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Abstract—This paper compares two modal analysis techniques
developed for handling large sets of data, Dynamic Mode Decom-
position and the Iterative Matrix Pencil method. The two methods
are compared by analyzing large-scale synthetic grids and using
metrics such as the average cost function and computation
time. Dynamic Mode Decomposition is shown to be able to
quickly identify modes, but suffering inaccuracies in reproduced
data. These difficulties are explored in various case studies and
are compared to the Iterative Matrix Pencil method. Sampling
frequency is also considered in order to examine the impact of
larger data sets when comparing the two methodologies.

I. INTRODUCTION

With the existence of consistent load changes due to a vari-
ety of causes, the operating point of a power system primarily
exists in what is known as a pseudo-steady state, where the
operating point fluctuates within a small range [1]. However,
this pseudo-steady state is also vulnerable to perturbations due
to any number of causes, ranging from natural causes such as
tornadoes and storms, to technical problems at various gen-
erators or lines in the system. Similarly, advancements in the
grid such as the inclusion of more and more renewable energy
sources has resulted in more oscillations being existent in the
system [2]. Furthermore, the introduction of new technologies
such as synchrophasors has allowed for more data to be widely
available for analysis when considering the power grid [3].
As a result, modal analysis techniques exist in order to help
gauge the small signal stability of systems, which measures
how a system handles minor disturbances [4]. Proper mode
identification allows for the characterization of the dynamics
of the system, which in turn may lead to better control methods
to maintain the oscillations within a reasonable range [4].

Copyright(©)2019 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubspermissions @ieee.org. This paper was
presented at the 2019 International Conference on Smart Grid Synchronized
Measurements and Analytics (SGSMA), College Station, TX, May, 2019

Thomas Overbye
Department of Electrical and
Computer Engineering
Texas A&M University
College Station, Texas 77843
Email: overbye@tamu.edu

Signal-based modal analysis techniques seek to approximate
a signal, y(t), where:

M
y(t) =Y Rie*' +n(t), 0<t<T (1)
i=1

where M is the total number of modes that are used to
represent the signal. Each mode z; is defined by a damping
b; and angular frequency w;. Each signal y(¢) also has a
magnitude |R;| and phase 6;, which we refer to collectively
as the mode shape. Finally, n(t) represents some amount of
noise that is associated with each signal.

There are a number of signal-based modal analysis tech-
niques, and each one has its own pros and cons associated
with them. One of the first techniques developed was Prony
Analysis [5], and has been widely used since its inception.
However, Prony Analysis was limited due to its inability to
accurately determine modes under noise, and as such, newer
modal analysis techniques were developed [6]. The Matrix
Pencil Method was developed to estimate the modes of a
system using eigenvalues and matrices [7], all of which were
built from measurements taken from the system [6].

Despite being more robust relative to Prony Analysis, the
Matrix Pencil Method determines the mode shapes of the
system using a linear-least squares fit [8], which does not allow
us to account for the non-linear nature of power systems. As
such, modal analysis techniques such as the Variable Projec-
tion Method (VPM) have been used to project linear mode
shapes into non-linear modes, and then solve the resulting
non-linear optimization problem [9], [10].

The aforementioned techniques, however, do not quickly
and efficiently handle large scale systems. In an era where
quick and accurate modal analysis techniques have risen in
demand [1], there have been several developments. Dynamic
Mode Decomposition (DMD) has been established as a modal
analysis technique whose origins lie primarily in the under-
standing of fluid flows [11]. Applications of DMD to large
scale power grids have arisen in recent years, seeking to



utilize the methodology in order to better understand the
non-linearities of systems, especially those occurring after
contingencies [1], [12].

Another technique that has been developed in handling the
modal analysis of large scale systems is the Iterative Matrix
Pencil (IMP) method [13]. The IMP method involves using the
Matrix Pencil method for determining the modes, and using
the cost function as a metric in order to determine the accuracy
of the reproduced data [13]. The primary advantage of the
method is that it can accurately replicate a given measured
data set by only using a smaller, more impactful, set of data
to determine the modes [13].

The rest of the paper will go as follows. Section II will
discuss the IMP method and how the various values of interest
will be calculated. Section III explains the basis for DMD and
the underlying method behind the technique. Section IV will
apply both the DMD and IMP method to large-scale synthetic
grids, in an attempt to understand how each technique per-
forms. Section V will consider how the sampling frequency of
the data impacts the results of each method. Finally, Section VI
will conclude the paper.

