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It is a Great Time to be a
Power and Energy Engineer!

« Electric grids are in a time of rapid transition, with
lots of positive developments and lots of engineering
challenges!

 |tis good to keep in mind the essence of
engineering, which is defined by Merriam-
Webster’s as “The application of science and
mathematics by which the properties of matter and
the sources of energy in nature are made useful to
people.”



Overview

* To meet the challenges of today, we need to
widely leverage tools from other domains and
make them useful

* This tutorial presents one such tool, the application
of measurement-based modal analysis techniques
for large-scale electric grids



A Few Initial Thoughts

“If | have seen further, it is by standing
on the shoulders of giants.”

— |Isaac Newton 1676
The grid we inherited from the past was smart; our

challenge to make it smarter!
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Left: control center in early 1900’s, right: ISO New England control center



A Few Initial Thoughts, cont.

* While the grid of 2000 was named the top
engineering technology of the 20" century, the grid
of 2020 is even more complex
— There is question of whether anyone really fully

understands it!

* My passion is to do research and develop tools to
make large-scale electric grid analysis as easy as
possible... But it can still be quite complex!!

« Today’s focus is to show how measurement-based
modal analysis can be a part of every day power
systems engineering analysis



Modeling Cautions!

« "All models are wrong but some are useful,”
George Box, Empirical Model-Building and
Response Surfaces, (1987, p. 424)

— Models are an approximation to reality, not reality, so
they always have some degree of approximation

— Box went on to say that the practical question is how
wrong to they have to be to not be useful
* A good part of engineering is deciding what is the
appropriate level of modeling, and knowing under
what conditions the model will fail



Signals

Throughout the talk I'll be using the term “signal,”
which has several definitions
A definition from Merrian-Webster is

— “A detectable physical quantity or impulse by which
messages or information can be transmitted.”

A common electrical engineering definition is “any
time-varying quantity”

Our focus today is on such time-varying signals,
particularly associated with oscillations



Oscillations

* An oscillation is just a repetitive motion that can be
either undamped, positively damped (decaying with
time) or negatively damped (growing with time)

« If the oscillation can be written as a sinusoid then

e“t(acos(a)t)+bsin(a)t)):echos(a)t+t9)

where C =+ A’ + B’ and 6 = tan(_—bj

a

e The damping ratio is The percent damping is just
the damping ratio multiplied
¢ = by 100; goal is sufficiently
positive damping

\/0( +o’



Types of Oscillations

* There are several different types of oscillations,

iIncluding simple ones with just a single frequency;
under-damped oscillations have zero frequency
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Power System Oscillations

* Power systems can experience a wide range of
oscillations, ranging from highly damped and high
frequency switching transients to sustained low
frequency (< 2 Hz) inter-area oscillations affecting

an entire interconnect

« Types of oscillations include
— Transients: Usually high frequency and highly damped
— Local plant: Usually from 1 to 5 Hz
— Inter-area oscillations: From 0.15to 1 Hz
— Slower dynamics: Such as AGC, less than 0.15 Hz

— Subsynchronous resonance: 10 to 50 Hz (less than

synchronous) y



Example Oscillations

* The below graph shows an oscillation that was
observed during a 1996 WECC Blackout

4600 - Observed COl Pawer (Dittmer Coantrol Centen ’ The eIeCtrIC grld
asoo | and electric grid
a200 | modeling has
| changed
. substantially

4600 F Simulated COl Power (inifal WSCC base case) since 1996!
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Example Oscillations

« This graph shows oscillations on the Michigan/
Ontario Interface on 8/14/03
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Time - EDT
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More General Signal Analysis

* More generally we may wish to better understand
the dynamic behavior of the power grid, either
following a disturbance or during ambient
conditions

— Events are more common in studies

BBBBBBB (PKNOBDUM) Frequency Ud

04 ‘

03 "\«/\/V‘ \W\M NWW\//”WMWWMW\’MM

Ambient Noise Analysis

0.4 Hz at +10% damping. Inter-Area Mode.

Event
Analysis
Thoe 0.4 Hz at +10% damping. Inter-Area Mode.
[ —_Bus 2876 (PKNOBDUM) Frequency | 081410 031500 09:15:50 09:16:40

Image Source: M. Venkatasubramanian, “Oscillation Monitoring System”, June 2015
http://www.energy.gov/sites/prod/files/2015/07/f24/3.%20Mani%200scillation%20Monitoring.pdf
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Small Signal Analysis and
Measurement-Based Modal Analysis

Small signal analysis has been used for decades
to determine power system frequency response

— It iIs a model-based approach that considers the
properties of a power system, linearized about an
operating point

Measurement-based modal analysis determines

the observed dynamic properties of a system

— Input can either be measurements from devices (such
as PMUs) or dynamic simulation results

— The same approach can be used regardless of the
measurement source

15



Ring-down Modal Analysis

* Ring-down analysis seeks to determine the
frequency and damping of key power system
modes following some disturbance

* There are several different techniques, with
the Prony approach the oldest (from 17995)

* Regardless of technique, the goal is to
represent the response of a sampled signal
as a set of exponentially damped sinusoidals

(modes)
—

q :
l. Damping (%) = —= X100
()= Ae’ cos(wi+9,) amping (7o) e
i=1
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Where We Are Going:
Extracting the Modes from Signals

« The goal is to gain information about the electric
grid by extracting modal information from its
signals

— The frequency and damping of the modes is key

 The premise is we’'ll be able to reproduce a
complex signal, over a period of time, as a set a
of sinusoidal modes Y
— We'll also allow for linear "y (|| L

detrending L

0.1z4cosO0(272¢
)
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Example: The Summation of two

damped exponentials

* This example
was created by
going from the
modes to
a signal of [l

« We'll be going l

. . .5 B . |'g . l 4 o

in the opposite ||' \ ] Yy
\ ....¢.'.|, ;.....‘,"‘ll","',l."..“ “".

