Sensitivity of Modes from Modal Analysis of
Electric Grids

Wei Trinh, Thomas J Overbye
Department of Electrical and Computer Engineering
Texas A& M University, College Station, TX, USA

{weitl, overbye}@ tamu.edu

Abstract—A sensitivity analysis is applied to the mode and
mode shape calculations of the Matrix Pencil method, in order to
measure the robustness of the results. The methodology has been
proven to work quickly and accurately when identifying modes,
but there has not been testing regarding the ability of the MP
method to operate under different time windows and sampling
frequencies. A variety of signals are used for testing, including
both signals with known and unknown modes in conjunction with
the moving time windows and sampling frequencies.

I. INTRODUCTION

Modal analysis techniques exist as a tool used to analyze
signals from systems, and break them down into their con-
stituent components for further analysis, such as examining the
small signal stability of systems [1]. In the North American
power grid, the frequency is intended to stay close to 60 Hz,
but due to constantly fluctuating loads, it maintains a pseudo-
steady state, where the operating point fluctuates [2]. However,
it is also vulnerable to perturbations from larger sources of
oscillations, such as generators tripping and demand spiking.

Fig. 1. Synthetic Texas Grid [3]

Large, interconnected grids, like the one seen in Figure 1,
have many avenues in which instability may be introduced. In
both post-event analysis and real time operation, consistency
in results is key. Thus, it is important to have accurate and
robust analysis techniques, especially in situations where they
are used to design grids that are secure against voltage stability
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constraints  [4] or when developing control methods for
maintaining stable grid operation [1].

While modal analysis techniques may be split into either
model-based or signal-based approaches, with the advent of
PMUs and large amounts of data being produced for large
systems, model-based modal analysis is difficult to implement,
given the amount of components necessary to consider. As
such, this work will focus on signal-based modal analysis,
looking at the Matrix Pencil (MP) method. As the name
entails, the MP method utilizes eigenvalues and matrix analysis
techniques to estimate the modes of a system [5].

More generally, the MP method looks to approximate a
signal, denoted by y(t), where:

M
y(t) = > Rie*' +n(t) 0<t<T (1)
i=1

Here, z; is a mode of the system, associated with a damping
o; and angular frequency w;. There are M modes in the
system, and each signal has a corresponding mode shape,
which consists of a magnitude |R;| and phase angle 6;. Finally,
there is some noise associated with each signal, which is
denoted by n(t). In order to approximate y(t), the MP method
generates a similar looking function, defined as ¢(¢), where:
M
g(t) = d(t) + Z |R;|e?"" cos (wit + 6;) 2)
i=1
Here, the primary differentiation made between Equations (1)
and (2) is the d(t) term, which refers to the detrending term.

Sensitivity of modal analysis results can be found in a
variety of work; [6] looks at the sensitivity of resonant modes
with respect to different network components, which are then
used to identify and efficiently mitigate problems that arise in
the grid. [4] uses the sensitivity of voltage to reactive power
injections as a measure of voltage stability or instability.

The MP method and its applications in power systems has
been discussed in previous works [7], [8], and has been proven
to be better than existing techniques like Prony analysis at
handling data with more noise [9]. It has also been integrated
into new power system modal analysis tools [10], along with
being extended into techniques developed to handle large-scale
synthetic networks [11].

However, these applications of the MP method all operate
under a similar assumption that the input data to the method



is the result of a transient stability study, or a full signal over
an entire intended time frame. In real time grid operation,
this is a type of luxury that is not always feasible, and as
such, it is important to test the MP method against smaller
and potentially more dynamic time windows and sampling
frequencies to ensure there are consistent results.

The rest of the paper will go as follows; Section II discusses
the approach and types of data used to test the MP method.
Section III shows the results of the analysis, along with a
discussion regarding the implication of said results. Section
IV will conclude the paper, and discuss further work.

II. METHODOLOGY
A. The Matrix Pencil Method

In order to understand what exactly is being tested, an
understanding of the MP method must be established. A full
mathematical description of the technique can be found in [5],
but a brief description of the technique is as follows.