II. ITERATIVE MATRIX PENCIL METHOD

The IMP method utilize an iterative approach to reproducing
a large set of signals y(t), represented in the form seen
in (1). Beginning with one signal, the IMP method seeks to
approximate (1) with an equation of the form

M
§(t) = d(t) + Y [Rile"" cos (wit + 0;) 2)

i=1

The primary difference between (1) and (2) is the existence of
a detrend term, d(t). Data detrending is an important aspect
of modal analysis; without it, data may look as though there
are fewer oscillations after a contingency, due to the scale of
the oscillation relative to the scale of the data of interest [9].
As a result of this, data detrending will be considered on a
case-by-case basis, in order to avoid instances where modes
that arc identified are associated with noisc, rather than the
oscillations.

After data detrending, the IMP method begins by selecting
a single signal within all the other given signals. For example,
if we are considering the frequencies of all the buses in a
2000 bus case, we would begin by selecting the signal from
one bus. This signal is used to find the modes of the system
through the Matrix Pencil method, described in Section II-A.

From the modes, the cost functions, which are described
in Section II-B, are then calculated. These cost functions
are a metric of fit; the higher the cost function, the worse
the fit. Thus, the IMP method looks for the signal with the
highest cost function, which indicates that the signal has the
worst fit given the current modes. The signal with the highest
cost function has information that is important to determining
the behavior of the oscillations, but is not being properly
represented in the current set of modes. As a result of this,
the IMP method takes the the signal with the highest cost

function, and uses it in conjunction to the prior signals in
order to calculate a new set of modes.

This procedure is done iteratively; for any user-defined m
amount of iterations, the IMP will continuously follow through
this procedure, including more and more signals. This iterative
approach helps to minimize the amount of computation time
needed to determine the modes, as we are only using a small
subset of all the signals in the system.

A. Matrix Pencil Method

The IMP method is dependent on the Matrix Pencil method,
which begins with creating a Hankel Matrix, denoted by [Y],
which is constructed using measured data y(t), as seen in (3).
The Hankel matirx is an (N — L) x L matrix, where N is the
number of sampled data points, and L is the pencil parameter.
By setting the pencil parameter . = N/2, we note that our
results approach the Cramer-Rao bound, which is a bound
indicating that our result is the most accurate given a noisy
environment [14].

y(0) y(1) y(L)
y(1) y(2) y(L+1)
Y] = : : : G)
y(N-L—-1) y(N—1L) y(N —1)

For multiple signals y,(t), a Hankel Matrix [Y}/] is made for
each signal, and then vertically concatenated into one large
Hankel Matrix [9], which is denoted as [Y”], which can be
seen in (4).

YT=1. “
Y]

The Hankel Matrix may be broken up into two separate
matrices, [Y2] and [Y7]. These matrices are important, as the
eigenvalues of the pencil, defined in (5), help to define our
modes z;, which in turn give the frequencies and dampings
used in (2).

[Va] = A[Y4] )

In order to get [Y7] and [Y3], the IMP method utilizes the
singular value decomposition (SVD) of [Y], in order to reduce
the dimension of the data set. While larger power systems
result in larger dimensional data sets, SVD helps to reduce
the computational load that comes as a result of these larger
data sets, while also maintaining patterns of interest. SVD
results in three matrices; [U], a unitary matrix containing the
eigenvectors of [Y][Y]7, [S], a diagonal matrix containing the
square roots of the eigenvalues of [U] or [V] in descending
order, and [V], another unitary matrix, but this time containing
eigenvectors corresponding to [Y]T[Y].

The right singular matrix, [V], is used to form two matrices,
[Vi] and [V3], which are then used to define [Y;] and [Ys).
To form (V7] and [V3], we define a SVD threshold, ¢, which
acts as a metric to define which singular values are associated
with noise, versus being associated with the actual oscillations



of the signal. Beginning with [S], we consider the ratio of
all singular values relative to the largest singular value, and
compare that to ¢. If the ratio falls below ¢, we remove
the singular value from consideration. Thus, we generate two
separate matrices, [V;] and [V5], defined in (6).

’Uq_l]
[VQ]:[UQ vz U4 ... vq] 6)

We may use the definitions in (6) in order to define our
matrices [Y7] and [Y3] as the following.

