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Announcements 

• Homework 7 is due on Nov 24 

• Associated with Homework 7 there can be optional 

student presentations on Nov 24 

• Let me know if you would like to present 
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Inertia and Governor Power Flows 

• In the regular power flow a single slack bus is used so 

total load + losses = total generation 

• The slack bus is characterized by having a fixed voltage 

magnitude and angle 

– A slack bus is needed for each island though nothing precludes 

having multiple slack buses in an island 

• If an area is on AGC then the outputs for the other 

generators can be changed either before or during the 

power flow solution 

• This does not match the initial change in the generator 

output following a contingency  
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Inertia and Governor Power Flows 

• Following a generation and/or load contingency the 

changes in the generator outputs will be 

– Initially determined by the generator’s inertia 

– After several seconds the output will be determined by the 

generator’s governor response, which takes into account limits 

– After dozens of seconds to minutes the AGC will respond 

• A governor or an inertia power flow seeks to match this 

initial response  

– A useful reference is M. Lotfalian, R. Schlueter, et. al., 

“Inertial, Governor and AGC/Economic Dispatch Load Flow 

Simulations of Loss of Generation Contingencies,” IEEE 

Trans. Power Apparatus and Systems, Nov. 1985 
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Generator Output Example 

• Example shows the generator outputs following the 

loss of a 250 MW generator (at Kyle138) 
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Generator Output Example, cont. 

• Graph shows the normalized change in output, with the 

initial value based on the inertia then on the governor 
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Inertia and Governor Power Flows 

• The inertia and governor power flows seek to match 

this response by including in each real power balance 

equation an additional term that the allocates this power 

mismatch to each generator in proportion to its relative 

percentage inertia or relative percentage governor 

response 

• This is a distributed slack approach since the allocation 

occurs inside the power flow iteration 

• There is still a slack bus to provide an angle reference 
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Inertia Power Flow 

• In an inertia power flow let a be the accelerating power.  

Then at each generator bus i the generator output is 

 

 

 

 

• The accelerating power can just be included as a 

solution variable 

• Real power flow equations are then written for all the 

buses, but the slack angle is not a solution variable 
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Two Bus DC Power Flow Example 

• Assume a two bus system with the buses connected 

with a lossless line with X=0.1.  Let bus 2 be the slack 

with q2=0, generators at both buses with PG1 =1 and a 

single load (at bus 1) with PL1=3.   Assume equal 

inertia for the generators 

• In a traditional dc power flow there is one equation 

 1 1 11 3 10G LP P q   
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Two Bus DC Power Flow Example 

• With the inertia approach there would be two 

equations and the power is specified at both buses (say 

PG2=1.5) 

 

 

 

• Solving gives 
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Power System Restoration 

• Power system restoration or black start (or blackstart) 

– A procedure to restore power in the event of a partial or total 

shutdown of the power system 

– A highly complex decision problem 

• Object is to serve the load as soon as possible without 

violating operating constraints 

– Actions are time critical 

• Primarily manual work by operators 

• Offline restoration planning usually based on 

simulations 
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Power System Restoration 

• Common characteristics of restoration (even though 

strategies are different) 

– Immediate resupply of station service 

– Time consuming nature of switching operation 

– Start-up timings of thermal units 

– Voltage rise problems of energizing unloaded transmission 

lines 

– Frequency response of prime movers to a sudden load pickup 

– Cold load inrush, power factors and coincident demand 

factors 
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System Restoration Efforts - IEEE 

• After 1977 New York City blackout, DOE required 

operating companies to develop a power system 

restoration plan, train personnel, regularly update and 

maintain the plan. 

• In response to this requirement in 1978, the Power 

System Operation Committee established the Power 

System Restoration (PSR) Task Force (TF) within the 

System Operation Subcommittee of the Power System 

Engineering Committee. 