As mentioned in Section I, given an input signal of form
y(t), the MP method looks to make a reconstruction of the
signal, §(t), whose form is given in (2). This begins with the
construction of what is known as a Hankel matrix. Denoted
as [Y], the Hankel matrix is defined in (3), and is constructed
using the input data y(¢). The matrix has two variables of note;
N,which represents the number of sampled data points, and L,
which is known as the pencil parameter. The pencil parameter
is a tune-able parameter which is utilized to mitigate the effects
of noise, but results in [8] indicate that the most optimal value
for L is N /2, which results in the performance of the technique
approaching the Cramer-Rao bound. It should also be noted
that for multiple signals, a Hankel matrix is generated for each
one, and vertically concatenated.

y(0) y(1) y(L)
y(1) y(2) y(L+1)
[Y]= : : : G)
y(N—-L—-1) y(N—1L) y(N —1)

The term pencil” in the MP method refers to the matrix
pair ([Y1],[Y2]), whose eigenvalues correspond to the modes
of the system, z;. The definitions for [Y;] and [Y3] are
generated using Singular Value Decomposition, or SVD for
short. SVD as a technique exists primarily to reduce the
dimension of the a data set while maintaining the behaviors
and trends of the higher dimensional data set. This helps to
alleviate computational burden while preserving the accuracy
of analysis applied to the resultant matrix.

Mathematically, SVD results in three matrices; [U], [S],
and [V]. The matrices [U] and [V] contain the eigenvectors
for [Y][Y]T and [Y]T[Y], respectively. On the other hand,
[S] is a diagonal matrix comprised of the square roots of
the eigenvalues of [Y], which are known as singular values.
In order to mitigate the effects of noise, a SVD threshold,
denoted as g, is used. Because [S] orders the singular values in
descending order, the ratio of each singular value with respect

to the largest one is considered. If any ratio falls beneath g, the
corresponding singular value is removed from consideration.
This helps to filter out singular values associated with noise
rather than actual oscillations of concern. The results of SVD
after the threshold filtering are used to generate two matrices,
[V1] and [V3], whose definitions are seen in (4).
[Vl] = [Ul V2 U3 Uq—l]
[VQ] = [’Ug Vy Vg ... ’Uq] (4)

The matrices [V;] and [V] are then used to construct [Y7]
and [Y2], defined in (3).

Vi) =T [Ya] = [Va]"[VA] ©)

The eigenvalues of the matrix pair ([Y7], [Y2]) correspond to

the modes of the system, and are denoted as z;. In order to

get the damping and frequency of the mode, z; is converted
to \; using (6), where \; = o; + jw;. Here, At refers to the
spacing between the data points.

In (2;)
At ©
The final component that needs to be considered are the

mode shapes. These can be quickly solved for using a simple

matrix equation ZR =Y, which is expanded upon in (7).

Z; =€

29 29 ... 2y Ry y(0)
- B B O B
: = . (N
2] -1 zév_l z%_l R y(N —1)

B. Robust Result Testing

As mentioned in Section I, the input data, which we will
denote as Y, in all prior work, has been the full results from a
transient stability study, or is a signal over an entire intended
time frame. In order to test the consistency of the MP method
against different time frames, the first data set used will be
the output from a single signal with known frequencies and
dampings. The MP method will then be applied to this signal
over varying time frames and sampling frequencies, in order
to measure the consistency of the results. These are the types
of signals that are more common in the grid, as the oscillations
seen in standard operation and extreme events are not known
to be characterized by singular sine or cosine functions. It
is important to note here that the frequencies and dampings
of the signal are flexible, and will be tested with various
combinations of high and low frequencies, along with different
dampings that result in slower or quicker oscillation decaying.

This approach is then extended to two signals with relatively
close frequencies and dampings, in order to see whether or
not the same behaviors seen with one signal are consistent
with multiple signals. Finally, we apply the MP method with
the same varying time frames and sampling frequencies to
a simplified power system network, again in an attempt to
observe if there are similar trends as before.

In order to measure consistency, there are a few metrics that
can be used. First, the cost functions of the signals may be



used, in order to see whether or not our variations in input
data will result in more or less accurate results. The cost
function ¢(t) is a direct measure of accuracy of the reproduced
signal §(t) against the original signal y(¢), and is defined in
Equation 8.

o) = Sl = Sl — 90l ®
In the single and double signal cases, since the modes are
known, we may also gauge the accuracy simply by observing
the modes that are a result from the MP method, and com-
paring them against what the expected values are. For moving
time windows, the evolution of the modes will be observed. In
particular, since the dampings are fixed, as the window moves
further along in the signal, modes with higher damping should
tend to O faster than modes with lower damping.

