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Announcements

• Starting reading Chapter 9

• Homework 4 is due on Thursday October 15.
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UTC Revisited

• We can now revisit the uncommitted transfer 

capability (UTC) calculation using PTDFs and LODFs

• Recall trying to determine maximum transfer between 

two areas (or buses in our example)

• For base case maximums are quickly determined with 

PTDFs
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Note we are ignoring zero (or small) PTDFs; would also need 

to consider flow reversal
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UTC Revisited

• For the contingencies we use

• Then as before 
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We would need to check all contingencies!  Also, 

this is just a linear estimate and is not considering 

voltage violations.
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Five Bus Example

 2, 3,w t=  ( )  f 42 , 34 , 67 , 118 , 33 , 100
T0

=

 f 150 , 400 , 150 , 150 , 150 , 1,000
Tmax =

Line 1

Line 2

Line 3

Line 6

Line 5

Line 4
slack

 1.050 pu

 42 MW

 67 MW

100 MW

118 MW

 1.040 pu

1.042 pu

A

MVA

A

MVA

A

MVA

1.042 pu

A

MVA

1.044 pu

MW200

258 MW

MW118

260 MW

100 MW

MW100

A

MVA

One Two

Three

Four

Five

 34 MW

 33 MW
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Five Bus Example
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Therefore, for the base case
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Five Bus Example

• For the contingency case corresponding to the outage 

of the line 2

The limiting value is line 4

Hence the UTC is limited by the contingency to 23.0
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Additional Comments

• Distribution factors are defined as small signal 

sensitivities, but in practice, they are also used for 

simulating large signal cases

• Distribution factors are widely used in the operation of 

the electricity markets where the rapid evaluation of the 

impacts of each transaction on the line flows is required

• Applications to actual system show that the distribution 

factors provide satisfactory results in terms of accuracy

• For multiple applications that require fast turn around 

time, distribution factors are used very widely, 

particularly, in the market environment

• They do not work well with reactive power!
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Least Squares

• So far we have considered the solution of Ax = b in 

which A is a square matrix; as long as A is 

nonsingular there is a single solution

– That is, we have the same number of equations (m) as 

unknowns (n)

• Many problems are overdetermined in which there 

more equations than unknowns (m > n) 

– Overdetermined systems are usually inconsistent, in which no 

value of x exactly solves all the equations

• Underdetermined systems have more unknowns than 

equations (m < n); they never have a unique solution 

but are usually consistent
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Method of Least Squares

• The least squares method is a solution approach for 

determining an approximate solution for an 

overdetermined system

• If the system is inconsistent, then not all of the 

equations can be exactly satisfied

• The difference for each equation between its exact 

solution and the estimated solution is known as the error

• Least squares seeks to minimize the sum of the squares 

of the errors

• Weighted least squares allows differ weights for the 

equations 
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Least Squares Solution History

• The method of least squares developed from trying to 

estimate actual values from a number of measurements

• Several persons in the 1700's, starting with Roger 

Cotes in 1722, presented methods for trying to decrease 

model errors from using multiple measurements

• Legendre presented a formal description of the method 

in 1805; evidently Gauss claimed he did it in 1795

• Method is widely used in power systems, with state 

estimation the best known application, dating from 

Fred Schweppe's work in 1970
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Least Squares and Sparsity

• In many contexts least squares is applied to problems 

that are not sparse.  For example, using a number of 

measurements to optimally determine a few values

– Regression analysis is a common example, in which a line or 

other curve is fit to potentially many points)

– Each measurement impacts each model value

• In the classic power system application of state 

estimation the system is sparse, with measurements 

only directly influencing a few states

– Power system analysis classes have tended to focus on 

solution methods aimed at sparse systems; we'll consider both 

sparse and nonsparse solution methods
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Least Squares Problem

• Consider 

or

)
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Least Squares Solution

• We write (ai)T for the row i of A and ai is a column 

vector 

• Here, m ≥ n and the solution we are seeking is that 

which minimizes Ax - b p, where  p denotes some       

norm 

• Since usually an overdetermined system has no exact 

solution, the best we can do is determine an x that 

minimizes the desired norm.
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Choice of p

• We discuss the choice of p in terms of a specific 

example 

• Consider the equation Ax = b with

(hence three equations and one unknown)

• We consider three possible choices for p:
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Choice of p
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1 2
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x = b

b + b + b
x =

b + b
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is minimized by

is minimized by
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

(i) p = 1

(ii) p = 2

(iii) p = 
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The Least Squares Problem

• In general,                    is not differentiable for p = 1 

or p = ∞

• The choice of p = 2 (Euclidean norm) has become well 

established given its least-squares fit interpretation

• The problem is tractable for 2 major 

reasons

– First, the function is differentiable 

−Ax b
p
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The Least Squares Problem, cont.

– Second, the Euclidean norm is preserved under orthogonal 

transformations:

with Q an arbitrary orthogonal matrix; that is, Q

satisfies

( ) − −
22

Q A x Q b Ax bT T =

QQ Q Q I QT T n × n= =  ¡
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The Least Squares Problem, cont.