• A few years later, the PSR TF was upgraded to PSR 

working group (WG) 
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System Restoration Efforts - IEEE 

• In 1993 a 110 page brochure 

was prepared by PSR WG and 

published by the IEEE PES 

• Includes: 

– 14 IEEE Committee Reports 

– 5 SRWG member papers in IEEE 

publication 

– 13 related IEEE transaction papers 
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System Restoration Efforts - IEEE 

• In 2000 a 700 page book was 

prepared by PSRWG and 

published by Wiley-IEEE Press 

• Includes 87 papers including 14 

papers in the original 1993 

collection 
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System Restoration Efforts - IEEE 

• In 2014 40 IEEE papers by 110 

authors including 42 panelists of 

Restoration Dynamics Task Force 

• Covers: 

– Real power balance and control of 

frequency 

– Reactive power balance and control 

of voltages 

– Critical tasks (time sensitive 

functions) 

– Analyses and simulations 
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Mahmood Mike Adibi (1924 – 2018) 

• The godfather of power system restoration 

• B.S.E. in 1950 from University of Birmingham, U.K. 

• M.S.E in 1960 from Polytech Institute of Brooklyn, 

NY 

• IEEE Life Fellow 

• Founder and chairman of the IEEE System Restoration 

Working Group in 1979 

• Author of the book, “Power System Restoration – 

Methodologies and Implementation Strategies” 

– A great review book of IEEE papers between 1987 and 1999 

• Developed restoration plans for over a dozen utilities 
16 



Other Good References 

• PJM Manual 36: System Restoration 

• EPRI, “Development of Power System Restoration Tool Based 

on Generic Restoration Milestones,” 2010. 

• PSERC, “Development and Evaluation of System Restoration 

Strategies from a Blackout,” 2009. 

• IESO, “Part 7.8: Ontario Power System Restoration Plan,” 2017. 

• K. Sun et al., “Power System Control Under Cascading Failures: 

Understanding, Mitigation, and System Restoration,” Wiley-

IEEE Press. 2019. 

• Yutian Liu, Rui Fan, and Vladimir Terzija, “Power system 

restoration: a literature review from 2006 to 2016,” J. Mod. 

Power Syst. Clean Energy, 2016, 4(3), pp. 332-341 

17 



NERC Standards on Restoration 

• NERC System Restoration and Black Start standards 

– EOP-005-2 & EOP-005-3 

• System Restoration from Black Start Resources 

• Ensure plans, Facilities, and personnel are prepared to enable System 

restoration from Black Start Resources to assure reliability is 

maintained during restoration and priority is placed on restoring the 

Interconnection 

– EOP-006-2 & EOP-006-3 

• System Restoration Coordination 

• Ensure plans are established and personnel are prepared to enable 

effective coordination of the System restoration process to ensure 

reliability is maintained during restoration and priority is placed on 

restoring the Interconnection. 
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Common Issues during Restoration 

• Active power balance and frequency control 

– Need to maintain system frequency within limits by system 

stability and protection settings 

– Can be accomplished by picking up loads in increments 

• Reactive power balance and overvoltage control 

– Energizing few high voltage lines 

– Operating generators at minimum voltage levels 

– Deactivating switched shunt capacitors 

– Connecting shunt reactors 

– Adjusting transformer taps 

– Picking up reactive loads 
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Common Issues during Restoration 

• Transient switching voltages  

– Switching surges occur when energizing equipment 

• Self-excitation 

– When the charging current is high relative to the size of 

generators 

– When opening a line at the sending end but leaving the line 

connected to a large motor 

– This causes overvoltage and damages equipment 

• Cold load pickup 

– When load has been de-energized for several hours or more 

– Inrush current can be as high as 8 – 10 times of the normal 

value 
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Common Issues during Restoration 

• System stability 

– Voltage should be within limits 

– Angle stability have to be maintained 

– Frequency is the main issue in stability assessment 

• Protective systems and load control 

– Continuous change in system configuration and in operating 

conditions may trigger undesirable operation of relays 

– Load shedding can be useful in case of low frequency 

conditions 
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Common Issues during Restoration 