INEATAL: | | "J' \pV iy

direction (i.e., ~
from a osi I Ay
measured 1

signal to the e

modes)

N 25 v ! 25 v P
lot e 7Y cos(10x)+ e 125 x cos|8.5x+ -
P 3 )
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Some Reasonable Expectations

“Trust but verify” (going back to Reagan using a
Russian proverb)

— We should be able to show how well the modes match
the original signal(s)

Flexible to handle between one and many signals
— We’'ll go up to simultaneously considering 40,000 signals

Fast

— What is presented will be, with a discussion of the
computational scaling

Easy to use
— This is software implementation specific

19



Example: One Signa

Result Analysis Signal — O X
Start Time Used EndTime Used Time Window | Sl aae leapl) I
I 3'000000| I Sl Contingency lMy Transient Contingency |
Object [Gen 'Bus1_16.50''1' ]
Field ITSSpeed |
Statistics Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C (quadratic)
[ 9 Trend | 1.00| [ 0.0000617| | 0.0]
: BT Bk %68 58 @8  Records v Set~ Columns~ [Bd~ @i~ W8~ BH- W 79~ B oOptions ~
Modes for Selected Signal Update Auto 1.0012
Mode Magnitude|Magnitude| Angle Rank Mode [Mode Mode 1.001
Include End Frequency [Damping Lambda ’
Reproduce| 1.0008
1|YES 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465
2|YES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 1.0008
3|YES 0.00097 0.0000488 69.05 24,01 1.364 498 -0.427 1.0004
4|VES 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 .
SIYES o/ 0.0000223 )000000445 -59.64 0.553 2.017 6.99 -0.888 1.0002
1
0.9998
0.9996
0.9994
3 4 5 6 7 8 9 10
[V — Raw Signal [V == Reproduced Signal
OK Cancel

20



Verification:
Linear Trend Line Only

Result Analysis Signal m] X
Start Time Used End Time Used  Time Window lGen Speed 3 - 10 I
l 3'000000| I Sl Contingency lMy Transient Contingency |
Object [Gen 'Bus1_16.50''1' |
Field ITSSpeed |
Statistics Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C (quadratic)
[ 9 Trend | 100/ [ 0.0000617| | 0.0]
: D = % Al %3 5% 44 ?&D Records v Set v Columns v ' aﬁ';“g' %‘5' B~ E%E: f) v B Options ~
Modes for Selected Signal Update Auto 1.0012
Mode Magnitude|Magnitud Angle Rank Mode [Mode Mode 1.001
Include End Frequency [Damping Lambda ’
Reproduce| 1.0008
1HHO av 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465
2[{NO 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 1.0008
3{NO 0.00097 0.0000488 69.05 24,01 1.364 498 -0.427 1.0004
4[NO 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 ’
5|NO 0.0000223 000000445 -59.64 0.553 2.017 6.99 -0.888 1.0002
1
0.9998
0.9996
0.9994
3 4 5 6 7 10
[V — Raw Signal [V == Reproduced Signal
OK Cancel

21



Veri
Linear Trend

fication:
Line + One Mode

Result Analysis Signal

Start Time Used End Time Used  Time Window lGen Speed 3 - 10

[ 3.000000 [ 10.000000

Contingency |My Transient Contingency

Object [Gen 'Bus1_16.50''1'

Field ITSSpeed

Statistics Modes and Damping  Object Fields
Undamped Modes

[ 9

A (constant)
1.00| |

B (linear)
0.0000617] |

C (quadratic)
0.0]

Trend I

3T Bl 8 4% 08 88, Recorss~ set~ coumnns - [ | 8- 8- B

SORT
v v

RELCD

fy ~ B Options ~

Modes for Selected Signal Update Auto 10012
Mode Magnitude|Magnitud Angle Rank Mode |Mode Mode 1.001
Include End Frequency [Damping Lambda
Reproduce 1.0008

1JYES o 0.00166 0.0000643 111.15 41.13 0171 39.67 -0.465
2|no 0.00114 0.0000256 0.00 28.28 0.000 10000  -0.543 1.0006
3|NO 0.00097 0.0000438 69.05 24.01 1.364 4,98 -0.427 1.0004
4[NO 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383
5|NO 0.0000223 000000445 -59.64 0.553 2,017 6.99 -0.888 1.0002

1
0.9998
0.9996
0.9994

3 4 5 6 7 8

[V — Raw Signal [V == Reproduced Signal

OK

Cancel

10
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Veri

Linear Trend Line + Two Mod

fication:

€S

Result Analysis Signal

Start Time Used End Time Used  Time Window lGen Speed 3 - 10

[ 3.000000 [ 10.000000

Contingency |My Transient Contingency

Object [Gen 'Bus1_16.50''1'

Field ITSSpeed

Statistics Modes and Damping  Object Fields
Undamped Modes

[ 9

A (constant)
1.00| |

B (linear) C (quadratic)
0.0000617] | 0.0]

Trend I

3T Bl 8 4% 08 88, Recorss~ set~ coumnns - [ | 8- 8- B

SORT
v v

wi f)~ E  Options ~

Modes for Selected Signal Update Auto 10012
Mode Magnitude|Magnitud Angle Rank Mode |Mode Mode 1.001
Include End Frequency [Damping Lambda
Reproduce 1.0008

1]YES 0.00166 0.0000643 111.15 41.13 0171 39.67 -0.465
2JVES g/ 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 1.0006
3|NO 0.00097 0.0000438 69.05 24.01 1.364 4,98 -0.427
|No 0.0000167 0.000243  -180.00 602 0000 -100.00  0.383 1.0004
5|NO 0.0000223 000000445 -59.64 0.553 2,017 6.99 -0.888 1.0002

1
0.9998
0.9996
0.9994

5 6 7

[V — Raw Signal [V == Reproduced Signal

OK

Cancel

10
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Verification:
Linear Trend Line + Three Modes

Result Analysis Signal

Start Time Used End Time Used  Time Window lGen Speed 3 - 10

[ 3.000000 [ 10.000000

Contingency |My Transient Contingency

Object [Gen 'Bus1_16.50''1'

Field |TSSpeed

Statistics Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C (quadratic)

[ 9 Trend | 1.00| [ 0.0000617] | 0.0]

: D = % Al %3 ;% &4 ?&D Records v Set v Columns v ' aﬁﬁg' “gﬁv B~ 551%; fy ~ B Options ~

