
ECEN 615
Methods of Electric Power 

Systems Analysis

Lecture 16: State Estimation, EMS

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University

overbye@tamu.edu

mailto:overbye@tamu.edu


Announcements

• Read Chapter 9

• Homework 4 is due today

• In problem 5 the LODF is a vector

• In problem 6 find the OTDF on the line between buses 1 

and 2
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Electric Grid Measurements

• The two major types of measurements are voltages and 

currents

– The challenge for both types are doing these measurements at 

the high electric grid voltage levels

• Potential transformers (PTs) are used to measure 

voltage, using a transformer sometimes

with a set

of series

capacitors

to drop the

voltage
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Electric Grid Measurements

• Current transformers (CTs) are used to measure current, 

with the primary often consisting of the transmission 

wire itself; the secondary then has its number of turns 

set to give a specified current (say 5A) at a specified 

line current

– Many CTs are used in the protection system so these need to 

be calibrated to correctly

measure fault current;

others are used to give

more accurate load current

values

• All meters have errors

3Image source: www.electrical4u.com/instrument-transformers/



Phasor Measurement Units (PMUs)

• All AC signals have a magnitude and phase.  It is very 

easy to measure the phase angle differences between 

local signals (e.g., at an electrical substation)

– These differences are used to calculate power values

• However, it had been challenging to measure phase 

angle differences between signals at different locations

– This requires access to a 

precise time source

– At 60 Hz one cycle takes

16.67 ms, which means 

one degree takes

46 ms.
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Phasor Measurement Units (PMUs)

• Widespread access to precise time became available in 

the 1980’s when civilian use of the GPS was allowed

• PMUs use the GPS signals to determine the phase 

angles of voltages and currents (relative to some 

global reference)

– The inputs to PMUs come from the CTs and PTs

• PMUs sample the system at rates on the order of 30 

times per second

• PMU values are being used in SE algorithms
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SE Example: Two Bus Case

• Assume a two bus case with a generator supplying a 

load through a single line with x=0.1 pu.  Assume 

measurements of the p/q flow on both ends of the line 

(into line positive), and the voltage magnitude at both 

the generator and the load end.  So B12 = B21=10.0
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Example: Two Bus Case
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Example: Two Bus Case

• With a flat start guess we get
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Example: Two Bus Case
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Assumed SE Measurement Accuracy

• The assumed measurement standard deviations can 

have a significant impact on the resultant solution, or 

even whether the SE converges

• The assumption is a Gaussian (normal) distribution of 

the error with no bias  
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SE Observability

• In order to estimate all n states we need at least n 

measurements. However, where the measurements are 

located is also important, a topic known as observability

– In order for a power system to be fully observable usually we 

need to have a measurement available no more than one bus 

away

– At buses we need to have at least measurements on all the 

injections into the bus except one (including loads and gens)

– Loads are usually flows on feeders, or the flow into a 

transmission to distribution transformer

– Generators are usually just injections from the GSU
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Pseudo Measurements

• Pseudo measurements are used at buses in which there 

is no load or generation; that is, the net injection into 

the bus is know with high accuracy to be zero

– In order to enforce the net power balance at a bus we need to 

include an explicit net injection measurement

• To increase observability sometimes estimated values 

are used for loads, shunts and generator outputs

– These “measurements” are represented as having a higher 

much standard deviation   
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SE Observability Example
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SE Bad Data Detection

• The quality of the measurements available to an SE 

can vary widely, and sometimes the SE model itself is 

wrong.  Causes include

– Modeling Errors: perhaps the assumed system topology is 

incorrect, or the assumed parameters for a transmission line 

or transformer could be wrong

– Data Errors: measurements may be incorrect because of in 

correct data specifications, like the CT ratios or even flipped 

positive and negative directions

– Transducer Errors: the transductors may be failing or may 

have bias errors

– Sampling Errors: SCADA does not read all values 

simultaneously and power systems are dynamic
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SE Bad Data Detection

• The challenge for SE is to determine when there is 

likely a bad measurement (or multiple ones), and then 

to determine the particular bad measurements

• J(x) is random number, with a probability density 

function (PDF) known as a chi-squared distribution, 

2(K), where K is the degrees of freedom, K=m-n

• It can be shown the expected mean for J(x) is K, with a 

standard deviation of

– Values of J(x) outside of several standard deviations indicate 

possible bad measurements, with the measurement residuals 

used to track down the likely bad measurements

• SE can be re-run without the bad measurements  
15
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QR Factorization

• Used in SE since it handles ill-conditioned m by n 

matrices (with m >= n)

• Can be used with sparse matrices

• We will first split the R-1 matrix

• QR factorization represents the m by n H' matrix as

with Q an m by m orthonormal matrix and U an upper 

triangular matrix (most books use  Q R but we use U to 

avoid confusion with the previous R)