• Partitioning system into islands 

– Necessary to speed up the process, especially for large 

systems 

– NERC standards 

• Each islands must have sufficient black start capability 

• Each islands should have enough cranking paths to gens and loads 

• Each islands should be able to match generation and load within 

prescribed frequency limits 

• Each islands should have adequate voltage controls 

• All tie points must be capable of synchronization with adjacent 

subsystems 

• All islands should share information with other islands 
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Generic Restoration Steps 

• Preparation stage (1 – 2 hours) 

– Evaluate pre- and post-disturbance conditions 

– Define the target system 

– Restart generators and rebuild transmission network 

• System restoration stage (3 – 4 hours) 

– Energize transmission paths 

– Restore load to stabilize generation and voltage 

– Synchronize islands and reintegrate bulk power system 

• Load restoration stage (8 – 10 hours) 

– Load restoration is the governing control objective 

– Load pickup is scheduled based on generation availability 

– Load restoration is effected in increasingly larger steps 23 



System Restoration Tasks 

• Know the status of the grid 

• List and rank critical loads by priority 

• List and rank initial sources of power by availability 

– Maximize generation capabilities with the available black 

start resources 

• Determine the most effective ways of brining the two 

together 

– Schedule tasks and resources during restoration 

– Establish transmission capability and paths while meeting 

operating constraints 
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Initial Power and Load 

Type Time (min) Success probability 

Run-of-the-River Hydro 5-10 High 

Pump-Storage Hydro 5-10 High 

Combustion Turbine 5-15 Medium 

Tie-line with Adjacent Systems Short 

• Initial source of power 

 

 

 

 

• Initial critical loads 

Type Priorities 

Cranking drum-type units High 

Pipe-type cables pumping plants High 

Transmission stations High to Medium depending on location 

Distribution stations High to Medium depending on location 

Industrial loads Medium to low 25 



Electric Grid Visualization 

• Electric grid models can be quite complex and large  

– There are commonly many assumptions and automatic 

control actions embedded in these models. 

• Oftentimes engineers do studies associated with these 

grids, not always fully understanding these embedded 

assumptions or how the models can fail 

• Electric grid visualization is focused on helping people 

understand what occurred when the engineer “pushed 

the button.”   
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Visualization Software Design 

• Key question: what are the desired tasks that need to 

be accomplished? 

– Needs for real-time operations might be quite different than 

what is needed in planning 

• Understanding the entire processes in which the 

visualizations are embedded is key 

• Software should help humans make the more complex 

decisions, i.e., those requiring information and 

knowledge  

– Enhance human capabilities 

– Alleviate their limitations (adding up flows into a bus) 

27 



Some Useful General References 

• Colin Ware, Information Visualization: Perception for 

Design, Fourth Edition, 2021 

• Edward Tufte, Envisioning Information, 1990 

• Edward Tufte, Visual Explanations: Images and 

Quantities, 1997 

• Edward Tufte, The Visual Display of Quantitative 

Information, 2001 

• Edward Tufte, Beautiful Evidence, 2006 

• Claus Wilke, Fundamentals of Data Visualization, 

2019 
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Example: Visualization and Cholera 
in Central London, 1854 

29 Images source: http://www.datavis.ca/gallery/historical.php 

Dr. John Snow helped to end an epidemic by noting that the 

deaths were clustered about the Broad Street Water pump 



Example: Visualization and  
Challenger, 1986 

30 

Graph used to determine  

whether to launch Challenger 

in 1986; shows O-ring failure  

vs. temperature but neglects  

launches with no failures 

A better graphic including 

all data.  Would you  

launch at 32ºF? 
http://www.datavis.ca/gallery/missed.php 



Visualization Cautions! 

