution bus encountered (#30334) 
in this table and the previous values (1.04 pu vs 0.836 pu). 

Of the 167 alternative solution buses, 58 from Alabama, 3 
from Louisiana, and 106 from Mississippi. In this system, the 
geographic states have been divided into different control 
areas. Of these 167 buses, the 60 buses with the lowest voltages 
are in Mississippi, with 0.82 pu as the lowest and 0.99 pu as 
the maximum with alternative solution. These 60 buses in 
Mississippi also happen to be the lowest voltage buses in the 
entire system, which was not the case in the 2000 bus study 
where alternative solutions were found at higher voltages. 

 
TABLE III. Twenty lowest dV/dQ buses at 0.5 V/km for the 70,000 bus system 
No. Name Nom 

kV 
Area Name dV/dQ Negative 

reactance 
lines 

Likely 
Alternative 

Solution 

PU 
Volt 

56476 SAINT 
LOUIS 11 4 

1 Missouri 
East 

-8.37E-
03 

YES NO 1.059 

55173 KNOXVILL
E 47 4 

1 Iowa -5.79E-
03 

YES NO 1.053 

56576 SAINT 
LOUIS 56 4 

1 Missouri 
East 

-5.78E-
03 

YES NO 1.059 

56425 FLORISSAN
T 4 4 

1 Missouri 
East 

-5.23E-
03 

YES NO 1.057 

68963 FARGO 6 4 1 North 
Dakota 

-4.94E-
03 

YES NO 1.020 

20226 DURHAM 
13 4 

1 North 
Carolina 

-4.83E-
03 

YES NO 1.019 

54183 AMES 8 4 1 Iowa -4.78E-
03 

YES NO 1.038 

54513 WINTERSE
T 4 4 

1 Iowa -3.97E-
03 

YES NO 1.031 

22421 ANDERSON 
1 4 

1 South 
Carolina 

-3.65E-
03 

YES NO 1.038 

23584 WILLIAMS
TON 10 4 

1 South 
Carolina 

-3.57E-
03 

YES NO 1.018 

64373 OLATHE 7 
4 

1 Kansas -3.54E-
03 

YES NO 1.028 

65192 KANSAS 
CITY 84 4 

1 Kansas -3.46E-
03 

YES NO 1.047 

58630 BELLA 
VISTA 3 4 

1 Arkansas -3.21E-
03 

YES NO 1.033 

58164 KIMBERLI
NG CITY 3 

4 

1 Missouri 
West 

-3.14E-
03 

YES NO 1.046 

65922 LAKIN 4 4 1 Kansas -3.08E-
03 

YES NO 1.040 

30334 GULFPORT 
4 1 

100 Mississippi -2.99E-
03 

NO YES 0.836 

30335 GULFPORT 
5 1 

100 Mississippi -2.99E-
03 

NO YES 0.844 

67236 BELLEVUE 
14 5 

1 Nebraska -2.98E-
03 

YES NO 1.057 

30337 GULFPORT 
7 1 

100 Mississippi -2.98E-
03 

NO YES 0.851 

30338 GULFPORT 
8 1 

100 Mississippi -2.96E-
03 

NO YES 0.854 



V. SUMMARY AND FUTURE WORK 
This paper has provided a methodology to rapidly 

determine whether a system has converged to an alternative or 
low voltage solution by leveraging sparsity techniques towards 
calculating sensitivities of voltage magnitude to the reactive 
power injection at each of the buses in the system. Negative 
values indicate likely convergence of a bus to an alternative 
solution, unless it is close to negative reactance branch. This 
method is much faster compared to previous exhaustive and 
iterative methods of finding alternative solutions. It can help 
narrow down “problem areas” efficiently, such as areas in a 
system that are prone to voltage collapse. Such tools can be 
helpful in large system studies, especially steady-state voltage 
stability and GMD vulnerability assessments.  

Ongoing work is looking into how to “correct” these 
undesired solutions. Several directions are being considered. 
First, convergence to a high or low voltage solution depends 
on the initial guess of the solution. This idea can be used to 
alter the starting point, with some additional reactive support 
perhaps in cases such as GMD studies. Pre-emptive dispatch 
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of shunt capacitors and cancelling generator outages is already 
an established and recommended GMD operating procedure. 
This can be simulated in studies to prevent these low voltage 
conditions. On a more analytical front, techniques such as 
continuation power flow [11] can be explored to avoid the 
singularity of the Jacobian matrix encountered, for instance, 
between points 𝑉𝑚 and 𝑉𝑚′  in the 2000 bus study. This involves 
determining and using a continuation parameter to increase the 
load gradually to avoid the non-convergence near the voltage 
instability or maximum loadability point. This will be 
particularly useful in QV curve analysis or GMD voltage 
stability studies where the user has control of the sequential 
increase of the load. It will be interesting to determine how 
many more high or low voltage solutions, if any, are possible 
beyond the maximum loadability point found by manual 
methods in this paper (i.e. between 7 and 7.5 V/km for the 2000 
bus system). This is also indicative of the stability boundary of 
the system, opening directions for application of this method 
in that area of studies and research. 
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