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Overview

* Electric grids are in a time of rapid transition, with
lots of positive developments. It is a very exciting
time to be in the field! However, there are also lots
of challenges.

To meet these challenges we need to widely
leverage tools from other domains and make them
useful

This webinar presents one such tool, the application
of measurement-based modal analysis techniques
for large-scale electric grids

MY




Signals

Throughout the talk I'll be using the term “signal,”
which has several definitions
A definition from Merrian-Webster Is

— “A detectable physical quantity or impulse by which
messages or information can be transmitted.”

A common electrical engineering definition is “any
time-varying quantity”

Our focus today Is on such time-varying signals,
particularly associated with oscillations




Osclllations

* An oscillation is just a repetitive motion that can be
either undamped, positively damped (decaying with
time) or negatively damped (growing with time)

« If the oscillation can be written as a sinusoid then

e (acos(a)t)+bsin (a)t)) =e“'Ccos(awt+6)

where C =+ A? + B? and ¢ = tan (_—bj

a

* The damping ratio Is The percent damping is just
g the damping ratio multiplied
&= — by 100; goal is sufficiently
Ja' + positive damping

-y -




Power System Oscillations

* Power systems can experience a wide range of
oscillations, ranging from highly damped and high
frequency switching transients to sustained low
frequency (< 2 Hz) inter-area oscillations affecting an
entire interconnect

« Types of oscillations include
Transients: Usually high frequency and highly damped
Local plant: Usually from 1 to 5 Hz
Inter-area oscillations: From 0.15to 1 Hz
Slower dynamics: Such as AGC, less than 0.15 Hz
Subsynchronous resonance: 10 to 50 Hz (less than

synchronous) T
A|M




Example Oscillations

* The left graph shows an oscillation that was
observed during a 1996 WECC Blackout, the right
from the 8/14/2003 blackout
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Small Signal Analysis and
Measurement-Based Modal Analysis

« Small signal analysis has been used for decades to
determine power system frequency response

— It is a model-based approach that considers the properties
of a power system, linearized about an operating point

 Measurement-based modal analysis determines the

observed dynamic properties of a system

— Input can either be measurements from devices (such as
PMUSs) or dynamic simulation results

— The same approach can be used regardless of the
measurement source

* Focus here Is on the measurement-based approach

MY




Ring-down Modal Analysis

* Ring-down analysis seeks to determine the
frequency and damping of key power system
modes following some disturbance

There are several different techniques, with the
Prony approach the oldest (from 1795)

Regardless of technique, the goal is to represent
the response of a sampled signal as a set of
exponentially damped sinusoidals (modes)

g
y(t) =Y Ae” cos(wt+¢) Damping (%)= ———x100
=1

a’ +w
i




Where We Are Going:

Extracting the Modes from Signals

« The goal is to gain information about the electric
grid by extracting modal information from its signals
— The frequency and damping of the modes is key

* The premise is we’ll be able to reproduce a complex
signal, over a period of time, as a set a of sinusoidal

modes

— We’'ll also allow for linear
1 . A | " I | w
detrending N | .”' L

‘ |
lll‘ 'f. ’\ . | I ] ll‘ [ '
A I.lll ‘ '4 ‘ ‘

; |
‘ ‘.i | 'l' | | | |
0.1t + cos(2m2t) .'.I‘ |--|.'~: AIAIRIRIATRIAINAI




Example: The Summation of two

damped exponentials
* This example — | T
was created by plot e 0P cos(10 x) + e 0122 cos‘8.5 X + -8-)
going from the
modes to
a signal

Plot:

We'll be going
In the opposite
direction (i.e.,
from a
measured
signal to the
modes)




Some Reasonable Expectations

Verifiable to show how well the modes match the

original signal(s)

— We’ll show this

Flexible to handle between one and many signals
— We’ll go up to simultaneously considering 40,000 signals
Fast

— What is presented will be, with a discussion of the
computational scaling

Easy to use

— This is software implementation specific; results shown here
were done using the modal analysis tool integrated into
PowerWorld Simulator (version 22) m




Example: One Signal

This could be any signal; image shows the result of the
-, original signal (blue) and the reproduced signal (red)

Start Time Used  End Time Used  Time Window
| 3.000000| | 10.000000|

Contingency |My Transient Contingency

Object |Gen ‘Bus1_16.50' "1

Field |T‘55peed

Statistics Modes and Damping  Object Fields

Undamped Modes A (constant) B (linear) C {quadratic)

|:| Trend 1o0| [ 0.0000617] | 0.0]

e % ‘>| *_0-8 ;0_8 ?&n Records = Set = Columns - ' .E' "%’EE' ' sa%'ﬁ; i) - ﬁ Options =