Modes for Selected Signal Update Auto

1.0012
Mode Magnitude|Magnitud Angle Rank Mode |Mode Mode 1.001
Include End Frequency [Damping Lambda
Reproduce 1.0008
1|YES 0.00166 0.0000643 111.15 41.13 0171 39.67 -0.465
2|YES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 1.0006
3|NO 0.00097 0.0000488 69.05 24.01 1.364 4,98 -0.427
a[lEs__ o) 0.0000167 0.000243  -180.00 602 0000 -100.00 0383 1.0004
5|NO 0.0000223 000000445 -59.64 0.553 2,017 6.99 -0.888 1.0002

1
0.9998
0.9996
0.9994

3 4 5 6 7 8

[¥ — Raw Signal ¥ == Reproduced Signal

OK

Cancel

10
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Veri
Linear Trend

ication:
ine + Four Modes

Result Analysis Signal

O X
Start Time Used End Time Used  Time Window lGen Speed 3 - 10 I
l 3'000000| I Ll Contingency |My Transient Contingency |
Object [Gen 'Bus1_16.50''1' |
Field ITSSpeed I
Statistics Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C (quadratic)
|:] Trend | 1.00| [ 0.0000617] | 0.0]
: D = % Al %3 ;% &4 f&n Records v Set v Columns v ' 'H‘g' "!,"Ev B~ 551%; fy ~ B Options ~
Modes for Selected Signal Update Auto 10012
Mode Magnitude|Magnitud Angle Rank Mode |Mode Mode 1.001
Include End Frequency [Damping Lambda ’
Reproduce, 1.0008
1|YES 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465
2|VvES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 1.0008
3JYES oV 0.00097 0.0000438 69.05 24,01 1.364 4,98 -0.427 1.0004
4|YES 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 ’
5|no 0.0000223)000000445  -59.64 0.553 2,017 699  -0.888 1.0002
1
0.9998
0.9996
0.9994
3 4 5 6 7 8 10
[V — Raw Signal [V == Reproduced Signal
OK Cancel
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Verification:
Linear Trend Line + Five Modes

Result Analysis Signal

O X
Start Time Used End Time Used  Time Window lGen Speed 3 - 10 |
3.000000 10.000000
l I l Contingency \My Transient Contingency I
Object lGen '‘Bus1_16.50""'1' |
Field ’TSSpeed I
Statistics Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C (quadratic)
[ o Trend 1.00| [ 0.0000617] | 0.0]
3| 7 = % Al %3 ;00 | ¢4 %‘&n Records ¥ Set~ Columns v ' 15' "‘u&"u!' HETE' 11’;:, fg~ B Options ~
Modes for Selected Signal U Auto 1.0012
Mode Magnitude|Magnitude| Angle Rank Mode |Mode Mode 1.001
Include End Frequency [Damping %4 Lambda ’
Reproduce, 1.0008
1|YES 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465
2|YES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 1.0006
3 0.00097 0.0000438 69.05 24,01 1.364 4,98 -0.427 1.0004
41} 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 :
5 +| 0.0000223 Y000000445 -59.64 0.553 2,017 6.99 -0.888
L o 1.0002
1
0.9998
[ ] [ ]
It is hard to tell a difference o=
0.99%4
L] n L ]
3 4 5 6 7 8 10
on this one, illustrating that
v — Raw Signal [v == Reproduced Signal
modes manifest differently
OK Cancel

in different signals

26



A Larger Example We’ll Finish With

Applying the developed techniques to the response of all 43,400
substation frequencies from an 110,000 bus electric grid(20

)

Frequency (Hz)

59.99
59.98 ~
59.97 —
59.95
59.95 ~
59.94
59.93
59.92
59.91

59.9
5959
59.88
59.57

59.85

59.85 -

10 15 20
Simulation Time (Seconds)

25

30
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Measurement-Based Modal
Analysis

* There are a number of different approaches

* The idea of all techniques is to approximate a
signal, y,(t), by the sum of other, simpler signals
(basis functions)

— Basis functions are usually exponentials, with linear and
quadratic functions used to detrend the signal

— Properties of the original signal can be quantified from
basis function properties
« Examples are frequency and damping

— Signal is considered over time with t=0 as the start
* Approaches sample the original signal y,(t)

28



Measurement-Based Modal
Analysis

* Vector y consists of m uniformly sampled
points from y,(t) at a sampling value of DT,
starting with t=0, with values y; for j=1...m
— Times are then = (j-1)DT
— At each time point j, the approximation of y; is

Pt @) = 2 b (1), 0)

where a 1s aivector with the real and imaginary eigenvalue components,
with ¢.(¢,,a) = e”" for . corresponding to a real eigenvalue, and
g.(t;,0) = eaitjcos(aiﬂtj) and ¢, (a) = ™" sin( e, t;)

for a complex eigenvector value

29



Measurement-Based Modal
Analysis

* Error (residual) value at each point j is
i (t,0)= v, = 3,(t,,0)

* The closeness of the fit can be quantified using the
Euclidean norm of the residuals

] & A 1
5 205=3, 0 = @)
=
* Hence we need to determine aand b

— Recall R L
V., e)=) bo(r,,a)
i=1

30



Sampling Rate and Aliasing

The Nyquist-Shannon sampling theory requires
sampling at twice the highest desired frequency

— For example, to see a 5 Hz frequency we need to
sample the signal at a rate of at least 10 Hz

Sampling shifts the frequency spectrum by 1/T
(where T is the sample time), which causes

frequency overlap
This is known as aliasing, WhICh 0

can cause a high frequency VYV w

012345678910

signal to appear to be a lower frequency signal

— Aliasing can be reduced by fast sampling and/or low
pass filters

Image: upload.wikimedia.org/wikipedia/commons/thumb/2/28/AliasingSines.svg/2000px-AliasingSines.svg.png



One Solution Approach:
The Matrix Pencil Method

* There are several algorithms for finding the
modes. We'll use the Matrix Pencil Method

— This is a newer technique for determining modes from
noisy signals (from about 1990, introduced to power
system problems in 2005); it is an alternative to the
Prony Method (which dates back to 1795, introduced
into power in 1990 by Hauer, Demeure and Scharf)

« Given m samples, with L=m/2, the first step is to form the

Hankel Matrix, Y such that "y, oy, K oy

V) V3 Ly,
. H Y:
This not a sparse matrix M M O M

_ym—L ym—L+1 L ym

Refernece: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction," IEEE Transactions on Power
Systems, vol. 20, no. 1, pp. 501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005.