• We introduce next the basic underlying assumption:       

A is full rank, i.e., the columns of A constitute a set 

of linearly independent vectors

• This assumption implies that the rank of A is n

because n ≤ m since we are dealing with an 

overdetermined system

• Fact: The least squares solution x* satisfies 

A A x A b
T T

=

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Proof of Fact

• Since by definition the least squares solution x* 

minimizes            at the optimum, the derivative of 

this function zero:

( )•
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Implications

• This underlying assumption implies that 

• Therefore, the fact that ATA is positive definite (p.d.)  

follows from considering any x ≠ 0 and evaluating

which is the definition of a p.d. matrix

• We use the shorthand ATA > 0 for ATA being a 

symmetric, positive definite matrix

 is full rank   x 0A Ax 0  

2

2
x A A x A x

T T
= > 0 ,
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Implications

• The underlying assumption that A is full rank and 

therefore ATA is p.d. implies that  there exists a unique 

least squares solution 

• Note: we use the inverse in a conceptual, rather than a 

computational, sense

• The below formulation is known as the normal 

equations, with the solution conceptually 

straightforward

( )
−


1

x A A A bT T=

( )A A x A bT T=
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Example: Curve Fitting

• Say we wish to fit five points to a polynomial 

curve of the form

• This can be written as 

2

1 2 3f( , )t x x t x t= + +x

2
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1 22 2
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2 33 3
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Example: Curve Fitting

• Say the points are t =[0,1,2,3,4] and y = [0,2,4,5,4].  

Then 
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Implications

• An important implication of positive definiteness is 

that we can factor ATA since ATA >  0

• The expression ATA = GTG is called the Cholesky

factorization of the symmetric positive definite 

matrix ATA

1/2 1/2 =Α Α U D U U D D U G G
T T T T

= =
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A Least Squares Solution Algorithm

Step 1: Compute the lower triangular part of ATA

Step 2: Obtain the Cholesky Factorization 

Step 3: Compute 

Step 4:  Solve for y using forward substitution in

and for x using backward substitution in

ˆG y b
 T

=

=Α Α G G
T T

ˆΑ b b
T

=

G x y
 

=

26

Note, our standard LU factorization approach would work;

we can just solve it twice as fast by taking advantage of  

it being a symmetric matrix



Practical Considerations

• The two key problems that arise in practice with the 

triangularization procedure are:

– First, while A maybe sparse, ATA is much less sparse and 

consequently requires more computing resources for the 

solution

• In particular, with ATA second neighbors are now connected! Large 

networks are still sparse, just not as sparse

– Second, ATA may actually be numerically less well-

conditioned than A
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1 1 0 0

1 2 1 0

0 1 2 1

0 0 1 1
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B =

Loss of Sparsity Example

• Assume the B matrix for a network is

• Then BTB is

• Second neighbors are now connected! 

2 3 1 0

3 6 4 1

1 4 6 3

0 1 3 2

T

− 
 
 − −
 
 

− −
 
 

−  

B B =

28



Numerical Conditioning

• To understand the point on numerical ill-

conditioning, we need to introduce terminology 

• We define the norm of a matrix                 to be 

• This is the maximum singular value of B

m nB ¡

  
=  

  
x 0

B x
B

x

B

max

= maximum stretching of  the matrix


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Numerical Conditioning Example

• Say we have the matrix

• What value of x with a norm of 1 that maximizes        ? 

• What value of x with a norm of 1 that minimizes         ? 

30

10 0

0 0.1

 
=  

 
B

  
=  

  
x 0

B x
B

x

B

max

= maximum stretching of  the matrix



Bx

Bx



Numerical Conditioning

i.e., li is a root of the polynomial

• In other words, the 2 norm of 

B is the square root of the 

largest eigenvalue of BTB

 ,l l T
i

i
i

= max ,  is an eigenvalue of  B B

 − ( ) B B I
T

p λ = det λ
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Keep in mind the 

eigenvalues of a 

p.d. matrix are 

positive



Numerical Conditioning

• The conditioning number of a matrix B is defined as 

• A well–conditioned matrix has a small value of 

, close to 1; the larger the value of , the 

more pronounced is the ill-conditioning

( )
( )

( )
 

 

−




= = 
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1
B

B B B
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
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Power System State Estimation (SE)

• The need is because in power system operations there is 

a desire to do “what if” studies based upon the actual 

“state” of the electric grid

– An example is an online power flow or contingency analysis 

• Overall goal of SE is to come up with a power flow 

model for the present "state" of the power system based 

on the actual system measurements

• SE assumes the topology and parameters of the 

transmission network are mostly known

• Measurements from SCADA and increasingly PMUs

• Overview is given in ECEN 615; more details in 614
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Power System State Estimation

• Problem can be formulated in a nonlinear, weighted 

least squares form as

where J(x) is the scalar cost function, x are the state 

variables (primarily bus voltage magnitudes and 

angles), zi are the m measurements, f(x) relates the 

states to the measurements and i is the assumed 

standard deviation for each measurement

2

2
1

( )
min ( )

m
i i

i
i

z f
J

=
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 

x
x =
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Assumed Error

• Hence the goal is to decrease the error between the 

measurements and the assumed model states x

• The i term weighs the various measurements, 

recognizing that they can have vastly different 

assumed errors

• Measurement error is assumed Gaussian (whether it is 

or not is another question); outliers (bad 

measurements) are often removed

2

2
1

( )
min ( )

m
i i

i
i

z f
J

=
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x
x =
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State Estimation for Linear Functions

