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Announcements

• Read Chapter 8

• Homework 5 today

• Homework 6 will be assigned next time, due on 

Nov 12

• The second exam will be in class on Nov 17

• Distance learners will be able to take the exam from Nov 

16 to Nov 18 

• Associated with Homework 6 will be student 

presentations; these will be about 15 minutes during 

class on Nov 19 or Nov 24

• Other times can be arranged for the distance learners
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Unit Commitment: Quick Coverage 
(Chapter 4)

• Unit commitment is used to determine which 

generator units should be committed to meet the load

• The electric load varies substantially so there is almost 

always more generator capacity available than load

• Units have availability constraints

– Minimum up time, time to start, cost to start

– Minimum down time, time to shutdown, cost to shutdown

– Ramp rates, minimum MW output

– Scheduled and unscheduled outages

• System constraints including load, reserve, emissions, 

network
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Solving Unit Commitment

• Unit commitment involves a potentially large number 

of integer and continuous variables

– Not just the status of each unit, but also the amount of time it 

has been in a particular state (i.e., off or on)

• Solved for a set of discrete time periods, which at each 

time period there are lots of different potential states

• Solution approaches include

– Dynamic programming

– Lagrangian relaxation

– Mixed Integer Programming (currently state-of-the-art)
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Longer Term Optimization: Quicker 
Coverage (Chapter 5)  

• Longer term optimization is a key consideration in 

hydro systems with significant reservoir storage

– Use the water when it is the most valuable taking into 

account potentially many other constraints

• Generator maintenance scheduling

• Building generation often involves large upfront 

capital costs to create an asset that will last 20 to 40 

years.  Long-term contracts provide a way to share the 

risk

• Take-or-pay contracts obligate a purchaser to purchase 

so much of a product over a given time period
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Power System Economic Dispatch 

• Generators can have vastly different incremental 

operational costs

– Some are essentially free or low cost (wind, solar, hydro, 

nuclear)

– Because of the large amount of natural gas generation, 

electricity prices are very dependent on natural gas prices 

• Economic dispatch is concerned with determining the 

best dispatch for generators without changing their 

commitment

• Economic dispatch is the foundation for the optimal 

power flow
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Variation in Natural Gas Prices and 
Generation Sources

6Source: www.eia.gov/dnav/ng/hist/rngwhhdm.htm



Power System Economic Dispatch 

• Economic dispatch is formulated as a constrained 

minimization

– The cost function is often total generation cost in an area

– Single equality constraint is the real power balance equation

• Solved by setting up the Lagrangian (with PD the load 

and PL the losses, which are a function the generation) 

• A necessary condition for a minimum is that the 

gradient is zero.  Without losses this occurs when all 

generators are dispatched at the same marginal cost 

(except when they hit a limit)    
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Power System Economic Dispatch 

• If losses are neglected then there is a single marginal 

cost (lambda); if losses are included then each bus 

could have a different marginal cost
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Economic Dispatch Penalty Factors
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Economic Dispatch Example

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

MW Losses: 

slack

1

2

3 4

5

1.00 pu

0.96 pu1.04 pu

0.99 pu1.05 pu

 60%
A

MVA

 53%
A

MVA

 46%
A

MVA

 48%
A

MVA

 39%
A

MVA

 21%
A

MVA

 38%
A

MVA

 72 MW

 71 MW

 58 MW  56 MW  39 MW  39 MW

 54 MW

 52 MW

112 MW 107 MW

 46 MW

47 MW

 20 MW

5916.04 $/h

392.0 MW

 0.00 $/MWh

1.00

12.44 MW

0.0000

-0.0825

-0.0274

MW130.0

MW181.9

147 MW

 39 Mvar

 78 MW
 29 Mvar

127 MW

 39 Mvar

 39 MW

 20 Mvar

MW92.5

AGC ON

AGC ON

AGC ON
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Case is GOS_Example6_22; use Power Flow Solution 

Options, Advanced Options to set Penalty Factors 



Optimal Power Flow (OPF)

• OPF functionally combines the power flow with 

economic dispatch

• SCOPF adds in contingency analysis 

• Goal of OPF and SCOPF is to minimize a cost 

function, such as operating cost, taking into account 

realistic equality and inequality constraints

• Equality constraints

– bus real and reactive power balance

– generator voltage setpoints

– area MW interchange 
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OPF, cont.