Modes for Selected Signal Update Auto

1.0012

Mode Magnitude|Magnitude| Angle Rank Mode Mode Mode
Include End Frequency [Damping % Lambda
Reproduce 1.0008
YES 0.00166 0.0000643 0.171 39.67 -0.465

YES 0.00114 0.0000256 ) 0.000 100.00 -0.543 1.0008
YES 0.00087 0.0000488 1.364 4,98 0427

YES 0.0000167  0.000243 0.000  -100.00 0.383 1.0004
VES g~ 0.0000223 000000445 2.017 £.99 -0.888 10002

1.001

1

& 8 7

¥ — Raw Signal W == Reproduced Signal

Cancel




Verification:
Linear Trend Line

Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10
| 3.000000 | 10.000000

Result Analysis Signal

Contingency |My Transient Contingency

Object |Gen ‘Bus1_16.50 "1

Field |T‘55peed

Statistics Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C {quadratic)

|:| Trend | 1.00| [ 0.0000617] | 0.0]
SORT

= % ‘>||‘f' *_.58 ;0_8 f&n Records = Set = Columns - " .EY "gﬁ' Y [HE (- ﬁ Options

Modes for Selected Signal pdate [«] Auto

1.0012
Mode Magnitude|Magnitude| Angle Rank Mode Mode Mode 1.001
Include End Frequency |Damping % Lambda
Reproduce| 1.0008
HO gl 0.00166 0.0000643 11115 0,171 39.67 -0.465
NO 0.00114 0,0000256 0.00 0.000 100,00 -0.543 1.0006
NO 0.00097 0.0000438 69,05 1.364 4,93 -0.427
NO 0.0000167 0.000243  -180.00 . 0.000  -100.00 0.383 1.0004
NO 0.0000223 J000000445 -59.64 2017 699  -0.888 1 0002

1

5 & 7

W =— Raw Signal W == Reproduced Signal

Cancel
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Verification:
Linear Trend Line + One Mode

Result Analysis Signal
Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10
| 3.000000| | 10.000000

Contingency |My Transient Contingency

Object |Gen ‘Bus1_16.50 "1

Field |T‘55peed

Statistics Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C {quadratic)

|:| Trend | 1.00| [ 0.0000617] | 0.0]
SORT

= % ‘>||‘f' *_.58 ;0_8 f&n Records = Set = Columns - " .EY "gﬁ' Y [HE (- ﬁ Options

Modes for Selected Signal pdate [«] Auto

1.0012

Mode Magnitude|Magnitude| Angle Rank Mode Mode Mode
Include End Frequency |Damping % Lambda
Reproduce| 1.0008
WES gl 0.00166 0.0000643 11115 0,171 39.67 -0.465

NO 0.00114 0.0000256 0.00 0.000 10000 -0.543 1.0008
NO 0.00097 0.0000438 69,05 1.364 4,93 -0.427 1.0004
NO 0.0000167  0.000243 -180.00 . 0.000 -100.00 0.383

NC 0.0000223 3000000445 -59.64 2.017 6.99 -0.888 1.0002

1.001

1

& 7

W =— Raw Signal W == Reproduced Signal

Cancel
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Verification:
Linear Trend Line + Two Modes

Result Analysis Signal

Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10
| 3.000000 | 10.000000

Contingency |My Transient Contingency

Object |Gen ‘Bus1_16.50 "1

Field |T‘55peed

Statistics Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C {quadratic)

|:| Trend | 1.00| [ 0.0000617] | 0.0]
SORT

= % ‘>||‘f' *_.58 ;0_8 f&n Records = Set = Columns - " .EY "gﬁ' Y [HE (- ﬁ Options

Modes for Selected Signal pdate [«] Auto

1.0012

Mode Magnitude|Magnitude| Angle Rank Mode Mode Mode

Include End Frequency |Damping % Lambda
Reproduce|

YES 0.00166 0.0000643 11115 0,171 39.67 -0.465
[ 0.00114 0,0000256 0.00 0.000 100,00 -0.543 1.0006

0.00097 0.0000438 69,05 1.364 4,93 -0.427

0.0000167 0.000243  -180.00 . 0.000  -100.00 0.383 1.0004
0.0000223 J000000445 -59.64 2017 699  -0.888 1 0002

1.001

1.0008

1

5 & 7

W =— Raw Signal W == Reproduced Signal

Cancel
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Verification:
Linear Trend Line + Three Modes

Result Analysis Signal

Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10
| 3.000000 | 10.000000

Contingency |My Transient Contingency

Object |Gen ‘Bus1_16.50 "1

Field |T‘55peed

Statistics Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C {quadratic)

|:| Trend | 1.00| [ 0.0000617] | 0.0]