1 1
1 2 2T T T− −−  = =H R H H R R H H H

 =H QU
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Orthonormal Matrices 

• The term orthogonal is used with vectors to indicate 

their dot product is zero (i.e., they are perpendicular to 

each other)

• Orthonormal is used to indicate they are orthogonal 

and each has unit length (magnitude of 1)

• The definition of an orthogonal matrix is QTQ = I

– This implies its inverse always exists

• Its determinant is 1

• They can be used for transformations such as an 

angular rotation
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QR Factorization

• We then have

• But since Q is an orthonormal matrix, 

• Hence we have   
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QR Factorization

• Next we’ll briefly discuss the QR factorization 

algorithm

• When factored the U matrix (i.e., what most call the R

matrix ) will be an m by n upper triangular matrix

• Several methods are available including the 

Householder method and the Givens method

• Givens is preferred when dealing with sparse matrices

• A good reference is Gene H. Golub and Charles F. Van 

Loan, “Matrix Computations,” second edition, Johns 

Hopkins University Press, 1989.
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Givens Algorithm for Factoring a 
Matrix A

• The Givens algorithm works by pre-multiplying the 

initial matrix, A, by a series of matrices and their 

transposes, starting with G1G1
T

– If A is m by n, then each G is an m by m matrix

• The algorithm proceeds column by column, 

sequentially zeroing out elements in the lower triangle 

of A, starting at the bottom of each column
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If A is sparse,

then we can take

advantage of

sparsity going up

the column
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Givens Algorithm

• To zero out element A[i,j], with i > j we first solve

with a=A[k,j], b= A[i,j]

• A numerically safe algorithm is
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Givens G Matrix

• The orthogonal G(i,k,)  matrix is then

• Premultiplication by G(i,k,)T is a rotation by  

radians in the (i,k) coordinate plane 
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As noted, to zero out an 

element we need a non-zero

pivot element in column j;

assume this row as k.  Row

k here is the first non-zero

above row i.  
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Small Givens Example

• Let

• First we zero out A[4,1], a=1, b=2 giving s= 0.8944, 

c=-0.4472
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First start in column j=1; we will 

zero out A[4,1] with i=4, k=2



Small Givens Example

• Next zero out A[2,1] with a=4, b=-2.236, giving 

c= -0.8729, s=0.4880

• Next zero out A[4,2] with a=5, b=-0.447, c=0.996, 

s=0.089
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Small Givens Example

• Next zero out A[3,2] with a=0.195, b=5.02, c=-0.039, 

s=0.999

• Also we have
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j=2, k=2 with A[k,j]=0.195



Start of Givens for SE Example

• Starting with the H matrix we get

• To zero out H'[5,1]=1 we have

b=100, a=-1000, giving

c=0.995, s=0.0995
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Here the column (j) is 1, while

i is 5 and k is 4.  



Start of Givens for SE Example

• Which gives

• The next rotation would be to zero out element 

[4,1], continuing until all the elements in the lower 

triangle have been reduced
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Givens Comments

• For a full matrix, Givens is O(mn2) since each element 

in the lower triangle needs to be zeroed O(nm), and 

each operation is O(n)

• Computation can be drastically reduced for a sparse 

matrix since we only need to zero out the elements that 

are initially non-zero, and any that become non-zero 

(i.e., the fills)

– Also, for each multiply we only need to deal with the 

nonzeros in the impacted row

• Givens rotation is commonly used to solve the SE
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Example SE Application: PJM and 
MISO

• PJM provides information about their EMS model in 

– www.pjm.com/-/media/documents/manuals/m03a.ashx

Data here is 

from the 

December 

2019 (Rev 18) 

document
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Example SE Application: PJM and 
MISO

• PJM measurements are required for 69 kV and up

• PJM SE is triggered to execute every minute

• PJM SE solves well over 98% of the time

• Below reference provides info on MISO SE from 

March 2015

– 54,433 buses

– 54,415 network branches

– 6332 generating units

– 228,673 circuit breakers

– 289,491 mapped points

https://www.naspi.org/sites/default/files/2017-05/3a%20MISO-NASPIWokshop-

Synchrophasor%20Data%20and%20State%20Estimation.pdf
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Energy Management Systems (EMSs)

• EMSs are now used to control most large scale 

electric grids

• EMSs developed in the 1970’s and 1980’s out of 

SCADA systems

– An EMS usually includes a SCADA system; sometimes 

called a SCADA/EMS

• Having a SE is almost the definition of an EMS.  The 

SE then feeds data to the more advanced functions

• EMSs have evolved as the industry as evolved as the 

industry has evolved, with functionality customized 

for the application (e.g., a reliability coordinator or a 

vertically integrated utility) 31



NERC Reliability Coordinators

Source: www.nerc.com/pa/rrm/TLR/Pages/Reliability-Coordinators.aspx
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EEI Member Companies 
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Electric Coops
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Texas Electric Coops
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