Finally, this methodology will be extended to example
systems; while variations were built on the MP method to
handle large systems [11], this work will be applying the
MP method on smaller grids, in order to more effectively
measure the ability of the MP method to accurately reproduce
signals without concerns of overloading the technique with
large quantities of data it was not originally developed to
manage. More specifically, work will be performed on the
WSCC 9-Bus System, an equivalent system that approximates
the Western System Coordinating Council (WSCC) with nine
buses and 3 generators [12].

ITI. RESULTS
A. Sampling Frequency

Sampling frequency refers to how often the input data to
the MP method is sampled, which affects the resolution of the
data. Higher sampling frequencies indicate higher amounts of
data being taken in. While this would lead to more accurate
results, there are also trade-offs in computational speed. As
such, testing the MP method under differing sampling fre-
quencies allows a glimpse into whether or not the technique
is capable of producing consistent results despite differences
in the input data.

1) I Signal Example: We start by generating a signal with
four known frequencies and different dampings. The set modes
are given in Table L.

TABLE I
FIXED MODES FOR 1 SIGNAL

Mode | Frequency (Hz) o

1 0.25 0.5
2 0.4 0.5
3 0.6 0.05
4 0.8 0.05

Creating a signal with a frequency of 30 Hz over a 30
second simulation results in the signal seen in Figure 2. The
goal is to compare results from different sampling frequencies,
and testing to see if there are any significant differences (either
improvements or failures), between the different sampling
frequencies. The two resampling frequencies tested will be

Frequency (pu}

0 5 10 15 20 25 30
Time (s)

Fig. 2. Combined Signal with 4 Different Modes

at 20 Hz and 10 Hz. The results of the MP method applied at
these frequencies, compared to the original data, can be seen
in Table II.

From a preliminary glance, it’s seen that the three different
sampling frequencies all produce similar results, although
the speed of computation for higher sampling frequencies is
obviously higher due to there being more data to process.
Furthermore, there are slight differences in the cost func-
tions across the different sampling frequencies. This can be
attributed again to the larger quantity of data being processed
at 30 Hz when compared to 20 or 10 Hz, but differences in
results are minor.

This can be further seen by looking at the reproduced results
in graphical format; Figure 3 shows the different reproductions
for each sampling frequency. As can be seen, for all cases,
most of the signal is being very well matched, with some
minor deviations towards the end when using the 30 Hz data,
which is reflected in the cost functions shown in Table II.

44 —— Original Data
10 Hz

- 20Hz

39 30 Hz

Frequency (pu)

T T T T T T T
0 5 10 15 20 25 30
Time (s)

Fig. 3. Reproduced Data vs Original Data for Different Sampling Frequencies
in One Signal Approach

2) 2 Signal Example: Now, the focus shifts to examining
multiple signals. In this case, two signals are generated, with
very similar frequencies. The goal here is to check whether
or not the consistencies observed in the 1 signal example still
hold with two signals of relatively close frequencies.



TABLE II
SAMPLING FREQUENCY RESULTS FOR ONE SIGNAL

30 Hz 20 Hz 10 Hz
Modes (Hz) 0.8 0.599 0.396 0.25 0 0.8 0.6 0.4 0.25 0 0.8 0.6 0.4 0.25 0
Damping % 0.997 1.329 20948 27956 100 | 0.995 1.326  19.512  30.331 100 | 0.995 1.326  19.512  30.331 100
Cost Function 0.0059 0 0
Time Taken (s) 0.165 0.067 0.028
TABLE III fault on the transmission line between buses 5 and 7 at 1s,
FIXED MODES FOR 2 SIGNALS which will be cleared at 1.05s. Here, instead of looking at bus
Signal 1 Signal 2 frequency, we will instead look at bus voltage magnitude for
Mode | Frequency (Hz) o Frequency (Hz) o each bus.
1 0.25 0.5 0.25 0.5
2 0.4 0.5 0.3 0.5 .
3 0.6 0.05 0.6 0.05 B Bus2 us Bus8 Bus9 Bus3 .
4 0.8 0.05 0.75 0.05 @)\-;f_» s =)
15:_4 1.017pu 85 MW
5 Mvar 1.025 pu 1.027 pu 1.033pu  1.025 pu -11 Mvar
44 —— Signal 1
— Signal 2 }_annup 100MW  Bus6 1.012 pu
34 1254MwW
Ti 1.025 pu gn|Mw
5 24 30dMvar
E‘ Bus1 —R— 1.040 pu
§ 19 "/\‘\
g (=) 7
= N
o4
Fig. 5. WSCC 9 Bus System
ey
Applying the aforementioned contingency results in the

