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Abstract—As many power electronic converter interfaced tech-
nologies have recently been integrated into power systems, it
has resulted in substantial computation demands and potential
numerical instability issues in power system dynamics studies.
Using a proper integration time step is key to solve these issues
and multirate methods, which utilize a smaller time step to
capture the system behavior associated with fast states and
a larger time step for slow states, are an efficient way to
represent current power system dynamics. This paper proposes a
methodology to evaluate the system dynamic behaviors depending
on different integration methods: a single rate method and a
multirate method. These methods are compared with the results
of rotor angle dynamic simulations using two different sizes of
systems. Computational time and performance accuracy of the
two methods are also assessed for the comparison.

Index Terms—Multirate integration methods, rotor angle dy-
namic simulation, eigenvalue analysis, subinterval size

I. INTRODUCTION

VARIOUS dynamic models are utilized in power system
simulations to see if the system can appropriately re-

spond within the first few seconds to possible contingencies.
Conducting dynamic studies can help system operators to
prevent unpredictable accidents as well as maintain stability.
Different classes of dynamic phenomena in power systems
are defined through the time scales of each dynamic model,
ranging from microseconds to minutes [1].

In recent years, new power electronic devices and renewable
generation have been increasingly integrated into power sys-
tems. Due to their fast-response and inertia-less characteristics,
these new dynamic models can lead to high computational
burdens, complexities, and stability limits in dynamics analysis
[2]. Therefore, it has become important to develop methods to
efficiently conduct dynamics studies, as well as realistically
represent current power systems in dynamic simulations.

Different numerical integration methods are used in sim-
ulations to determine dynamic states at the next time step,
and utilize iterative approaches for finding the solution of
nonlinear algebraic equations. The two main categories of
numerical methods are implicit and explicit integration meth-
ods. Multirate approaches, one of the explicit integration
methods, offer an efficient integration technique for systems
involving a wide range of diverse time responses. Integrating

different states with different step sizes is the fundamental
basis of this method. Only fast devices selectively use a
small time step, while the remainder of the system uses a
larger time step. The multirate method, thus, helps to avoid
numerical instability issues and shorten computational time
[2]. A substantial amount of power dynamics studies have been
conducted over the years using multirate methods.

The multirate method was first proposed in [3], [4]. The
multirate method is applied to a linear system of n distinct time
scales, and then extended to a nonlinear power system that
demonstrates a time scale separation into two and three distinct
time scales in [5]. A multirate time stepping approach for
time integration of differential and algebraic equation (DAE)
systems contributes to automatically adjusting the partitioning
of the variables via the local time variation of the system
solution, and decides the optimal size of the global time step to
minimize global computational costs [6], [7]. A methodology
to divide the algebraic variables into two groups, fast and
slow algebraic variables, using power mismatch equations is
proposed in [8].

A methodology for the design of a Kalman filter for a
multirate control system with a fast input is presented in [9].
Noise variance and the oversampling ratio of the multirate
controller is confirmed using Monte Carlo method. A multirate
extended Kalman filter (EKF) algorithm, involving both input
and output algorithms, is proposed for load torque estimation
in the induction motor, which can be performed in real-time
on a PC-cluster node. A multirate model reference adaptive
system (MRAS) is also presented to compute the rotor time
constant for assurance of high-performance control of an
induction motor [10].

Multirate stabilizers are designed satisfying three properties;
periodicity, causality, and finite dimensionality. Implement-
ing multirate control systems provides a cost advantage in
achieving the infinite optimal design [11]. The synchronous
generators and controllers in the holomorphic embedding (HE)
formulation are modeled by an adjustable generator interface.
The switch between generator and network coordinates is
designed and solved using HE [12].