Y1) = " V1]

Vil =[v1 w2 w3

[Y2] = [Va] " [VA] @)

The eigenvalues of the matrix pair {[Y2], [Y1]} are the poles
z; of the system, which may be further used to calculate the
damping and angular frequency associated with each mode.
This is done by finding the eigenvalues of the system, A;,
by converting z; to A; through (8), where At is the spacing
between each time point in the input data set.

In z;

8
Al ®)
Finally, in order to calculate the mode shapes, which give us

the amplitude | R;| and phase 6;, we utilize the matrix equation
Z = RY, which can be expanded in (9).

2 = eMiBt

Where: \; =

29 2 ... 2y Ry y(0)

21 2 2 Ry y(1)

. . . = . ©)
P A vl P y(N —1)

B. Cost Function

The cost function is a metric that is used to directly measure
the quality of the reproduced data relative to the actual data.
Defined in (10), we measure the difference between the actual
data y(t) and the reproduced data (¢), and utilize a Euclidean
normalization of the residuals.

eft) = 3111 = 3 lly() — (013

The primary benefit of the cost function is its computation
time; by calculating all of the time cost functions for each
signal, the IMP method is able to identify which signals to
add in each iteration, resulting in a smaller subset of signals
to analyze relative to the larger system.

(10)

III. DYNAMIC MODE DECOMPOSITION

DMD was designed with the intent to quickly extract modes
from large sets of data, and reproduces it in the form seen
in (11).

M
Gm[n] = ul, Z e (11)
i=1
Where m is the signal of interest, n is the current time point,
and M is the number of modes. We also note that u,,, is the

associated row of the left singular matrix [U] that comes as
a result of SVD of [Yy], e; is the eigenvector associated with

the current mode, «; is the DMD amplitude, and p; is the
eigenvalue associated with the current mode.

One of the underlying assumptions of DMD is an approx-
imate linear mapping A between two consecutive points for
the entire time window [11]. This means that for any signal
Y} in a time window, we may express the measurements in
the form seen in (12).

) AN_lyl}
(12)
Thus, we may understand the dynamics of any system by
looking at A. In order to approximate A, we split the data into
two separate matrices, [Yp] and [Y7], which are defined in (13).
These matrices may be assumed to have an approximate linear
mapping A between the two matrices, with a residual error.
However, much like in the IMP method, we utilize a SVD of
[Yo] in order to both project the matrix into a lower dimension
that is computationally simpler to handle and filter the singular
values to avoid modes that are associated with noise. The
filtering occurs in the same manner as the IMP method, where
given a user-determined SVD threshold ¢, we only select
singular values whose ratios relative to the largest singular
value are greater than the threshold.

Ybn = AYrn1 = Yi = {y1, Ay1, A%y, ...

nyl]
Mil=[y v2 s yn]  (13)

The resulting [U], [S], and [V] matrices from SVD are used
in conjunction with [Y7] to define an approximation of A,
A, as seen in (14). This is done to increase the robustness
of the methodology for handling data with noise and other
contaminants [11].

A= [UFmvIs]!

Yol =[yo w1 w2

(14)

The eigenvalues p; and eigenvectors e; of A are found via
an eigendecomposition of A, and are used in (11) to reproduce
data. However, in order to fully reconstruct the data from the
modes found via DMD, we must also determine the amplitude,
«;. This amplitude may be calculated through (15). DMD does
utilize a least-squares optimization approach, so the values for
both the eigenvalues y; and the amplitudes «; are considered
optimal through the minimization of the residue between the
measured data and the reconstructed data [15].

a=ES|v? (15)

It is important to note that DMD reconstructs the signal y(¢)
in terms of discrete-time eigenvalues, whereas the IMP method
reconstructs the signal y(t) using a continuous time format.
However, we may convert these values into the same contin-
uous time eigenvalues used in the IMP method through (16),
where At is the time separation between any two points, where
all the data for DMD is uniformly sampled.

N, = i) Infps| + 5 Zpi

‘ At At
In order to provide a more direct comparison between DMD
and the IMP method, we will consider how DMD calculates

(16)



TABLE I
2000 Bus CASE COST FUNCTION

DMD IMP # of Iterations
I 10 20
Avg c(t) 0.0166  0.0068  0.0023  0.0022
Max c(t)  0.0207 0.0138  0.0042  0.0048
Min ¢(¢)  0.0131  0.0026  0.0011  0.001
t (s) 8.3 4.58 12.75 24.56

the continuous time eigenvalues A;, and how effectively it
recreates the data using these modes. The mode shapes may
be calculated using the same method as (9).