• Inequality constraints

– transmission line/transformer/interface flow limits

– generator MW limits

– generator reactive power capability curves

– bus voltage magnitudes (not yet implemented in Simulator 

OPF)

• Available Controls

– generator MW outputs

– transformer taps and phase angles

– reactive power controls
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Two Example OPF Solution Methods

• Non-linear approach using Newton’s method

– handles marginal losses well, but is relatively slow and has 

problems determining binding constraints

– Generation costs (and other costs) represented by quadratic or 

cubic functions 

• Linear Programming 

– fast and efficient in determining binding constraints, but can 

have difficulty with marginal losses.

– used in PowerWorld Simulator

– generation costs (and other costs) represented by piecewise 

linear functions

• Both can be implemented using an ac or dc power flow
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OPF and SCOPF Current Status

• OPF (really SCOPF) is currently an area of active  

research, with ARPA-E having an SCOPF competition 

(see gocompetition.energy.gov)

• A 2016 National Academies Press report, titled 

“Analytic Research Founds for the Next-Generation 

Electric Grid,” recommended improved AC OPF models

– I would recommend reading this report; it provides good 

background on power systems include OPF

– It is available for free at www.nap.edu/catalog/21919/analytic-

research-foundations-for-the-next-generation-electric-grid
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OPF and SCOPF History

• A nice OPF history from Dec 2012 is provided by the 

below link, and briefly summarized here 

• Prior to digital computers economic dispatch was solved 

by hand and the power flow with network analyzers

• Digital power flow developed in late 50’s to early 60’s

• First OPF formulations in the 1960’s

– J. Carpienterm, “Contribution e l’étude do Dispatching 

Economique,” Bulletin Society Francaise Electriciens, 1962

– H.W. Dommel, W.F. Tinney, “Optimal power flow solutions,” 

IEEE Trans. Power App. and Systems, Oct. 1968

• “Only a small extension of the power flow program is required” 

www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers/acopf-1-history-formulation-testing.pdf

(by M Cain, R. O’Neill, A. Castillo) 15

http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers/acopf-1-history-formulation-testing.pdf


OPF and SCOPF History

• A linear programming (LP) approach was presented by 

Stott and Hobson in 1978

– B. Stott, E. Hobson, “Power System Security Control 

Calculations using Linear Programming,” (Parts 1 and 2) IEEE 

Trans. Power App and Syst., Sept/Oct 1978

• Optimal Power Flow By Newton’s Method

– D.I. Sun, B. Ashley, B. Brewer, B.A. Hughes, and W.F. Tinney, 

"Optimal Power Flow by Newton Approach", IEEE Trans. 

Power App and Syst., October 1984

• Follow-up LP OPF paper in 1990

– O. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments 

in LP-based Optimal Power Flow,” IEEE Trans. Power 

Systems, August 1990 16



OPF and SCOPF History

• Critique of OPF Algorithms

– W.F. Tinney, J.M. Bright, K.D. Demaree, B.A. Hughes, 

“Some Deficiencies in Optimal Power Flow,” IEEE Trans. 