32



Algorithm Detalils, cont.

* Then calculate Y's singular values
using an economy singular value
decomposition (SVD)

Y=UxV'

* The ratio of each singular value
Is then compared to the largest
singular value s_; retain the ones
with a ratio > than a threshold

— This determines the modal order, M

— Assuming V is ordered by singular
values (highest to lowest), let V, be

The computational
complexity
Increases

with the cube of
the number of
measurements!

This threshold
IS a value that
can be changed;
decrease it to
get more modes.

then matrix with the first M columns of V

33



Aside: The Matrix Singular Value
Decomposition (SVD)

 The SVD is a factorization of a matrix that
generalizes the eigendecomposition to any m by n

matrix to produce
P The original concept is more than

Y=0UZV! 100 years old, but has found lots
of recent applications

where S is a diagonal matrix of the singular values

* The singular values are non-negative, real
numbers that can be used to indicate the major
components of a matrix (the gist is they provide a
way to decrease the rank of a matrix)

34



Aside: SVD Image Compression
Example

Images can be
represented with
matrices. When
an SVD is applied
and only the
largest singular
values are retained
the image is
compressed.

Figure 3.1: Image size 250x236 - modes used
{{1,2,4,6},{8,10,12,14},{16,18,20,25},{50,75,100,0riginal image})



Aside: SVD and Principle
Component Analysis (PCA)

The previous image compression example
demonstrates PCA, which reduces dimensionality

— Extracting the principle components
The principle components are associated with the
largest singular values

— This helps to extract the key features of the data and
removes redundancy

PCA can be used to do facial recognition

The Matrix Pencil Method is similar; that is,
retaining only the largest singular values from the
Hankel matrix

36



Matrix Pencil Algorithm Details,

cont.

* Then form the matrices V, and V, such that
— V, is the matrix consisting of all but the last row of V|
— V, is the matrix consisting of all but the first row of V,

« Discrete-time poles are found as the generalized
eigenvalues of the pair (V,'V,, V,'V,) = (A,B)
* These eigenvalues are the

discrete-time poles, z; with the

modal eigenvalues then

1

_In(z;) The log of a complex
number z=r(?

AT

In(r) + ]

?

?

IS

If B is nonsingular
(the situation here)
then the generalized
eigenvalues are the
eigenvalues of

B'A

37



Matrix Pencil Method with Many
Signals

* The Matrix Pencil approach can be used with one
signal or with multiple signals

* Multiple signals are handled by forming a Y,
matrix for each signal k using the measurements
for that signal and then combining the matrices

yl,k yz,k K yL+1,k ]
yZ,k y3,k L yL+2’k The reCIUIred
Ye=| oy M O M computation
scales linearly
ym— k ym—L+l,k L ym,k ]
o - with the number
Y, .
of signals
Y=| M




Matrix Pencil Method with Many
Signals

However, when dealing with many signals, usually
the signals are somewhat correlated, so vary few
of the signals are actually need to be included to
determine the desired modes

Ultimately we are finding
v, (t,.0)=2 b4t 0)
i=l

The ais common to all the signals (i.e., the system
modes) while the b vector is signal specific (i.e.,
how the modes manifest in that signal)

39



Quickly Determining the b Vectors

* A Kkey insight is from an approach known as the
Variable Projection Method (from Borden, 2013)
that for any signal k

Y. =®(a)b,

And then the residual is minimized by selecting b, = ®(a)"y,

where @ (a) 1s the m by n matrix with values _
Where m is the

()] ji (o) = el if . corresponds to a real eigenvalue, number of
7 at, . measurements
and @, (a) =e™ cos(e,,,t,) and @, (@) =™ sin(er,t,)  S0gnis the
for a complex eigenvalue; ¢, =(j—1)AT number of
modes

Finally, ®(a)" is the pseudoinverse of ®(a)

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use,"
Proc. 2013 North American Power Symposium, Manhattan, KS, Sept. 2013 40



Aside: Pseudoinverse of a Matrix

The pseudoinverse of a matrix generalizes
concept of a matrix inverse to an m by n matrix, in
which m >=n

— Specifically this is a Moore-Penrose Matrix Inverse
Notation for the pseudoinverse of A is A*
Satisfies AA*A = A

If A is a square matrix, then A* = A"’

Quite useful for solving the least squares problem
since the least squares solution of Ax = b is

x=Ab A=UZV’
Can be calculated using an SVD B
A"=vxX'u’

41



Aside: Pseudoinverse Least

Squares Matrix Example
« Assume we wish to fit a line (mx + b = y) to three
data points: (1,1), (2,4), (6,4)
« Two unknowns, m and b; hence x =[m b]’
« Setupinformof AXx=Db

1 1. - |1 1 1
m

21b=4 so A=|2 1

6 1|~ - |4 6 1




Aside: Pseudoinverse Least
Squares Matrix Example

* Doing an economy SVD

—0.182 —0.765
- r | B 6.559
A=UXV! =| -0331 -0.543
—0.926  0.345 |

« Computing the pseudoinverse

. . [-0976 021970152 0
At=VEU =

~0.219 —0.976| 0  1.012
. . [-0.143 —0.071 0.214
At =VEU =

0.762  0.548 —0.310

0 -0.976 -0.219
0 09881 0.219 -0.976

-0.182 -0.331 -0.926
—0.765 —0.543 0.345

In an economy SVD the S matrix has dimensions of

mbymifm<nornbynifn<m
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Least Squares Matrix

Pseudoinverse Example, cont.
« Computing x = [m b]" gives

A —0.143 —0.071 0.214 .l 0.429
0.762 0.548 —0.310 171

* With the pseudoinverse approach we immediately
see the sensitivity of the elements of x to the
elements of b

— New values of m and b can be readily calculated if y
changes
« Computationally the SVD is order m?n+n?
(with n < m)
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lterative Matrix Pencil Method

 When there are a large number of signals the
iterative matrix pencil method works by

— Selecting an initial signal to calculate the a vector

— Quickly calculating the b vectors for all the signals, and
getting a cost function for how closely the reconstructed
signals match their sampled values

— Selecting a signal that has a high cost function, and
repeating the above adding this signal to the algorithm
to get an updated a
An open access paper describing this is W. Trinh, K.S. Shetye, I. Idehen, T.J.
Overbye, "lterative Matrix Pencil Method for Power System Modal Analysis,"

Proc. 52nd Hawaii International Conference on System Sciences, Wailea, Hl,
January 2019; available at scholarspace.manoa.hawaii.edu/handle/10125/59803
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Demonstrations Using Large-
Scale Synthetic Electric Grids

* The following examples demonstrate the approach
using large-scale synthetic grids

— Synthetic grids are designed to mimic the complexity of
the actual grids, but are fictional so they contain no
CEll, allowing them to be publicly disseminated

— For those who are interested, PSERC project S-91
(Generating Value from Detailed, Realistic Synthetic
Electric Grids) has just started. Additional industrial
advisors are certainly welcome to join the team!

