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Announcements

• Read Chapter 7 (the term reliability is now often 

used instead of security)

• First exam average was 86.  The answers are 

posted.  

• Homework 4 is due on Thursday October 14.
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Power Flow Sensitivity Analysis

• The idea of power flow sensitivity analysis is to get an 

estimate of how some set of values would change with 

respect to a change in a set of control values

– Need to keep in mind which control responses are implicitly 

modeled, such as P and Q changes at the slack, Q at PV buses

• The approach works by linearizing a system about an 

operating point; its usefulness depends on the validity 

of this approximation

• Sensitivities are widely used in power system analysis, 

with some algorithms doing sequential linearizations

– They are most valid for real power, less useful for reactive 

power
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Analysis Example: Available Transfer 
Capability

• The power system available transfer capability or ATC 

is defined as the maximum additional MW that can be 

transferred between two specific areas, while meeting 

all the specified pre- and post-contingency system 

conditions

• ATC impacts measurably the market outcomes and 

system reliability and, therefore, the ATC values 

impact the system and market behavior

• A useful reference on ATC is Available Transfer 

Capability Definitions and Determination from 

NERC, June 1996 (available online)
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ATC and Its Key Components

• Total transfer capability (TTC )
– Amount of real power that can be transmitted across an

interconnected transmission network in a reliable manner,

including considering contingencies

• Transmission reliability margin (TRM)
– Amount of TTC needed to deal with uncertainties in system

conditions; typically expressed as a percent of TTC

• Capacity benefit margin (CBM)
– Amount of TTC needed by load serving entities to ensure

access to generation; typically expressed as a percent of TTC
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ATC and Its Key Components

• Uncommitted transfer capability (UTC)

UTC TTC – existing transmission commitment

• Formal definition of ATC is

ATC UTC – CBM – TRM

• We focus on determining Um,n, the UTC from node m

to node n

• Um,n is defined as the maximum additional MW that

can be transferred from node m to node n without

violating any limit in either the base case or in any post-

contingency conditions

• Initially we’ll focus on flow limits; voltage magnitude

and voltage stability will be considered later
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UTC (or TTC)  Evaluation
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Conceptual Solution Algorithm

1. Solve the initial power flow, corresponding to the 

initial system dispatch (i.e., existing commitments); set 

the change in transfer t(0) = 0, k=0; set step size d; j is 

used to indicate either the base case (j=0) or a 

contingency, j= 1,2,3…J

2. Compute t(k+1) = t(k) + d

3. Solve the power flow for the new t(k+1) 

4. Check for limit violations: if violation is found 

set Uj
m,n = t(k) and stop; else set k=k+1, and goto 2
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Conceptual Solution Algorithm, cont.

• This algorithm is applied for the base case (j=0) and 

each specified contingency case, j=1,2,..J

• The final UTC, Um,n is then determined by 

• This algorithm can be easily performed on parallel 

processors since each contingency evaluation is 

independent of the others
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Five Bus Example: Reference

Line 1

Line 2

Line 3

Line 6

Line 5

Line 4
slack

 1.050 pu

 42 MW

 67 MW

100 MW

118 MW

 1.040 pu

1.042 pu

A

MVA

A

MVA

A

MVA

1.042 pu

A

MVA

1.044 pu

 33 MW

MW200

258 MW

MW118

260 MW

100 MW

MW100

A

MVA

One Two

Three

Four

Five

PowerWorld Case: B5_DistFact 9



Five Bus Example: Reference

3

( MW )

1 2 0 6.25 150

1 3 0 12.5 400

1 4 0 12.5 150

2 3 0 12.5 150

3 4 0 12.5 150

4 5 0 10 1,000

i j g b max
f

1

2

4

5

6
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Five Bus Example 

• We evaluate U2,3 using the previous procedure
– Gradually increase generation at Bus 2 and load at Bus 3

• We consider the base case and the single contingency 

with line 2 outaged (between 1 and 3): J = 1

• Simulation results show for the base case that

• And for the contingency that

• Hence   ( ) (1)

2,3 2,3 2,3
, 24

0
U min U U MW= =

( )

2,3
45

0
U MW=

(1)

2,3
24U MW=

11



Five Bus: Maximum Base Case 
Transfer

Line 1

Line 2

Line 3

Line 6

Line 5

Line 4
slack

 1.050 pu

 55 MW

 71 MW

100 MW

150 MW

 1.040 pu

1.041 pu

A

MVA

A

MVA

1.041 pu

A

MVA

1.043 pu

 29 MW

MW200

258 MW

MW163

305 MW

100 MW

MW100

A

MVA

One Two

Three

Four

Five

100%
A

MVA

2,3

( )
45

0
U MW=
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Five Bus: Maximum Contingency 
Transfer

Line 1

Line 2

Line 3

Line 6

Line 5

Line 4
slack

 1.050 pu

 34 MW

 92 MW

100 MW

150 MW

 1.040 pu

1.036 pu

A

MVA

A

MVA

1.038 pu

A

MVA

1.040 pu

  8 MW

MW200

258 MW

MW142

284 MW

100 MW

MW100

One Two

Three

Four

Five

100%
A

MVA

2,3

(1)
24U MW=
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Computational Considerations

• Obviously such a brute force approach can run into 

computational issues with large systems 

• Consider the following situation:
– 10 iterations for each case

– 6,000 contingencies

– 2 seconds to solve each power flow

• It will take over 33 hours to compute a single UTC    

for the specified transfer direction from m to n.