Power Systems, May 1988

• Hundreds of other papers on OPF

• Comparison of ac and dc optimal power flow methods

– T.J. Overbye, X. Cheng, Y. San, “A Comparison of the AC 

and DC Power Flow Models for LMP Calculations,” Proc. 37th

Hawaii International Conf. on System Sciences, 2004
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Key SCOPF Application: Locational 
Marginal Prices (LMPs)

• The locational marginal price (LMP) tells the cost of 

providing electricity to a given location (bus) in the 

system

• Concept introduced by Schweppe in 1985

– F.C. Schweppe, M. Caramanis, R. Tabors, “Evaluation of Spot 

Price Based Electricity Rates,” IEEE Trans. Power App and 

Syst., July 1985 

• LMPs are a direct result of an SCOPF, and are widely 

used in many electricity markets worldwide

–
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Example LMP Contour, 10/22/2020

https://www.miso-pjm.com/markets/contour-map.aspx

[1] T.J. Overbye, R.P. Klump, J.D. Weber, “A Virtual Environment for Interactive 

Visualization of Power System Economic and Security Information,” IEEE PES 1999 

Summer Meeting, Edmonton, AB, Canada, July 1999

LMPs are now

widely

visualized

using color

contours; the

first use of 

LMP color

contours was

presented in [1]

19
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Example LMP Contour: 10/27/2020

20

Note the 

wide range

in LMPs

including 

some negative

values!

This is just

the real-time

market; most

electricity

is not traded

here.  



OPF Problem Formulation

• The OPF is usually formulated as a minimization with 

equality and inequality constraints

where x is a vector of dependent variables (such as the 

bus voltage magnitudes and angles), u is a vector of 

the control variables, F(x,u) is the scalar objective 

function, g is a set of equality constraints (e.g., the 

power balance equations) and h is a set of inequality

constraints (such as line flows) 

min max

min max

Minimize F( , )

( , )

( , )

=

 

 

x u

g x u 0

h h x u h

u u u
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LP OPF Solution Method

• Solution iterates between

– solving a full ac or dc power flow solution

• enforces real/reactive power balance at each bus

• enforces generator reactive limits

• system controls are assumed fixed 

• takes into account non-linearities

– solving a primal LP

• changes system controls to enforce linearized constraints 

while minimizing cost
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Two Bus with Unconstrained Line

Total Hourly Cost :

Bus A Bus B

300.0 MWMW

 197.0 MWMW  403.0 MWMW

300.0 MWMW

8459 $/hr 

Area Lambda : 13.01

AGC ON AGC ON

13.01 $/MWh 13.01 $/MWh

Transmission 

line is not 

overloaded

With no 

overloads the

OPF matches

the economic

dispatch

Marginal cost of supplying

power to each bus 

(locational marginal costs)
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Two Bus with Constrained Line

Total Hourly Cost :

Bus A Bus B

380.0 MWMW

 260.9 MWMW  419.1 MWMW

300.0 MWMW

9513 $/hr 

Area Lambda : 13.26

AGC ON AGC ON

13.43 $/MWh 13.08 $/MWh

With the line loaded to its limit, additional load at Bus A 

must be supplied locally, causing the marginal costs to 

diverge.  
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Three Bus (B3) Example

• Consider a three bus case (Bus 1 is system slack), 

with all buses connected through 0.1 pu reactance 

lines, each with a 100 MVA limit

• Let the generator marginal costs be 

– Bus 1: 10 $ / MWhr; Range = 0 to 400 MW

– Bus 2: 12 $ / MWhr; Range = 0 to 400 MW

– Bus 3: 20 $ / MWhr; Range = 0 to 400 MW

• Assume a single 180 MW load at bus 2

25



Bus 2 Bus 1

Bus 3

Total Cost

0.0 MW

  0 MW

180 MW

10.00 $/MWh

 60 MW  60 MW

 60 MW

 60 MW
120 MW

120 MW

10.00 $/MWh

10.00 $/MWh

180.0 MW

  0 MW

1800 $/hr 

120%

120%

B3 with Line Limits NOT Enforced

Line between 

Bus 1and Bus 3 

is over-loaded; 

all buses have 

the same 

marginal cost
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B3 with Line Limits Enforced

Bus 2 Bus 1

Bus 3

Total Cost

60.0 MW

  0 MW

180 MW

12.00 $/MWh

 20 MW  20 MW

 80 MW

 80 MW
100 MW

100 MW

10.00 $/MWh

14.00 $/MWh

120.0 MW

  0 MW

1920 $/hr 

100%

100% LP OPF changes 

generation to 

remove violation.