IV. CASE STUDIES

We apply both DMD and the IMP method to two different
case studies. These case studies are synthetic power networks,
which represent properties of actual large-scale power systems,
but do not reveal any information that is considered confiden-
tial [16]-[19]. We begin with a 2000 bus case, which is based
on the footprint of Texas, and transition to a 10,000 bus case,
which is representative of the western United States. Non-
linearity in the system is already considered when generating
data from these synthetic grids.

We compare DMD and IMP based on several statistics.
The average cost function is a measure of the overall fit of
any reproduced data, and gives a gauge on how well the
two methods reproduce all the signals in a large system. The
maximum and minimum cost function indicate the worst and
best fits using the methods, allowing us to not only see how
well the overall system is reproduced, but how strong or how
poor the reproduced data is for the best and worst cases,
respectively. Finally, because DMD has been considered a
modal analysis technique which quickly extracts information
from a set of input data, we also look at how fast each method
is at computing the modes.

A. 2000 Bus Case

In the 2000 bus simulation, the contingency that we use is
a generator opening after one second. The frequency at each
bus is measured for a total of 20s, at a sampling rate of 5 Hz.
Each signal is linearly detrended, and scaled by a factor of its
standard deviation. For consistency, the SVD threshold being
considered for all cases is 0.025.

The results in Table I show a few trends of interest. First
and foremost, we note that DMD does not outperform the
IMP method in regards to accuracy, across any of the three
metrics considered. Even at one iteration, the average cost
function of the signals after one iteration in the IMP method is
59.03% better than that of DMD. This discrepancy in accuracy
is exacerbated further when considering comparisons to the
10 and 20 iteration cases, with differences in the average cost
function being 86.14% and 86.75%, respectively.

When considering the best and worst cases for the tech-
niques, DMD again does not show any improvements over the
IMP method. At 1 iteration, the IMP method has a 33.33%
better max cost function when compared to the max cost

TABLE 1I
10,000 Bus CASE COST FUNCTION

DMD IMP # of Iterations
1 10 20
Average c(t)  0.0256  0.0119  0.0028  0.0024
Max c(t) 0.0410  0.0324  0.0049  0.0079
Min c(t) 0.0214  0.0012  0.0018 0.0010
t (s) 36.68 19.92 58.50 89.39

function of DMD, and this percentage increases to 79.71%
at 10 iterations.

However, while DMD suffers in accuracy, it still maintains
higher speeds when compared to the IMP method at larger
iterations. DMD is slower than one iteration of the IMP
method by 44.82%, but is faster than the IMP method at
10 iterations by 53.61%, and 20 iterations by a much larger
195.90%.

B. 10,000 Bus Case

Similar to the 2000 bus system, the 10,000 bus system
involves a generator being opened at s as the contingency,
while measuring the frequency at every bus for a duration of
20s. There is a linear detrend in this case, with the standard
deviation being used to scale the data. The SVD threshold is
again set to be 0.025.

Table II shows many of the same traits as seen in the 2000
bus case. When considering the average cost function of each
modal analysis technique, we see that DMD again does not
have a lower average cost function when compared to the IMP
method at 1, 10, or 20 iterations. There is a difference of
53.52% for the average cost functions between DMD and the
IMP method at 1 iteration, while there is an 89.06% difference
when we increase the number of iterations in the IMP method
to 10.

We may also visualize the results of the modal analysis
techniques by plotting the reproduced data, and comparing it
to the original data. Figures 1 and 2 show the minimum cost
function for the IMP method and DMD, respectively. When
looking at the results of the IMP method, we note there are
almost no discrepancies between the original data and the
reproduced data. However, when considering the results of
DMD, we see that the reproduced data initially matches the
original data, but then begins to diverge at about 5s.

Furthermore, contours may be used to visualize how the
modal analysis techniques represent the entire grid [20].
Figure 3 shows a contour of the 10 iteration IMP method,
with a color scale of [0,0.005]. The overall cohesive nature
of the contour shows the efficacy of the IMP method when it
comes to matching the original signals of the system. However,
when considering DMD, we note that even the minimum cost
function is larger than the maximum of the IMP method,
meaning the entire contour would show nothing but red, based
on the color scale.