• Just because information can be shown graphically, 

doesn’t mean it should be shown 

• Three useful design criteria from 1994 EPRI 

visualization report:  

1. Natural encoding  

of information 

2. Task specific graphics 

3. No gratuitous graphics 

 

31 
Source: E. Tufte, The Visual Display of Quantitative Information, Graphics Press, Cheshire, CT, 1983. 

Tufte: “may 

well be worst 

graphic ever” 



Visualization and User Familiarity 

• Visualizations do not exist in a vacuum; the prior 

experience of the users is a key consideration 

–  QWERTY keyboard arrangement is a classic example, in 

which a design that was originally setup in the 1870’s to 

prevent mechanical problems is still used today 

• Using existing visual metaphors in new designs help 

them seem more familiar (like a folder) 

– A skeuomorphic design retains no longer needed structures 

that were inherent in the original, usually to make them more 

familiar (using gauges, sliders, buttons and analog clocks in 

visualizations are examples) 
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Decision Making, Data, Information, 
Knowledge 

• Ultimate goal is to help humans make better decisions 

• Competing definitions for the process of taking raw 

“data” and producing something useful 

– Understanding, decisions, wisdom 

• Data: symbols, raw, it simply exists 

• Information: Data that is given meaning, often in a 

relational context; some how processed 

• Knowledge: Application of information to answer 

“how.”  Connecting patterns.    

• Understanding, and/or wisdom at top   
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The Visualization Process 

34 
Image source: Colin Ware, Information Visualization, Fourth Edition, 2021  



Understanding the Entire  
Process is Key 

• Understanding the entire processes in which the 

visualizations are embedded is key. 

– What is the “information access” cost? 

– How will the information be used and shared? 

– Is it raw data, or derived values? 

– Should the visualizations sit on top of a model, or is a 

standalone process sufficient? 

– Ultimately, what are the desired tasks that need to be 

accomplished? 

• We’ll start with a brief coverage of some traditional 

approaches (tabular, graphs and onelines, then go into 

some newer ones) 
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Example: Tabular Displays 

• In many contexts, tabular displays (particularly with 

interactive features such as sorting, filtering, drill-

down, and the ability to enter data) can be a great way 

to show data 

36 



Use of Color 

• Some use of color can be quite helpful  

– 10% of male population has some degree  

of color blindness (1% for females) 

• Do not use more than about ten colors  

for coding if reliable identification is required 

• Color sequences can be used  

effectively for data maps (like contours) 

– Grayscale is useful for showing forms but not values 

– Multi-color scales (like a spectrum) have advantages (more 

steps) but also disadvantages (effectively comparing values) 

compared to bi-color sequences 
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The book 

by Colin 

Ware is a 

great 

resource  



Graphs 

• Graphs are also a great way to show information, 

particularly for time-variation 

• The number of curves needs to match the task 

38 

A few curves, detail of each 

visible, key can identify objects 

(several thousand values) 

Envelope of response for the 

80k bus, 40,000 substation 

frequencies (24 million values) 



Onelines 

• Widely used and can be quite effective for showing 

substations (or local regions) or smaller  grids; can 

be slow on larger systems 

39 
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Visualization Background:  
Preattentive Processing 

• When displaying large amounts of data, take 

advantage of preattentive cognitive processing 

– With preattentive processing the time spent to find a “target” 

is independent of the number of distractors 

• Graphical features that are preattentively processed 

include the general categories of form, color, motion, 

spatial position 
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Preattentive Processing Examples 

41 

Source: Information 

Visualization (Fourth 

Edition) by Colin Ware, 

Fig 5.12 

All are 

preattentively 

processed 

except 

for juncture and  

parallelism; 

however too 

many can defeat 

their purpose 



Preattentive Processing with  
Color & Size  

42 
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Detecting Patterns 

• A large portion of information visualization is 

associated with detecting patterns 

• Gestalt (German for “pattern”) Laws 

– Proximity 

– Similarity (we didn’t discuss color) 

– Connectedness 

– Common Fate (flows) 

 

43 



Proximity, Similarity, Connectedness,  

44 

Source: Information Visualization (Fourth Edition) by Colin Ware, Chapter 6 Images 

Connectedness is stronger 

than proximity, color, shape 

Similarity makes all 

perceived as rows 



Common Fate: Patterns in Motion 

• Motion can be a very effective means for showing 

relationships between data 

• People perceive motion with great sensitivity 

• Motion can also be used to convey causality (one 

event causing  

another) 

• However, too much  

motion can be  

a distractor 
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Scattered  Data Interpolation  
(Colored Contouring) 

• For wide-area visualization, contours can be effective 

for showing large amounts of spatial data 

– Takes advantage that as humans we perceive the world in 

patterns (sometimes even when none exist!) 