• Consequently, there is an acute need to develop fast 

tools that can provide satisfactory estimates
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Sensitivity Problem Formulation 

• Denote the system state by

• Denote the conditions corresponding to the existing 

commitment/dispatch  by s(0), p(0) and f(0) so that

• Define the angle difference as       

θ
x

V
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 
 
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θ [ , , , ]

T

N
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V [ , , , ]
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( ) ( )

( ) ( )

g(x ,p ) 0

f h(x )

0 0

0 0

 =


=

the power flow equations

line real power flow vector
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Sensitivity Problem Formulation
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g includes the real and reactive

power balance equations



Sensitivity Problem Formulation

• For a small change, p, that moves the injection 

from p(0)  to p(0) + p , we have a  corresponding 

change in the state x with

• We then apply a first order Taylor’s series expansion 

( ) ( )
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Sensitivity Problem Formulation

• We consider this to be a “small signal” change, so we 

can neglect the higher order terms (h.o.t.) in the 

expansion

• Hence we should still be satisfying the power balance 

equations with this perturbation; so 

( ) ( )( ) ( ) ( ) ( )x p x p

g g
x 0

x p0 0 0 0

p
 

 +  
 
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Sensitivity Problem Formulation

• Also, from the power flow equations, we obtain

g

p Ig

0p g

p

P

Q

 
 

 −   = =      
 
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and then just the power flow Jacobian
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Sensitivity Problem Formulation

• With the standard assumption that the power flow 

Jacobian is nonsingular, then

• We can then compute the change in the line real 

power flow vector 

0 0
1

( ) ( )
I

x J(x ,p ) p
0

−  
     

 
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0 0
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Sensitivity Comments

• Sensitivities can easily be calculated even for large 

systems

– If p is sparse (just a few injections) then we can use a fast 

forward; if sensitivities on a subset of lines are desired we 

could also use a fast backward

• Sensitivities are dependent upon the operating point

– They also include the impact of marginal losses

• Sensitivities could easily be expanded to include 

additional variables in x (such as phase shifter angle), 

or additional equations, such as reactive power flow 
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Sensitivity Comments, cont.

• Sensitivities are used in the optimal power flow; in that 

context a common application is to determine the 

sensitivities of an overloaded line to injections at all 

the buses

• In the below equation, how could we quickly get these 

values?

– A useful reference is O. Alsac, J. Bright, M. Prais, B. Stott, 

“Further Developments in LP-Based Optimal Power Flow,” 

IEEE. Trans. on Power Systems, August 1990, pp. 697-711; 

especially see equation 3.

1
( ) ( )

Ih h
f (x ,p ) p

x 0

T T

0 0
f J

x
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                
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Sensitivity Example in PowerWorld

• Open case B5_DistFact and then Select Tools, 

Sensitivities, Flow and Voltage Sensitivities

– Select Single Meter, Multiple Transfers, Buses page

– Select the Device Type (Line/XFMR), Flow Type (MW),

then select the line (from Bus 2 to Bus 3)

– Click Calculate Sensitivities; this shows impact of a single 

injection going to the slack bus (Bus 1)

– For our example of a transfer from 2 to 3 the value is the 

result we get for bus 2 (0.5440) minus the result for bus 3 

(-0.1808) = 0.7248

– With a flow of 118 MW, we would hit the 150 MW limit 

with (150-118)/0.7248 =44.1MW, close to the limit we 

found of 45MW 
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Sensitivity Example in PowerWorld

• If we change the conditions to the anticipated 

maximum loading (changing the load at 2 from 118 to 

118+44=162 MW) and we re-evaluate the sensitivity 

we note it has changed little 

(from -0.7248 to -0.7241)

– Hence a linear approximation (at least for this scenario) could 

be justified

• With what we know so far, to handle the contingency 

situation, we would have to simulate the contingency, 

and reevaluate the sensitivity values

– We’ll be developing a quicker (but more approximate) 

approach next 
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Linearized Sensitivity Analysis

• By using the approximations from the fast decoupled 

power flow we can get sensitivity values that are 

independent of the current state.  That is, by using the 

B’ and B’’ matrices

• For the real power line flow we can approximate

( ) ( )

( )

2
( ) cos sin , ,

By using the FDPF appxomations

( ) , ,

i i j ij i j ij

ij

ij
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 




 = − − =
 

 − = =
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Linearized Sensitivity Analysis