While DMD may be able to determine a set of modes
quickly from a large set of data, the assumption of a linear
mapping between consecutive points is shown to break down
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TABLE III
RESULTS FOR DMD AND IMP AT DIFFERENT SAMPLING FREQUENCIES

Sampling Frequency
5 Hz 10 Hz 15 Hz
Avg c(t) 0.0256  0.0165 0.0129
Max c(t) | 0.041 0.0281  0.0233

DMD 1 Nin ety | 0.0214 00124 00085
t(s) 3668 112.80  245.64
Avg c(f) | 0.0028 0.0024 00019
mp | Maxc(t) | 00049 00038 00033

Min ¢(t) 0.0018  0.0016  0.0014
t(s) 58.5 111.34  215.74

as larger networks with more non-linearities are considered.
The IMP method manages to compensate for any linear as-
sumptions by continuously optimizing the guess of the modes
through the inclusion of other signals per each iteration. This
result shows an important trade-off when considering modal
analysis techniques; being able to identify modes from large
sets of data faster will result in less accurate results.

V. SAMPLING FREQUENCY

While our case studies have shown that the IMP method
generally outperforms DMD as a modal analysis technique in
terms of accuracy, it is important to note that DMD still does
maintain quick mode identification in comparison. In order to
compare the two techniques further, we test the sensitivity of
the two approaches to two separate factors; the SVD threshold,
which we used to determine how many singular values to keep,
and the sampling frequency, which determines the number of
points that are being measured.

Table III shows the results of running DMD and the IMP
method, at 10 iterations, at different sampling frequencies for
the 10,000 bus case. These results show similar trends to
the case studies, but also provides some contrasting data. In
particular, as we increase the sampling frequency from 5 Hz
to 10 Hz, there is a decrease in the average cost function for
DMD of approximately 31.46%, while for the IMP method,
we see a decrease of only 22.45%. However, while DMD does
improve its accuracy by a larger percentage when compared
to the IMP method, we see that there is an increase in
computation time of 76.21s, while the IMP method only takes
52.84s longer at 10 Hz when compared to 5 Hz.

Furthermore, if we increase the sampling frequency to 15
Hz, we see that the average cost function for DMD and the
IMP method decrease by 21.82% and 20.83%, respectively.
This indicates that even at higher frequencies, the rate at which
the two techniques improve their reproduce approaches the
same value. At 15 Hz, the IMP method also has a faster
computation time, calculating the modes 12.17% faster than
DMD does.

While we have visualized the differences in the best fits
between the two techniques in Figures 1 and 2, we may
also use the worst fits as a metric of comparison at a higher
sampling frequency. Figures 4 and 5 show the maximum cost
function at 15 Hz for the IMP method and DMD, respectively.
The IMP method shows very little deviation between the
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original and reproduced data, while the reproduced data from
DMD shows a similar trend in oscillation, but with varying
magnitudes when compared to the original data.

VI. CONCLUSION

One of the first techniques introduced to handle modal anal-
ysis for large power systems was Dynamic Mode Decomposi-
tion, which specialized in the quick calculation of modes, but
at the cost of the accuracy of the reproduced data. The Iterative
Matrix Pencil method, while only being recently applied to
large power systems, has shown considerable accuracy and
speed when handling large-scale synthetic grids.

The primary advantages of the Iterative Matrix Pencil
method may be split into two main concepts; the number
of signals required to accurately calculate the modes, and
the speed at which the modes are calculated. Because the
IMP method begins with one signal, and is constrained by
a user-determined number of iterations, the number of signals

required to calculate the modes is low, relative to the size of the
system. Results found here and previous research [13] show
that accurate reproduction of data may be performed with the
use of only 10-15 signals. As an extension of this, because
the IMP method requires so few signals, the time needed to
calculate the modes decreases as a direct result.

Further work may seek to compare the IMP method and
DMD in situations that do not involve synthetic grids; applying
both techniques to data that is of lesser quality due to missing
information or more noise may be tested. Applications of
these results include using modal analysis techniques to help
identify and characterize the oscillations that occur as a result
of natural disasters, along with allowing for adjustments of
remedial controls in large power systems.
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