* More details on this project are available at
overbye.engr.tamu.edu/pserc-project-s-91

« Many synthetic grids, including the ones used

here, are available at electricgrids.engr.tamu.edu
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Texas 2000 Bus System Example

* This synthetic grids serves an electric load on the
ERCOT footprint

« We'll use the Ilterative Matrix Pencil Method to
examine its modes
— The contingency is the loss of two large generators

The measurements will be the
frequencies at all 2000 buses

zs
mﬁ&‘i““‘“i
L
> —
2 g g
it 39

[Potent 59.98
Bus Nur _
phions 59.96
6079 59.94
6080
s 59.92
59.9 -

. 8130
= 8131 59.83 -
59.86 -

59.84 -
59.82 7

59.8
59.78 ]
59.76 -

Bus Frequency (Hz)

59.74
59.72 -
59.7 -
59.68
59.66

o 2 4 10 12 14 16 18 20

=3 8
Simulation Time (Seconds)



2000 Bus System Example,
Initially Just One Signal
* Initially our goal is to understand the modal frequencies

and their damping

* First we'll consider just one of the 2000 signals;
arbitrarily | selected bus 8126 (Mount Pleasant)

60

59.98 |
5 5996 |
59.94 |

o
©
©
N

59.9 ]
59.88 |
50.86 |
50.84 |

Bus Frequency (H

o 2 4 6 & 10 12 14 16 18 2
Simulation Time (Seconds)

— Frequency, Bus 2127 (MIAMI 0) — Frequency, Bus 1079 (ODESSA1 8)
IVl Frequency, Bus 7042 (VICTORIA2 0) IVl Frequency, Bus 5260 (GLEN ROSE 1 0)
IV — Frequency, Bus 8082 (FRANKLIN 0) ¥ — Frequency, Bus 7159 (HOUSTON 5 0)
v IV — Frequency, Bus 4192 (BROWNSVILLE 1 0)
IV — Frequency, Bus 4195 (OILTON 0) E— Frequency, Bus 8126 (MOUNT PLEASANT 1 0)
v
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Some Initial Considerations

The input is a dynamics study running using a 2
cycle time step; data was saved every 3 steps, so
at 40 Hz

— The contingency was applied at time = 2 seconds

We need to pick the portion of the signal to
consider and the sampling frequency

— Because of the underlying SVD, the algorithm scales
with the cube of the number of time points (in a single
signal)

| selected between 2 and 17 seconds

| sampled at ten times per second (so a total of
150 samples)
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2000 Bus System Example,
One Signal

 The results from the Matrix Pencil Method are

Number of Complex and Real Modes D Include Detrend in Reproduced Signals

[J subtract Reproduced from Actual

Lowest Percent Damping

Real and Complex Modes - Editable to Change Initial Guesses

Update Reproduced Signals

Frequency (Hz)| Damping (%) |Largest ¥ |Name of Signa Largest Name of Signa Lambda Include in
Component |with Largest |Component in|with Largest Reproduced
Mode, Component in| Mode, Scaled |Component in Signal
Unscaled Mode, Mode, Scaled
Unscaled
1 32.011 0.44275 Bus 1073 (ODE! 12.224 Bus 7310 (WHA 6 YES
2 24,191 0.38466 Bus 2120 (PARI¢ 11.549 Bus 8078 (MT. E 0 YES
3 10.705 0.23093 Bus 2115 (PARI¢ 6.801 Bus 2115 (PARI¢ YES
4 14.397 0.16911 Bus 1073 (ODE! 4,954 Bus 7310 (WHA > YES
5 10.137 0.08179 Bus 1051 (MON 2.551 Bus 6147 (SAN ., > YES
6 0.052 41,828 0.04603 Bus 1074 (ODE! 1.063 Bus 3035 (CHEF 06 YES
PWDVectorGrid Variables
60?
59,99%
. 2000
59.95
Trust but verify =]
59.92—5
59.91?
results 5.5
coer ]
59.86
59,852
coen ]
59.82?
5981?

Time (Seconds)

= Original Value == Reproduced \/alue]

Calculated
mode
information
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Values

Some Observations

 These results are based on the consideration of

just one signal

 The start time should be at or after the event!

If it isn’t then...

The results show the algorithm

1 ] "
PWDVectorGrid Variables t t t h th f t t f I t
rying to matc e TIrst two T1ia
59.99] . ' '
59.98 .
seconds; this should not be done!!
59.96
59.95 Results
59.94 1 Number of Complex and Real Modes Indude Detrend in Reproduced Signals
59.93 [Jsubtract Reproduced from Actual
59.92 W i -100.
20011 Lowest Percent Damping 100.000 Update Reproduced Signals
5298-37 Real and Complex Modes - Editable to Change Initial Guesses
59:88, Frequency (Hz})| Damping (%) |Largest ¥ |Name of Signa Largest Name of Signa Lambda |
50.87 1 Component |with Largest [Component in|with Largest R
50.86] Mode, Component in| Mode, Scaled ([Component in
’ Unscaled Mode, Mode, Scaled
59.857 Unscaled
59,84 1 100.000 0.93636 Bus 1073 (ODE: 14.030 Bus 1077 (ODES
59.834 2 44,39 0.82180 Bus 1073 (ODES 12.073 Bus 1077 (ODE!
59.821 3 84.809 0.43068 Bus 4026 (CHRI 8.463 Bus 4026 (CHRI
59.817 4 4,729 0.10932 Bus 1073 (ODE® 1.587 Bus 1073 (ODE¢
59.8 5 6.111 0.09142 Bus 2115 (PARI¢ 1.694 Bus 2115 (PARI¢
59.79 6 6.110 0.05556 Bus 4192 (BRO\ 1.042 Bus 4192 (BRO\
0 5 10 15 i 3.484 0.02405 Bus 1051 (MON 0.397 Bus 6147 (SAN,
Time (Seconds) 8 -100.000 0.01406 Bus 4026 (CHRI 0.276 Bus 4026 (CHRI