T T T T
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Time (s)

10
Fig. 4. Two Signal Example

Table III has the fixed modes for the two signals that are
generated. The associated plot is seen in Figure 4. Here, the
second signal introduced has equivalent damping to the first
signal, but the values for two of the frequencies are slightly
lower than the first signal. The interest here is in whether or
not the MP method manages to pick up these unique modes,
and whether or not the introduction of more signals with close
frequencies impacts the quality of the results.

Following the one signal example, Table IV shows the
results of the MP method applied to both signals. Here we see
that the technique picks up almost every unique mode, with the
exception of the higher damped modes, of which it only makes
rough approximations that are close to the expected values.
Looking at the cost functions, the cost functions for each
signal are still low, even if they are not 0 as was the case with
the single signal approach. The results in Table IV indicate
that the MP method still performs accurately in the presence
of multiple signals, but does make some approximations in
regards to higher damped modes, as opposed to the single
signal approach which accurately identified each mode.

3) WSCC 9 Bus System: The final case study will be the
WSCC 9 Bus System [12], to test the MP method on signals
whose modes are not known exactly. The case is seen in
Figure 5and the contingency of interest will be a 3 phase

voltage magnitudes seen in Figure 6. The behavior of the
voltages are all relatively similar, and it is very apparent
when the contingency occurs, as the voltages drop to 0.
Applying the MP method to this signal at varying sampling
frequencies gives the results seen in Table V. Initial looks
at this table indicate something much different from prior
examples, showing an excessively large amount of modes with
cost functions that are orders of magnitude larger than prior
examples.

Voltage (p.u.)

10 20

15
Time (s)
Fig. 6. WSCC 9 Bus System Bus Voltage

Looking at the lowest cost function signal from the 30 Hz
resampling, we note that the extreme nature of the voltage
drop, going from a constant value to less than half of it’s
original value instantaneously at the time of the event, coupled



TABLE IV
SAMPLING FREQUENCY RESULTS FOR TWO SIGNALS

30 Hz 20 Hz 10 Hz
Modes (Hz) 0.8 0.75 0.6 0.389 0.8 0.75 0.6 0.389 0.8 0.75 0.6 0.39
0.267 0 0 0.267 0 0 0.267 0 0
Damping % 0.986 1.059  1.318 16.328 0.986 1.059 1.318 16.330 0.986 1.059  1.319 16.339
31.726 100 -100 31.705 100 -100 31.653 100 -100
Cost Function Signal 1: 0.000363 Signal 1: 0.000443 Signal 1: 0.000623
Signal 2: 0.000221 Signal 2: 0.000271 Signal 2: 0.000385
Time Taken 0.249 0.129 0.0625
TABLE V 4
FULL MP RESULTS FOR 9 BUS CASE
30 Hz 20 Hz 10 Hz *]
# of Modes 21 17 11
Cost Function Highest: 0.100 | Highest: 0.0021 | Highest: 0.0030 3 2
Lowest: 0.0673 Lowest: 0.0013 Lowest: 0.0018 E.
Time Taken (s) 2.602 1.18 0.27 § 1
o
8
.l
with the fact that the MP method is also trying to accurately
match the oscillations afterwards, results in larger magnitude =
cost functions than those in Tables II and IV. , ‘ , ‘ ,
As such, the focus of the analysis is shifted to when the fault ° ° e

is cleared, at 1.05s, where the oscillatory behavior while the
system tries to re-stabilize begins. Applying the MP method
to this adjusted time window gives the results in Table VI.
These number of modes has stabilized, and the associated cost
functions are lower than the full counterparts. The exception
to this is the 10 Hz resampling, which has the appearance of
a 5 Hz mode along with much higher cost functions in this
adjusted time frame. This would imply that lower sampling
frequencies can result in quite a bit of lost information, as the
other modes are similar to the 20 Hz and 30 Hz resampling.