Bus marginal

costs are now

different.  
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Bus 2 Bus 1

Bus 3

Total Cost

62.0 MW

  0 MW

181 MW

12.00 $/MWh

 19 MW  19 MW

 81 MW

 81 MW
100 MW

100 MW

10.00 $/MWh

14.00 $/MWh

119.0 MW

  0 MW

1934 $/hr 

 81%

 81%

100%

100%

Verify Bus 3 Marginal Cost

One additional MW

of load at bus 3 

raised total cost by

14 $/hr, as G2 went

up by 2 MW and G1

went down by 1MW 
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Why is bus 3 LMP = $14 /MWh

• All lines have equal impedance.  Power flow in a 

simple network distributes inversely to impedance 

of path.  

– For bus 1 to supply 1 MW to bus 3, 2/3 MW would take 

direct path from 1 to 3, while 1/3 MW would “loop 

around” from 1 to 2 to 3.  

– Likewise, for bus 2 to supply 1 MW to bus 3, 2/3MW 

would go from 2 to 3, while 1/3 MW would go from 2 to 

1to 3.
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Why is bus 3 LMP $ 14 / MWh, cont’d

• With the line from 1 to 3 limited, no additional 

power flows are allowed on it.

• To supply 1 more MW to bus 3 we need 

– PG1 + PG2 = 1 MW

– 2/3  PG1 + 1/3  PG2 = 0;  (no more flow on 1-3)

• Solving requires we up PG2 by 2 MW and drop PG1

by 1 MW -- a net increase of $24 – $10 = $14.
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Both lines into Bus 3 Congested

Bus 2 Bus 1

Bus 3

Total Cost

100.0 MW

  4 MW

204 MW

12.00 $/MWh

  0 MW   0 MW

100 MW

100 MW
100 MW

100 MW

10.00 $/MWh

20.00 $/MWh

100.0 MW

  0 MW

2280 $/hr 

100% 100%

100% 100%
For bus 3 loads

above 200 MW,

the load must be

supplied locally.

Then what if the

bus 3 generator 

opens? 
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Both lines into Bus 3 Congested



Quick Coverage of Linear Programming

• LP is probably the most widely used mathematical 

programming technique

• It is used to solve linear, constrained minimization 

(or maximization) problems in which the objective 

function and the constraints can be written as linear 

functions
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Example Problem 1

• Assume that you operate a lumber mill which 

makes both construction-grade and finish-grade 

boards from the logs it receives.  Suppose it takes 2 

hours to rough-saw and 3 hours to plane each 1000 

board feet of construction-grade boards.  Finish-

grade boards take 2 hours to rough-saw and 5 hours 

to plane for each 1000 board feet.  Assume that the 

saw is available 8 hours per day, while the plane is 

available 15 hours per day.  If the profit per 1000 

board feet is $100 for construction-grade and $120 

for finish-grade, how many board feet of each 

should you make per day to maximize your profit?
34



Problem 1 Setup

1 2

1 2

1 2

1 2

1 2

Let x =amount of cg, x = amount of fg

Maximize    100 120

s.t.                2 2 8

                     3 5 15

                     , 0

x x

x x

x x

x x

+

+ 

+ 



Notice that all of the equations are linear, but

they are inequality, as opposed to equality, constraints;

we are seeking to determine the values of x1 and x2
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Example Problem 2