== QOriginal Value == Reproduced Valuel




2000 Bus System Example,
One Signal Included, Cost for All

* Using the previously discussed pseudoinverse
approach, for a given set of modes (a) the b,
vectors for all the signals can be quickly calculated

b, = (I)(a)+3’k

— Recall that the dimensions of the pseudoinverse are the
number of modes by the number of sample points for
one signal

 This allows each cost function to be calculated

* The lterative Matrix Pencil approach sequentially
adds the signals with the worst match (i.e., the
highest cost function)
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2000 Bus System Example, the
Worst Match (Bus 7061)

PWDVectorGrid Variables

60+
59.99-
59.98-
59.97
59.96
59.95-
59.94-
59.93
59.92
59.91-
59.9-
59.89
59.88
59.87 -
59.86-
59.85-
59.84
59.83
59.82-
59.81-
59.8-

Values

r T T L L L L . T T
2 4 6 8 10 12 14 16
Time (Seconds)

== QOriginal Value == Reproduced Value.




2000 Bus System Example,

With two signals

Number of Complex and Real Modes D
7.359

Lowest Percent Damping

Two Signals

Include Detrend in Reproduced Signals
[Jsubtract Reproduced from Actual

Update Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses

Frequency (Hz}| Damping (%) Largest Name of Signa Largest Name of Signa Lambda In
Component in |with Largest |Component in|with Largest Re}
Mode, Component in| Mode, Scaled |Component in
Unscaled Mode, Mode, Scaled
Unscaled
1 17.168 0.04028 Bus 7329 (NEW 1.730 Bus 7307 (WHA YES
2 21.844 0.10763 Bus 4030 (FAND 4,475 Bus 4030 (FAND
3 7.359 0.04666 Bus 6147 (SAN . 1.801 Bus 6147 (SAN, YES
4 11.705 0.21220 Bus 1051 (MON 5.762 Bus 8077 (MT. E YES
5 13.361 0.20903 Bus 2120 (PARI¢ 6.350 Bus 4192 (BRO\ YES
6 36.405 0.44679 Bus 1051 (MON 13.024 Bus 7311 (WHA YES
7 14,403 0.19570 Bus 1073 (ODE¢ 5.372 Bus 7311 (WHA YES
8 100.000 0.09305 Bus 1051 (MON 1.767 Bus 1051 (MON YES
9 36.756 0.02993 1.182 Bus 7307 (WHA 36 YES
With one signal
Number of Complex and Real Modes D Include Detrend in Reproduced Signals
[] subtract Reproduced from Actual
Lowest Percent Damping Update Reproduced Signals
Real and Complex Modes - Editable to Change Initial Guesses
Frequency (Hz)| Damping (%) |Largest ¥ |Name of Signa Largest Name of Signa Lambda Ir
Component |with Largest |Component in|with Largest Re
Mode, Component in| Mode, Scaled |Component in
Unscaled Mode, Mode, Scaled
Unscaled
1 32.011 0.44275 Bus 1073 (ODE! 12.224 Bus 7310 (WHA
2 24191 0.38466 Bus 2120 (PARI¢ 11.549 Bus 8078 (MT. E
3 10.705 0.23093 Bus 2115 (PARI¢ 6.801 Bus 2115 (PARI¢
4 14,397 0.16911 Bus 1073 (ODE! 4,954 Bus 7310 (WHA
5 10,137 0.08179 Bus 1051 (MON 2.551 Bus 6147 (SAN .,
6 41,828 0.04603 Bus 1074 (ODE! 1.063 Bus 3035 (CHEF

Values

The new match
on Bus

7061 1s quite
good!

PWDVectorGrid Variables

T T
6 8 10 12 14
Time (Seconds)

— Original Value = Reproduced Value]
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2000 Bus System Example,
lterative Matrix Pencil

* The lterative Matrix Pencil intelligently adds
signals until a specified number is met

— Doing ten iterations takes about four seconds

Number of Complex and Real Modes

Lowest Percent Damping

Include Detrend in Reproduced Signals

[] subtract Reproduced from Actual

Real and Complex Modes - Editable to Change Initial Guesses

Mode,
Unscaled Mode,

Largest Name of Signa
Component in (with Largest

Unscaled

Update Reproduced Signals

Largest Name of Signa
Component in |with Largest
Component in| Mode, Scaled |Component in

Mode, Scaled

Lambda Include in
Reproduced

Signal

Frequency (Hz)|Damping (% A

1 6.082
2 7.068
3 7.246
4 7.897
5 8.562
6 11.936
7 14,207
8 ) 39.346
9 0.060 39.972
10 0.964 57.683
11 0.000N 100.000

0.10313 Bus BROWNSVI
0.04897 Bus SAN ANTOI
0.03780 Bus ODESSA 1.
0.07205 Bus BROWNSVI
0.04887 Bus FANNIN 2 F
0.21348 Bus MONAHAN
0.19906 Bus ODESSA 1.
0.55936 Bus MONAHAN
0.03815 Bus ODESSA 1.
0.61264 Bus ODESSA 1.
N.59A50 Rus ONFSSA 1.