B. Moving Time Window

As mentioned before, one of the assumptions so far in the
MP method is the notion that all the data that is to be processed
is already available. While this is convenient and mostly holds
true for post event analysis, if modal analysis was to be used in
real-time power system operation, say, during an event, then
not all the data is readily available. Thus, the goal in this
section is to test the ability of the MP method to accurately
observe the behaviors of a signal as it moves over the signal,
which is similar to processing data live.

1) I Signal Example: Using the same one signal example as
when testing the sampling frequency, two examples of window
lengths can be seen in Figure 7. We apply the MP method
with a time window of 10 seconds, which moves 1 second
over every instance, ie: the second time window will be from
1 second to 11 seconds, the third from 2 to 12, etc. The goal
here it to observe whether or not the quality of the results
from the MP method suffers as it moves along the signal, and
to observe the evolution of the modes. In order to show this,
a plot of the modes over each time window can be seen in
Figure 8. What is particularly interesting about these results is
the fact that the damping of the modes can be observed over

Fig. 7. Different Time Windows in One Signal Approach

time. The 0.25 and 0.4 modes, which have a ¢ value of 0.5,
visibly damp out faster than the 0.6 and 0.8 modes, which
have a o value of 0.05, which proves that a larger o value
indicates that the signal will damp out faster.

0.8

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6

o
~

o
o

Frequency (Hz)

o o o o

N w - w
A

Iod
[

=4
o

— T T T T T T T
12 3 45 6 78 910111213 141516 17 18 19 20
Time Window

Fig. 8. Modes for Each Time Window in One Signal Approach

2) 2 Signal Example: Using the signals from Table III, the
property of interest is again the evolution of the modes over
the time windows, and whether or not the MP method properly
tracks the damping of the modes over time. The resulting plot
can be seen in Figure 9. Similar to Figure 8, we see that
the larger modes that had lower damping are still maintained
throughout each time window, but the higher damped modes
decay quickly and go to 0, which indicates that the results are
still consistent from the MP method.



TABLE VI
ADIJUSTED MP RESULTS FOR 9 BUS CASE

30 Hz 20 Hz 10 Hz
Modes (Hz) 1.992 0.995  0.904 0.650 1.979 0.984  0.886 0.652 1.949 0.978 0.751 0.197
0.205 0.011 0 0.202 0.010 0 0.00265 5 0
Damping % 3.288 5.141 7.281  42.532 3.459 5.161 8.595  48.394 2.779 4.339 20.334 35942
35.674  -8.098 100 35.204  -9.296 100 -24.443  77.612 100
Cost Function Highest: 0.00310 Highest: 0.00168 Highest: 0.00109
Lowest: 0.00182 Lowest: 0.00085 Lowest: 0.00259
Time Taken (s) 2.464 1.006 0.24
- —— C. Conclusion
07 o aema The goal of this work was to look at the performance
o = :“3“; of the MP method under varying sampling frequencies and
.6 f— ode
— Mode s it’s ability to track modes when applying the method to a
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Fig. 9. Modes for Each Time Window in Two Signal Approach

3) WSCC 9 Bus System: Applying the same methodology
to the adjusted WSCC 9 Bus System, we get the results seen
in Figure 10. Here, we see similar behavior to both prior
examples, where some modes damp out quicker than others.
However, it should be noted that in this case the modes are
not exactly similar to the modes found in Table VI, as was
the case for the 1 and 2 signal cases. This is primarily due to
the fact that the signals in this case are much more complex,
including non-zero phase shifts and non-unitary magnitudes,
so the modes are not explicitly defined as in synthetically
generated data, but there are still matching modes that are
clearly defined, such as the approximately 1 Hz mode and the

0.2 Hz mode.
1

— T — T
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19
Time Window
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0.75 1

0.50 4

0.25 4

0.00 4

Fig. 10. Modes for Each Time Window in WSCC 9 Bus Case

moving time window. The MP method is shown to accurately
identify modes over different signals and different sampling
frequencies, including synthetically generated data where the
modes are known, and simpler cases, such as the WSCC 9-
Bus system. It is also shown that as the MP method is applied
over a sliding time window, it also observes the behavior of
modes of the system that decay over time. A base assumption
of prior works involving the MP method assumed that all of
the data was available to process, but this paper also shows
that the MP method allows for accurate tracking of modes over
time, without need of all the data from an event. Future work
will involve utilizing this technique in further complex cases in
other implementations, looking to observe the nature of system
modes and their behavior, along with possible implementations
in real-time system monitoring.
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