• A nutritionist is planning a meal with 2 foods: A and 

B.  Each ounce of A costs $ 0.20, and has 2 units of 

fat, 1 of carbohydrate, and 4 of protein. Each ounce of 

B costs $0.25, and has 3 units of fat, 3 of 

carbohydrate, and 3 of protein.  Provide the least cost 

meal which has no more than 20 units of fat, but with 

at least 12 units of carbohydrates and 24 units of 

protein. 
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Problem 2 Setup

1 2

1 2

1 2

1 2

1 2

1 2

Let x =ounces of A, x = ounces of B

Minimize    0.20 0.25

s.t.                2 3 20

                     3 12

                     4 3 24

                     , 0

x x

x x

x x

x x

x x

+

+ 

+ 

+ 

Again all of the equations are linear, but

they are inequality, as opposed to equality, constraints;

we are again seeking to determine the values of x1 and x2;

notice there are also more constraints then solution

variables 
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Three Bus Case Formulation

• For the earlier three bus system given the initial 

condition of an overloaded transmission line, 

minimize the cost of generation such that the 

change in generation 

is zero, and the flow 

on the line between

buses 1 and 3 is not 

violating its limit

• Can be setup consider-

ing the change in

generation, (PG1, PG2, PG3) 

Bus 2 Bus 1

Bus 3

Total Cost

0.0 MW

  0 MW

180 MW

10.00 $/MWh

 60 MW  60 MW

 60 MW

 60 MW
120 MW

120 MW

10.00 $/MWh

10.00 $/MWh

180.0 MW

  0 MW

1800 $/hr 

120%

120%
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Three Bus Case Problem Setup

1 G1 2 G2 3 G3

1 2 3

1 2

1 2 3

1 2 3

Let x = P , x = P , x = P

Minimize    10 12 20

2 1
s.t.                20

3 3

                     0

                     enforcing limits on ,  ,  

x x x

x x

x x x

x x x

  

+ +

+  −

+ + =

Line flow constraint

Power balance constraint
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LP Standard Form

The standard form of the LP problem is 

Minimize    

s.t.               

                     

where         n-dimensional column vector

                   n-dimensional row vector

            

=



=

=

cx

Ax b

x 0

x

c

       m-dimensional column vector

                   m×n matrix

For the LP problem usually n>> m

=

=

b

A

Maximum problems can

be treated as minimizing

the negative

The previous examples were not in this form!
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Replacing Inequality Constraints with 
Equality Constraints

• The LP standard form does not allow inequality 

constraints

• Inequality constraints can be replaced with equality 

constraints through the introduction of slack variables, 

each of which must be greater than or equal to zero

• Slack variables have no cost associated with them; they 

merely tell how far a constraint is from being binding, 

which will occur when its slack variable is zero 

  with 0

  with 0

i i i i

i i i i

b y b y

b y b y

 → + = 

 → − = 
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Lumber Mill Example with Slack 
Variables

• Let the slack variables be x3 and x4, so

1 2

1 2 3

1 2 4

1 2 3 4

Minimize    -(100 120 )

s.t.                2 2 8

                     3 5 15

                     , , , 0

x x

x x x

x x x

x x x x

+

+ + =

+ + =



Minimize the negative
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LP Definitions

A vector  is said to be basic if 

1.  

2.  At most m components of  are non-zero; these

are called the basic variables; the rest are non basic 

variables; if there as less than m non-zeros then 

 is

=

x

Ax b

x

x

 

  ( )

B
B

N

B 1
B N

N

 called degenerate

Define   (with  basic) and 

With    so    

B N

B N B N
−

 
= = 
 

 
= = − 

 

x
x x A A A

x

x
A A b x A b A x

x

AB is called the basis matrix
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Fundamental LP Theorem

• Given an LP in standard form with A of rank m then

– If there is a feasible solution, there is a basic feasible 

solution

– If there is an optimal, feasible solution, then there is an 

optimal, basic feasible solution

• Note, there could be a LARGE number of basic, 

feasible solutions

– Simplex algorithm determines the optimal, 

basic feasible solution usually very quickly
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LP Graphical Interpretation 

• The LP constraints define a polyhedron in the solution 

space

– This is a polytope if the polyhedron is bounded and 

nonempty

– The basic, feasible 

solutions are

vertices of this

polyhedron

– With the linear cost

function the solution

will be at one of

vertices

45Image: Figure 3.26 from course text