3.292 Bus BROWNSVI
1.890 Bus SAN ANTOI
1.420 Bus CHRISTINE
2.300 Bus BROWNSVI
2,032 Bus FANNIN 2 F
4,054 Bus MONAHAN
5.268 Bus WHARTON
12,994 Bus WHARTON
1.196 Bus POINT COM
18.504 Bus POINT COM
14.434 Rus WHARTON
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Takeaways So Far

* Modal analysis can be quickly done on a large
number of signals

— Computationally is an O(N3) process for one signal,
where N is the number of sample points; it varies
linearly with the number of included signals

— The number of sample points can be automatically
determined from the highest desired frequency (the
Nyquist-Shannon sampling theory requires sampling at
twice the highest desired frequency)

— Determining how all the signals are manifested in the
modes is quite fast!!
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Getting Mode Details

* An advantage of this approach is the contribution of
each mode in each signal is directly available

8] Modal Analysis Mode Details

Frequency (Hz) and Damping (%) [ 0.631Hz, Damping = 6.082% o : Transfer Results from Selected Column to Object Custom Floating Pont Field

This slide

Custom Floating Point Field

% "”‘ ‘,5‘3 ;(,‘3 ﬁ eﬁ Records ¥ Set~ Columns v ' g - ’%"5' %3' i%' fix) ~ @ Options ~

ECO ECD

Type Name Units Description | Post-Detrend | Angle (Deg) [Magnitude, 1| Magnitude |Cost Function S h OWS th e
Standard Unscaled Scaled by SD
Deviation
1 ILLE 1 0 Frequency Frequency 0.031 176.451 0.10313 3.29203 0.0019 .
2 ILLE 1 1 Frequen e Q 0.031 176.451 0.10248 3.27853 0.0019
4|B ILLE 2 O Frequency Frequency 0.031 176.525 0.10041 3.23684 0.0017
5 Frequen e 0.031 176.456 0.10032 3.23265 0.0018
6B ILLE21Fr 0.031 176.522 0.09964 3.22005 0.0017
7 e 0.031 176,452 0.09836 3.19018 0.0017 I Owe St
0.031 176.519 0.09817 3.18788 0.0016
0.031 176.480 0.09601 3.13896 0.0016
0.030 177.479 0.09573 3.15533 0.0013 .
0.030 177.619 0.09533 3.14610 0.0013
0.030 176.500 0.09462 3.10807 0.0015 d a | I I I n
0.030 177.488 0.09393 3.11626 0.0013 )
0.030 176.760 0.09338 3.08711 0.0014
Frequency 0.030 176.485 0.09249 3.05864 0.0014
Frequengy 0.030 176.500 0.09234 3.05579 0.0014 S O rte d b th e
Frequency 0.030 177.256 0.09203 3.06646 0.0013
e q 0.030 176.457 0.09189 3.04368 0.0014
0.030 176.462 0.09183 3.04122 0.0014 L] [
0.030 176.504 0.09153 3.03706 0.0014 I n | W I t h th
0.030 176.588 0.09134 3.03507 0.0014
0.030 176.483 0.09114 3.02757 0.0014
0.030 178.815 0.09102 3.06810 0.0019
0.030 176.459 0.09095 3.02245 0.0014
0.030 176.377 0.09081 3.01773 0.0014 a r e S
Freq 0.030 176.439 0.09075 3.01600 0.0014
NTA MARI Frequency 0.030 176.423 0.09065 3.01479 0.0014
RLINGEN Frequeng 0.030 176.455 0.09043 3.01019 0.0014 = =
0.030 176,315 0.09034 3.00472 0.0014 m a n Itu d e I n
0.030 176.363 0.09016 3.00188 0.0015
Frequency 0.030 176.399 0.08996 2.99744 0.0014
Fre noy 0.030 176.399 0.08996 2.99744 0.0014
Frequency 0.030 176.399 0.08996 2.997. 0.0014
Frequency 0.030 176.399 0.08996 2.99744 0.0014 e I I lo e
Frequency 0.030 176.399 0.08996 2.99744 0.0014
Frequency 0.030 179.245 0.08996 3.04202 0.0022
Frequency 0.030 176.406 0.08974 2.99246 0.0014
38|Bus 3 0 Frequency Frequency 0.030 177.218 0.08968 3.01155 0.0013
39|Bus 14 Frequency Frequency 0.030 178.224 0.08963 3.02501 0.0019
40|Bus Frequency 0.029 179.015 0.08959 3.03974 0.0021
Al E.a nnan 172 Anc n neace > asanc nnnta




A Couple of Comments on Damping

 How damping is defined seems to depend on prior
Industry experience

— Folks familiar with eigenvalue analysis will tend to define
it in terms of the eigenvalues

e (a cos(ar) +bsin(a)t)) =e”Ccos(awt+0)

where C =+ A’ + B’ and 6 = tan(_—bj ¢

a

—

B Joi + &

— Multiplying this value by 100 gives a damping
percentage
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A Couple of Comments on Damping

 However, it can also be defined more graphically,
in terms of a decrease in a signal from one peak to
the next (see below for SPP)

— In SPP, to be considered “damped”, one of the following
two requirements must be met

* Peak to peak magnitude decreased 5% over one cycle
« Peak to peak decreases by 22.6% over 5 cycles
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A Couple of Comments on Damping:
An Easy Conversion Between the Two

e Assume we want 5% drop peak to peak
e 0.95=el(t—7Istart)
« Time for one cycle is 1/freq=> [t—7Istart =1/f]
¢ 0.95=eM/F-> In(0.95)=A/F > A=In(0.95)/f

* Plug this into Damping Ratio calculation
 Damping Ratio=—In(0.95)/ /vO/In(0.95)f 12 + 27zf)12
« The frequency cancels out in this equation

e Damping Ratio=—In(0.95) /v[O/In(0.95)]72 + 27)12
=0.0081633
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Visualizing the Mode

* |If the grid has embedded geographic coordinates,
the contributions for the mode to each signal can

be readily visualized

* One approach is to utilize Geographic Data Views

— T.J. Overbye, E.M. Rantanen, S. Judd, "Electric power
control center visualizations using geographic data
views," Bulk Power System Dynamics and Control -- VII.
Revitalizing Operational Reliability -- 2007 IREP
Symposium, Charleston, SC, August 2007, pp1-8;
available at ieeexplore.ieee.org/document/4410539

 The GDVs will be used to show the geographic
location of the magnitude and angle of the
contribution of the mode in each signal 61



Texas 2000 Bus Substation GDV

Size is proportional to the substation MW throughput, while
the color is based on the amount of substation generation; we’ll
use the same substation GDV to display damping

—1000 MW

— 1.
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Visualization of 0.63 Hz Mode
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In this display the
arrows show the
magnitude and
angle (direction) for
the mode at each
substation.
However, the
problem is there are
too many arrows!
The solution it to
dynamically prune
the display using
the GDV Options,
Pruning command