• First we’ll consider the linear problem.  That is 

where

• Let R be defined as the diagonal matrix of the 

variances (square of the standard deviations) for 

each of the measurements

meas meas− = −z f(x) z Hx

2

1

2

2

2

0 0

0

0

0 0 m







 
 
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 
 
  

R
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State Estimation for Linear Functions

• We then differentiate J(x) w.r.t. x to determine the 

value of x that minimizes this function 

1

1 1

1
1 1

( )

( ) 2 2

At the minimum we have ( ) . So solving for  gives

T
meas meas

T meas T

T T meas
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 =
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x z Hx R z Hx

x H R z H R Hx

x 0 x

x H R H H R z
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Simple DC System Example

• Say we have a two bus power system that we are 

solving using the dc approximation.  Say the line’s per 

unit reactance is j0.1.  Say we have power 

measurements at both ends of the line.  For simplicity 

assume R=I.  We would then like to estimate the bus 

angles.  Then

1 2 2 1
1 12 2 21

1

2

2.2, 2.0
0.1 0.1

10 10 200 200
, ,

10 10 200 200

T

z P z P
   





− −
= = = = − = =

− −     
= = =     

− −    
x H H H

We have a problem since HTH is singular. This is because

of lack of an angle reference.
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Simple DC System Example, cont.

• Say we directly measure 1 (with a PMU) to be zero; 

set this as the third measurement.  Then
1 2 2 1

1 12 2 21 3
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Nonlinear Formulation

• A regular ac power system is nonlinear, so we need to 

use an iterative solution approach.  This is similar to 

the Newton power flow.  Here assume m 

measurements and n state variables (usually bus 

voltage magnitudes and angles) Then the Jacobian is 

the H matrix
1 1

1

1

( )
( )

n

m m

n

f f

x x

f f

x x

  
 
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= =  
  

  
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f x
H x
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Measurement Example

• Assume we measure the real and reactive power 

flowing into one end of a transmission line; then the 

zi-fi(x) functions for these two are

– Two measurements for four unknowns

• Other measurements, such as the flow at the other end, 

and voltage magnitudes, add redundancy

( ) ( )( )

( ) ( )( )

2

2

cos sin

sin cos
2
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ij i ij i j ij i j ij i j

capmeas

ij i ij i j ij i j ij i j
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B
Q V B V V G B

   

   

 − − + − + −
  

  
 − + + − − − 

    
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SE Iterative Solution Algorithm

• We then make an initial guess of x, x(0) and iterate, 

calculating x each iteration

1 1
1

1 1

( 1) ( )

( )

( )

T T

m m

k k

z f

z f

−
− −

+

− 
 

  =   
 −
 

= + 

x

x H R H H R

x

x x x

This is exactly the least 

squares form developed 

earlier with HTR-1H an n 

by n matrix.  This could be 

solved with

Gaussian elimination, but 

this isn't preferred

because the problem is

often ill-conditioned

42

Keep in mind that H is no 

longer constant, but varies 

as x changes.  often ill-

conditioned



Nonlinear SE Solution Algorithm, 
Book Figure 9.11



Example: Two Bus Case

• Assume a two bus case with a generator supplying a 

load through a single line with x=0.1 pu.  Assume 

measurements of the p/q flow on both ends of the line 

(into line positive), and the voltage magnitude at both 

the generator and the load end.  So B12 = B21=10.0

( )( )

( )( )2

sin

cos

0

meas

ij i j ij i j

meas

ij i ij i j ij i j

meas

i i

P V V B

Q V B V V B

V V

 

 
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  

 − + − −
  

− =
We need to assume a reference angle 
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Example: Two Bus Case

• Let  
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Example: Two Bus Case

• With a flat start guess we get
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Example: Two Bus Case
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Assumed SE Measurement Accuracy

• The assumed measurement standard deviations can 

have a significant impact on the resultant solution, or 

even whether the SE converges

• The assumption is a Gaussian (normal) distribution of 

the error with no bias  
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SE Observability

• In order to estimate all n states we need at least n 

measurements. However, where the measurements are 

located is also important, a topic known as observability

– In order for a power system to be fully observable usually we 

need to have a measurement available no more than one bus 

away

– At buses we need to have at least measurements on all the 

injections into the bus except one (including loads and gens)

– Loads are usually flows on feeders, or the flow into a 

transmission to distribution transformer

– Generators are usually just injections from the GSU
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Pseudo Measurements

• Pseudo measurements are used at buses in which there 

is no load or generation; that is, the net injection into 

the bus is know with high accuracy to be zero

– In order to enforce the net power balance at a bus we need to 

include an explicit net injection measurement

• To increase observability sometimes estimated values 

are used for loads, shunts and generator outputs

– These “measurements” are represented as having a higher 

much standard deviation   
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SE Observability Example
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