While many applications of multirate methods in dynamics
studies have been conducted as listed, there is little written in
the way of assessment. Thus, this paper proposes a method to

978-1-7281-8192-9/21/$31.00 c©2021 IEEE



compute and evaluate the power system dynamics by
comparing the simulation results both with the single rate
and multirate methods. Rotor angle dynamics are mostly
considered for the analysis, where its time scales are ranging
from about ten milliseconds to minutes [1]. For the approach
with the single rate method, a standard time step and an
incredibly reduced time step are considered.

The rest of the paper is structured as follows. Section II
presents a brief description and an example of the multirate in-
tegration method and a methodology to determine the time step
for the fast components. Section III applies these techniques to
two different case studies. Section IV demonstrates our assess-
ment approach of the multirate method for dynamics analysis
with numerical results such as computational time/accuracy
comparisons. Finally, the conclusion is included in Section V.

II. MULTIRATE INTEGRATION METHOD

A. Methodology

The multirate approach, which uses a unique integration
step depending on dynamic characteristics of each variable, is
one of the main explicit numerical integration methods. This
scheme is commonly utilized in some commercial dynamic
simulation software [13]. By adopting the multirate methods
into dynamic simulations, maintaining stability with very fast
dynamics can be successfully achieved, since the methods
allow these dynamic models to be integrated with a much
smaller time step while slow variables constantly use a larger
time step. Therefore, this method aids in increasing the stabil-
ity as well as reducing the computational burdens. Single rate
integration methods, however, can cause numerical instability
issues because their time step can sometimes be too large for
fast devices. If the time step is reduced to not miss what’s
happening with the fast components, then slow components
will also be unnecessarily updated every time step, which
results in long simulations.

An example of a multirate integration process in a linear
system is demonstrated in Figure 1.

Fig. 1. The Multirate Integration Method by Slow and Fast Variables

In this example, the ratio of the smaller steps (t) to the
larger step (T) is equal to six. Linear interpolation is used
from slow components in order to solve the equations of each
fast component. The number of subintervals (n) in the linear
system can simply be obtained by computing the ratio of the
main time step (T) to time step of the fast components (t),
where T = nt. This linear relationship, however, cannot be
directly applied to non-linear systems and thus they require
more computational burden to decide the subinterval size.

To determine the subinterval size for non-linear power
systems, a single machine infinite bus (SMIB) system is used

based on modal analysis [14]. This analysis helps to determine
eigenvalues, which can identify the fast dynamic states. Then,
the subinterval is normally applied to all the differential equa-
tions for the specific model. Lastly, the minimum subinterval
size for the fast dynamic variables is decided by Equation 1
[15].

nmin =
main time step

required time step for fast states
(1)

Note that the user determines the particular value of the
main time step, which is the slow time step. The required
time step for fast variables can be obtained via the range of
eigenvalues based on time step using the 2nd order Runge-
Kutta (RK2) method [16]. This range has been presented in
Table I.

TABLE I
THE REQUIRED TIME STEP FOR FAST VARIABLES BY RANGE OF

EIGENVALUES

Range of Eigenvalue Time Step (Cycle)
−120 < λ < 0 1
−240 < λ < 0 0.5
−480 < λ < 0 0.25
−1200 < λ < 0 0.1

B. Example: two-bus system

A two-bus test case is used as an example and its one-line
diagram is presented in Figure 2. This system involves one
synchronous machine and one exciter per each bus. GENROU
and EXST1 dynamic models [2] are used for the synchronous
machine and the exctier, respectively. The system consists of
a 138-kV network.

Fig. 2. One-line Diagram of the Two Bus System

From the SMIB analysis, the most negative eigenvalues are
-1014.41 and -32.63 at bus 1 and bus 2, respectively. Since
a large negative eigenvalue represents a very fast mode, it
implies that there would be very fast dynamics at bus 1. It can
be explained by the exciter dynamic state VA of participation
factor at bus 1, which has a high magnitude. It contributes
to the exciter having a fast mode, and thus gaining a huge
negative value at the same bus. As a result, the exciter at bus
1 uses 16 subintervals to avoid numerical instability. The block
diagram of this exciter model, EXST1, is shown in Figure 3.