Visualization of 0.63 Hz Mode with
Pruning and Some Color
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The display was
pruned so only one
arrow per
geographic region
IS shown; the size
of the arrow is
proportional to its
magnitude, and a
color mapping is
used for the angle

64



Application to a Larger System

* The following few slides show an application to a
larger, real system

 The examples are from PSERC Project S-92G,
which is currently looking at the dynamic aspects
of interconnecting the North American Eastern and
Western grids

* There are many cross-cutting issues associated
with this, and additional PSERC industrial advisor
iInvolvement is welcomed!!!
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Some Preliminary Results from

S-92G Germane to Modal Analysis

The project is primarily looking at the dynamic
aspects of interconnecting the grids, but is also
considering static power flow and contingency
analysis considerations

— There is a public synthetic model analysis, and a not
public consideration of the actual grid models

The actual grid model was created by merging the
East and West models

It has 110,000 buses, 14,000 generators, 37,000
dynamic model devices with 243 different model
types

— Integrations are solved using a %2 cycle time step 56
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Model 2: Light Load Conditions with 408 GW of
Load; Substation GDV with Generation
Sized and Colored by MW Value
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59.9

Bus Frequency Results for a
Generator Outage Contingency

Image shows the
frequencies at all 110,000
buses; it was run for 80
seconds just to demonstrate
the system stays stable

Frequency (Hz)

................................................................

0 5 10 15 20 25 30 35 40 45 50 55 80 66 70 75 80
Simulation Time (Seconds)

For modal analysis we’ll be looking
at the first 20 second

Five minute East-West

simulations

Voltage Magnitude (PU)

100 150 200
Simulation Time (Seconds)

2 o O =]
& a o & o X
T ST AT

100 150 200
Simulation Time (Seconds)
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Spatial Frequency Contour
(Movies Can Also be Easil
¢ i t’StabiIityTime‘(Sec): 3.000

y Created)

70



Bus Frequency Results for a
Generator Outage Contingency

A few selected results for the first 30 seconds

60

59.98

59.96

Frequency (Hz)

59.92 |

59.9

Simulation Time (Seconds)
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Iterative Matrix Pencil Method Applied
to 43,400 Substation Signals

Processing all 43,400 signals took about 75 seconds (with 20
seconds of simulation data, sampling at 10 Hz)

RESUITS

Number of Complex and Real Modes |11

Indude Detrend in Reproduced Signals
[ ] Subtract Reproduced from Actual

Lowest Percent Damping 1.384 Update Reproduced Signals
Real and Complex Modes - Editable to Change Initial Guesses
Frequency (Hz})| Damping (%c) [Largest ¥ [Name of Signa Largest Name of Signa Lambda Include ir
Component |with Largest [Component in|with Largest Reproduce
Mode, Component in| Mode, Scaled [Component in Signal
Unscaled Mode, Mode, Scaled
Unscaled
1 100.000 0.40738 Substation 337 33.497 Substation 337 .3848 YES
2 65.660 0.30063 Substation 337 24,165 Substation 337 0.1832 YES
3 28.635 0.15452 Substation 337 6.082 Substation 337 1316 YES
4 0.347 17.971 0.08249 Substation 320 3.246 Substation 320 987 YES
5 0.471 16.180 0.06326 Substation 337 2.801 Substation 337 848 YES
6 75 6.884 0.05116 Substation 300 3.202 Substation 300 3285 YES
7 41 14.975 0.04579 Substation 341 3.651 Substation 337 004 YES
8 100.000 0.04051 Substation 337 8.528 Substation 347 ,0443 YES
9 2.6 5.285 0.02356 Substation 337 1.909 Substation 337 646 YES
10 1.872 8.085 0.01473 Substation 320 1.188 Substation 320 339 YES
11 N.AR35 1.324 N.0N376 Suhstation 337 N.16A Suhstation 337 ? YFS
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Iterative Matrix Pencil Method Applied
to 43,400 Substation Signals

Trust but verify results

The worst match (out of
43,400 signals); note the

change in the y-axis

Matching for a large
deviation example

PWDVectorGrid Variables
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Large System Visualization
of a Mode using GDVs
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Large System GDV Visualization
of Another Mode (Same Arrow Scale)
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And a Third, Perhaps Less Familiar
Mode (with 2x magnification)

(n.,f\J"
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Results with a Light Load

« Below are the results for the light load case. Modal
analysis allows different conditions to be compared.

Results

Number of Complex and Real Modes |12

Lowest Percent Damping

3.4994

Real and Complex Modes - Editable to Change Initial Guesses

Indude Detrend in Reproduced Signals
[ ] Subtract Reproduced from Actual

Update Reproduced Signals

Frequency (Hz})| Damping (%) |Largest ¥ [Name of Signa Largest Name of Signa Lambda Include

Component |with Largest |Componentin|with Largest Reprodu

Mode, Component in| Mode, Scaled |Component in Signa

Unscaled Mode, Mode, Scaled
Unscaled

1 30.391 0.31420 Substation 337 20.539 Substation 337 YES
2 100.000 0.22750 Substation 337 21.146 Substation 348 39 YES
3 46,557 0.18418 Substation 250 10.815 Substation 250 35 YES
= 0.000 100.000 0.17542 Substation 337 14.070 Substation 337 » YES
5 13.710 0.17379 Substation 341 8.972 Substation 341 YES
6 17.715 0.15336 Substation 320 4,273 Substation 320 YES
7 12.076 0.10477 Substation 337 3.656 Substation 337 540 YES
8 23.704 0.06188 Substation 250 6.221 Substation 347 5 YES
9 5.025 0.05632 Substation 300 2,662 Substation 300 YES
10 3.4%94 0.03150 Substation 320 1.986 Substation 320 962 YES
11 7.417 N.03124 Suhstation 337 1.415 Suhstation 337 YFS
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Summary

The tutorial has covered the power system

app
Tec
app

ication of measurement-based modal analysis
nniques are now available that can be readily

led to both small and large sets of power

system measurements, either from the actual
system or from simulations

The result is measurement-based modal analysis
IS now be a standard power system analysis tool

Large-scale system results can also be readily
visualized
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Questions?
overbye@tamu.edu
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