• Also, for each line 

and so, 

0

0
V
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
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Sensitivity Analysis: Recall the 
Matrix Notation

• The series admittance of line is g +jb and we 

define

• We define the LN incidence matrix

 1 2
B , , ,

L
diag b b b−@

1

2

a

a
A

a
L

T

T

T

 
 
 
 
 
  

@

where the component j of ai is

nonzero whenever line i is

coincident with node j. Hence 

A is quite sparse, with at most two 

nonzeros per row



Linearized Active Power Flow Model

• Under these assumptions the change in the real power 

line flows are given as

• The constant matrix  

is called the injection shift factor matrix (ISF)

 

1

1
B 0 I

f B A 0 p B A B p Ψ p
0 B 0

−

−
   

     =  =     
      

  1Ψ BA B −@
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Injection Shift Factors (ISFs)

• The element       in row and column n of  is called 

the injection shift factor (ISF) of line with respect to 

the injection at node n

– Absorbed at the slack bus, so it is slack bus dependent

• Terms generation shift factor (GSF) and load shift 

factor (LSF) are also used (such as by NERC)

– Same concept, just a variation in the sign whether it is a 

generator or a load

– Sometimes the associated element is not a single line, but 

rather a combination of lines (an interface)

• Terms used in North America are defined in the NERC 

glossary (http://www.nerc.com/files/glossary_of_terms.pdf) 

n
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line

n
p

n n
f +

i j

slackbus
p

ISF Interpretation

is the fraction of the additional 1 MW injection at

node n that goes though line

+ 1

n

slack 

node

1−
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ISF Properties

• By definition,       depends on the location of the 

slack bus

• By definition,                      for             since the 

injection and  withdrawal buses are identical in this 

case and, consequently, no flow arises on any line 

• The magnitude of       is at most 1 since

n

1 1
n−  

slackbus
0   L

n

Note, this is strictly true only for the linear (lossless)

case. In the nonlinear case, it is possible that a

transaction decreases losses.  Hence a 1 MW injection

could change a line flow by more than 1 MW.
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Five Bus Example Reference

Line 1

Line 2

Line 3

Line 6

Line 5

Line 4
slack

 1.050 pu

 42 MW

 67 MW

100 MW

118 MW

 1.040 pu

1.042 pu

A

MVA

A

MVA

A

MVA

1.042 pu

A

MVA

1.044 pu

 33 MW

MW200

258 MW

MW118

260 MW

100 MW

MW100

A

MVA

One Two

Three

Four

Five
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Five Bus ISF, Line 4, Bus 2 (to Slack) 

Line 1

Line 2

Line 3

Line 6

Line 5

Line 4
slack

 1.050 pu

 52 MW

 63 MW

100 MW

128 MW

 1.040 pu

1.042 pu

A

MVA

A

MVA

1.042 pu

A

MVA

1.044 pu

 37 MW

MW200

238 MW

MW118

280 MW

100 MW

MW100

A

MVA

One Two

Three

Four

Five

 86%
A

MVA

4

2 128 118

20

0.5


−



=

l
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Five Bus Example

-1 0 0 0

0 -1 0 0

0 0 -1 0
A

1 -1 0 0

0 1 -1 0

0 0 1 -1

  =  

 
 
 
 
 
 
 
 
 
 
  

The row of A correspond to

the lines and transformers, 

the columns correspond to 

the non-slack buses (buses 2 

to 5); for each line there

is a 1 at one end, a -1 at the 

other end (hence an 

assumed sign convention!).   

Here we put a 1 for the 

lower numbered bus, so 

positive flow is assumed 

from the lower numbered 

bus to the higher number

 B 6.25, 12.5, 12.5, 12.5, 12.5, 10= diag−
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Five Bus Example

18.75 12.5

12.5 37.5 12.5
B A B A

12.5 35 10

10 10

T

0 0

0
= =

0

0 0

− 
 

−
 

− 
 

− 

 
1

-0.4545 -0.1818 -0.0909 -0.0909

-0.3636 -0.5455 -0.2727 -0.2727

-0.1818 -0.2727 -0.6364 -0.6364

0.5455 -0.1818 -0.0909 -0.0909

0.1818 0.2727 -0.3636 -0.3636

-1.0000

B A B

0 0 0

   
−

 
 
 
 

= =  
 
 
 
 
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Five Bus Example Comments

• At first glance the numerically determined value of 

(128-118)/20=0.5 does not match closely with the 

analytic value of 0.5455; however, in doing the 

subtraction we are losing numeric accuracy

– Adding more digits helps (128.40 – 117.55)/20 = 0.5425

• The previous matrix derivation isn’t intended for 

actual computation; is a full matrix so we would 

seldom compute all of its values

• Sparse vector methods can be used if we are only 

interested in the ISFs for certain lines and certain 

buses
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