The required time step for the fast state VA can be decided
using the eigenvalue corresponding to its bus. Given that the
time step is 0.5 cycles, only the exciter at bus 1 will need to
use the required step size 0.1 cycle based on its eigenvalue.
Therefore, its subinterval size should be greater than 5.



Fig. 3. Block Diagram of EXST1 Exciter Model [2]

Fig. 4. Generator Rotor Angle for 2 Bus System

To demonstrate the differences between single rate and
multirate integration techniques, Figure 4 shows the rotor
angle for the generator at bus 1. Here, a solid 3 phase fault is
applied at 1 second, and cleared it at 1.01 seconds. It can
be seen that if dynamics analysis with a time step of 0.5
cycles is attempted, the rotor angle diverges quickly. However,
if the time step is greatly reduced, the behavior of the rotor
angle stabilizes, and converges to a new value. If multirate
integration at the larger time step is applied, the rotor angle
behavior closely matches that of the reduced time step.

III. CASE STUDIES

Different integration methods are applied to two different
study cases. Dynamics studies and eigenvalue analysis have
been conducted to compare the simulation results depending
on the integration methods and see if the multirate technique
has been implemented into the systems properly.

Dynamics studies look at the behavior of a system after a
contingency occurs. When comparing single rate and multirate
integration, the ability of dynamic studies to accurately model
the behavior of the system, including variables like bus voltage
and generator rotor angle, is observed. Also, eigenvalues
provide a way to determine if a system is nearing instability
and thus are indicators to its stability. They can identify
the existing frequencies and modes, and show interactions
between a system and its modes. Therefore, the eigenvalues
can show how the system uses appropriate values of the
subintervals to escape numerical instability issues and curtail
the computational requirement.

To compare the impact of the different integration methods
on power systems, three different approaches have been con-
ducted: (1) with the single rate method and a standard time
step, (2) with the single rate method and a greatly reduced
time step, and (3) with the multirate method and a standard
time step.

These three methods are applied to two synthetic grids: a
42-bus system and a 2000-bus system. These synthetic grids
are publicly available test cases built on the footprint of Illinois
and Texas, respectively. They are fictitious but possess char-
acteristics of an actual grid statistically and functionally [17],
[18].

A. Case Study 1: 42-bus Synthetic Grid

The first test case is the 42-bus synthetic system modeling
a 345/138 kv network. The case has 14 generators and 55
loads, and includes 14 synchronous machines, exciters, and
governors for each generator, but no stabilizers. The one-line
diagram of the 42-bus system is illustrated in Figure 5.

Fig. 5. One-line Diagram of the 42 Bus System

The dynamics analysis results for both single rate and
multirate integration can be seen in Figure 6.

Fig. 6. Bus Voltage for 42 Bus System

In particular, the focus is on the voltage of a specific bus
with an EXST1 exciter after a three-phase solid fault is applied



at that bus. The fault is applied at 1 second, and cleared at
1.01 seconds. The time step here is 0.5 cycles, and without
multirate integration, the solution diverges, and the dynamics
of the system are not captured. In addition, the voltage does
not stay flat indicating that there is an initial condition issue
with the single rate integration method with a time step of
0.5 cycles. However, by implementing multirate integration at
the same time step, there are dramatic improvements in the
simulation’s ability to capture the dynamics of the rotor angle
and the issue with the initial condition also disappears. This
is compared to a single rate approach with a greatly reduced
time step of 0.05 cycles, and notice that the behavior of the
voltage is very similar in both cases.

B. Case Study 2: 2000-bus Synthetic Grid

The one-line diagram for the 2000-bus synthetic system
is shown in Figure 7. There are 435 synchronous machines,
444 exciters, 435 governors, and 434 stabilizers. The total
number of dynamic loads is 1350. For the voltage levels,
the orange, purple and green lines in the one-line diagram
embody the 500-kV 230-kV and 115-kV network in the system
respectively. The total load demand is 67 GW with 100 GW
generation capacity.