– Now widely used 

• Scattered data interpolation algorithms are needed to 

take the discrete power system data and make it 

spatially continuous 

– Various algorithms can be used include a modified 

Shephard’s and Delaunay triangulation 

• A color mapping is needed 
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Shepard’s Algorithm, Blue/Red 
Discrete Color mapping 
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Delaunay Algorithm, Blue/Red 
Discrete Color mapping 
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Delaunay Algorithm, Spectrum 
Continuous Color mapping 
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Some General Thoughts on Power 
System Visualizations 

• While the previous techniques can be quite helpful, 

there is often just too much data to display 

• Interactive visualizations, taking advantage of the 

underlying geographic information, can be quite 

effective, particularly if the displays can be rapidly 

customized to show different sets of information 

• Also, much of the data should first be pre-processed 

using potentially quite sophisticated algorithms 
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Geographic Data Views 

• One way to make visualizations more interactive is to 

use underlying geographic information to quickly 

auto-create displays 

– Known as geographic data views (GDVs) 

• GDVs can be used either on individual objects (like 

generators, buses, or substations), or on aggregate 

objects (like areas and zones) 

• The GDV display attributes (e.g., size, color) can be 

used to show object data 

• The GDV displays can be saved for later use and links 

to the underlying objects allow for drilldown  
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80,000 Bus System Area GDV 
Example 
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Texas 2000 Substation GDV 
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Size is proportional to the substation MW throughput, while 

the color is based on the amount of substation generation 



Pseudo-Geographic Mosaic Displays 

• GDVs can be quite useful, but there is a tradeoff 

between geographic accuracy and maximum display 

space usage 

– Much of the electric grid is concentrated in small (primarily 

urban) areas 

• Pseudo-Geographic Mosaic Displays (PGMDs) utilize 

a tradeoff of geographic accuracy to maximize display 

space 
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80,000 Bus System Area PGMD 
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the percentages show the amount of transition  



Some Techniques for Dealing with 
Time-Varying Data 

• Need to keep in mind the desired task! 

• Tabular displays 

• Time-based graphs (strip-charts for real-time) 

• Animation loops 

– Can be quite effective with contours, but can be used with 

other types of data as well 

• Data analysis algorithms, such as clustering, to detect 

unknown properties in the data 

– There is often too much data to make sense without some 

pre-processing analysis! 
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Animation loops 

• Animation loops trade-off the advantages of snapshot 

visualizations with the time needed to play the 

animation loop 

– A common use is in weather forecasting 

• In power systems applications the length/speed of the 

animation loops would depend on application 

– In real-time displays could update at either SCADA or PMU 

rates 

– Could be played substantially faster than real-time to show 

historical or perhaps anticipated future conditions 
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Wide-Area Contours Can be Quickly 
Created Using GDVs 
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Image shows a 

substation GDVs 

with 40,000 subs; 

when making the  

contour the GDV 

size is shrunk so 

they are invisible 



80K-Bus Frequency Variation  
(Substation Contour; Time = 2.0 Seconds) 
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When making  

movies the we 

use the Delaunay  

contours because 

they are so fast 
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80K-Bus Frequency Variation  
(Substation Contour; Time = 8.0 Seconds) 



80K-Bus Voltage Magnitude Variation  
(Substation Contour; Time = 5.0 Seconds) 
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When showing 

values like 

voltage magnitudes 

it is often better 

to show the  

deviation from the  

initial values 