Fig. 7. One-line Diagram of 2000 Bus Synthetic Grid

The dynamics analysis results can be seen in Figure 8. The
simulation lasts 30 seconds, with a three phase solid fault
occurring at 1 second, and being cleared at 1.1 second. All
measurements were taken at bus 7108, which has the largest
negative eigenvalue from SMIB analysis. Looking at Figure 8,
both the multirate approach with the larger time step of 0.5
cycles and the single rate approach with the reduced time step
of 0.05 cycles converge to the same value, but the single rate
approach with a larger time step does not converge.

While generator outages are generally found by looking at
properties like rotor angle and frequency that are associated
with generators being in sync, numerical stability of the single
rate approach can also be evaluated by looking at bus voltage

Fig. 8. Bus 7108 Generator Rotor Angle for 2000 Bus System

Fig. 9. Bus 7108 Voltage Magnitude for 2000 Bus System

Fig. 10. Bus 7108 Voltage Angle for 2000 Bus System

magnitude and angle. Figures 9 and 10 show the magnitude
and angle of the bus voltage, respectively.

Similar to rotor angle, it can be seen that both the bus
voltage magnitude and angle do not converge to a specific
value when considering a single rate approach with a larger
time step, indicating numerical instability. However, when
using a reduced time step with the single rate approach,



both the voltage magnitude and angle converge, and similar
behavior is seen when using the multirate approach with the
larger time step, aligning almost exactly with the single rate
approach with the reduced time step.

Fig. 11. The Number of Subintervals by Devices on 2000 Bus System

The subinterval results shown in Figure 11 reveal that very
few fast devices, including exciters and governors, used the
subintervals for their solution, although many other dynamic
models were implemented into the system as well. The number
of each device on the 2000-bus system is presented in Table
II. Also, all devices using the subintervals have large negative
eigenvalues ranging from -72.42 to -1014.93, which implies
the system needed small integration time steps for them to
avoid numerical instability since the large negative eigenvalues
embody extremely fast modes.

TABLE II
THE INFORMATION OF DYNAMIC MODELS ON 2000 BUS SYSTEM

Exciters Governors
Device
Name

Number of
Devices

Device
Name

Number of
Devices

ESAC1A 4 GGOV1 367
ESAC6A 7 HYGOV 25
ESDC1A 12 IEEEG1 43
ESDC2A 1 Machines
ESST4B 278 Device Name Number of Devices
EXAC1 6 GENROU 410
EXAC2 38 GENSAL 25
EXPIC1 61 Stabilizers
EXST1 9 Device Name Number of Devices
IEEET1 23 IEEEST 434
SCRX 5 - -

IV. ASSESSMENT

When evaluating multirate integration techniques, two pri-
mary considerations have been addressed; accuracy and com-
putation time. Since multirate integration techniques strive to
achieve equivalent results to single rate techniques, but at a
larger time step for slow variables, it should be observed that
multirate techniques should be faster and have a higher degree
of accuracy when compared to single rate integration at the
same time step.

A. Computation Times

Table III shows how long each dynamics study took for
the two different combinations of integration techniques and
time steps. Looking at the computation time differences for the
42-bus system, which had a simulation time of 10 seconds,
it is seen that using single rate integration with a reduced
time step, while converging to the correct solution, takes 2.02
seconds, which is almost seven times as long as when multirate
integration is used with the larger time step. When looking
at the 2000-bus case, with a simulation time of 30 seconds,
implementation of a single rate approach with a reduced time
step takes over eight times as long at 147.95 seconds, when
compared to multirate integration with a larger time step,
which takes 17.52 seconds.

These results display one of the largest benefits of multirate
integration techniques; a reduction in computation time. While
it is entirely feasible in the context of dynamics studies to
arrive at an accurate solution if you provide a small enough
time step, especially for larger systems, this process can be
highly inefficient in terms of time and computational load.
Implementation of multirate integration techniques help to
circumvent these problems, allowing for both fast and accurate
solutions for large systems.

TABLE III
COMPUTATION TIMES BY INTEGRATION METHODS

Single Rate Multirate
System Reduced Larger

Time Step (s) Time Step (s)
42 Bus 2.02 0.24

2000 Bus 147.95 17.52

B. Accuracy of Multirate Integration

Table IV shows the accuracy of the different combinations
of integration techniques. In this instance, the single rate
integration approach with a greatly reduced time step of
0.05 cycles is used as the ”true” data, as multi-integration
techniques are looking to achieve equivalent results in less
time. Mean squared error (MSE) is used as the metric to
determine accuracy, and is calculated using Equation 2, where
Y (t) is the ”true” data mentioned above, and Ŷ (t) is the data
we are comparing against it, generated from either a single
rate or multirate integration technique at the time step of 0.5
cycles.

MSE =
1

n

√√√√ n∑
t=1

((Y (t)− Ŷ (t))2 (2)

For the 42 bus system, the single rate integration approach
with a larger time step does not converge to a solution. Com-
bining that knowledge with the computation times indicated
in Table III, it can be concluded that multirate integration
achieves relatively accurate results with significant time saved
for smaller systems.

When looking at larger systems, the accuracy results are
looked at through the different properties of the system dis-
cussed in Section III. Starting with rotor angle, it is noted that



there is a significant difference between the single rate and
multirate approaches at the same time step. This difference of
over 8 orders of magnitude is attributed to the divergence of the
single rate approach. However, due to the smaller discrepan-
cies, in terms of the numerical difference in values, the single
rate approach and the multirate approach differ by a smaller
amount for voltage magnitude. But, MSE calculations indicate
that the multirate approach perfectly matches the results from
the single rate approach at a reduced time step for voltage
magnitude. Finally, when examining the differences between
the approaches for voltage angle, it is seen in Figure 10 that
the voltage angle does not converge, whereas the multirate
approach does. Similar to rotor angle, due to divergence, the
MSE difference between the single rate and multirate approach
is over 8 orders of magnitude.

In all instances, irrespective of system size, it is seen that the
multirate approach is always significantly better than the single
rate approach when it comes to accuracy. This, in conjunction
with considerations for computation time, as seen in Table III,
re-affirm that a multirate integration approach is ideal when
considering fast dynamics.

TABLE IV
MEAN SQUARED ERROR ESTIMATES BY INTEGRATION METHODS

System Single rate
Larger Time Step

Multirate
Larger Time Step

42 Bus - 7.60E-7
2000 Bus

Rotor Angle 39.27 2.98E-7

2000 Bus
Voltage Magnitude 0.003 0

2000 Bus
Voltage Angle 130.86 2.14E-7

V. CONCLUSIONS

This paper presents a methodology to assess the impact
of different integration methods on dynamics solutions. The
results of the proposed assessment show that the multirate
approach has considerable potential as an integration method
when power system involves very fast dynamic devices. The
simulations with the single rate method and a larger time step
become numerically unstable. Although this instability issue
can be solved by greatly reducing the time step, it causes
another problem in the form of an increase in computation
time. On the other hand, the simulations with the multirate
method achieve numerical stability with a high accuracy; the
multirate methods also alleviate computational burden. This
was able to be successfully achieved by applying the smaller
subintervals only to a select few fast devices and utilizing
the large step for the remainder of the system. This paper
also shows that the subintervals are employed appropriately
through the eigenvalues analysis. All dynamic models using
the subintervals have large negative eigenvalues, which indi-
cate that the subintervals were only used for devices that had
very fast modes.
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