T B Ak %0 5% f&n Records ~ Set~ Columns ~ [Eg- {0 A, B sa%'?é; fig -~ B Options +

Modes for Selected Signal pdate [«] Auto

1.0012

Mode Magnitude|Magnitude| Angle Rank Mode Mode Mode

Include End Frequency |Damping % Lambda
Reproduce|

YES 0.00166 0.0000643 11115 0,171 39.67 -0.465
YES 0.00114 0,0000256 0.00 0.000 100,00 -0.543 1.0006
NO 0.00097 0.0000438 69,05 1.364 4,93 -0.427

[[F=__o-| 0.0000167 0.000243  -180.00 . 0.000 10000 0333 1.0004
0 0.0000223 J000000445 -59.64 2017 699  -0.888 1 0002

1.001

1.0008

1

5 & 7

W =— Raw Signal W == Reproduced Signal

Cancel
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Verification:
Linear Trend Line + Four Modes

Result Analysis Signal

Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10
| 3.000000 | 10.000000

Contingency |My Transient Contingency

Object |Gen ‘Bus1_16.50 "1

Field |T‘55peed

Statistics Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C {quadratic)

|:| Trend | 1.00| [ 0.0000617] | 0.0]
SORT

= % ‘>||‘f' *_.58 ;0_8 f&n Records = Set = Columns - " .EY "gﬁ' Y [HE (- ﬁ Options

Modes for Selected Signal pdate [«] Auto

1.0012

Mode Magnitude|Magnitude| Angle Rank Mode Mode Mode
Include End Frequency |Damping % Lambda
Reproduce| 1.0008
VES 0.00166 0.0000643 111,15 0.171 39.67 -0.465
YES 0.00114 0.0000256 0.00 0.000 100.00 -0.543 1.0008
VES 0.00097 0.0000433 £9.05 1,364 493 -0.427
D.0000167 0.000243  -180.00 . 0000 -100.00 0.383 1.0004
0.0000223 )0D0000445 59,64 2,017 6.99 -0.388 1 0002

1.001

1

5 & 7

W =— Raw Signal W == Reproduced Signal

Cancel
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Verification:
Linear Trend Line + Five Modes

Result Analysis Signal

Start Time Used  End Time Used  Time Window |Gen Speed 3 - 10
| 3.000000 | 10.000000

Contingency |My Transient Contingency

Object |Gen ‘Bus1_16.50 "1

Field |T‘55peed

Statistics Modes and Damping  Object Fields
Undamped Modes A (constant) B (linear) C {quadratic)

|:| Trend | 1.00| [ 0.0000617] | 0.0]

= % ‘>||‘f' *_.58 ;0_8 f&n Records = Set = Columns - " .EY "gﬁ' ===l sa%'?é; i)~ ﬁ Options

Modes for Selected Signal pdate [«] Auto

1.0012

Mode Magnitude|Magnitude| Angle Rank Mode Mode Mode 1.001
Include End Frequency |Damping % Lambda
Reproduce| 1.0008
VES 0.00166 0.0000643 111,15 0.171 39.67 -0.465
YES 0.00114 0.0000256 0.00 0.000 100.00 -0.543 1.0008
YES 0.00097 0.0000433 £9.05 1,364 493 -0.427
YES D.0000167 0.000243  -180.00 . 0000 -100.00 0.383 1.0004
[FE= 5| 0.0000223 3000000445 -59.64 2017 699  -0.888 1 0002

1

It iIs hard to tell a difference
on this one, illustrating that 2RI

W =— Raw Signal W == Reproduced Signal

modes manifest differently
In different signals

Cancel
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A Larger Example We'll Finish With

Applying the developed techniques to the response of all
43,400 substation frequencies from an 110,000 bus electric
grid(20 million plus values)

&0 7 R [

Frequency (Hz)

w18 228 28 30
Simulation Time (Seconds) AI‘M




Measurement-Based Modal Analysis

« There are a number of different approaches

* The idea of all techniques is to approximate a
signal, y,(t), by the sum of other, simpler signals
(basis functions)

— Basis functions are usually exponentials, with linear and
guadratic functions used to detrend the signal

— Properties of the original signal can be quantified from
basis function properties

« Examples are frequency and damping
— Signal is considered over time with t=0 as the start

* Approaches sample the original signal y,(t)

MY




Measurement-Based Modal Analysis

Vector y consists of m uniformly sampled
points from y,.(t) at a sampling value of AT,
starting with t=0, with values y; for j=1...m

— Times are then t= (J-1)AT

— At each time point |, the approximation of y; Is

J,(t).0)= bt )

where a Is a vector with the real and imaginary eigenvalue components,

with ¢ (t;,a) = e for a; corresponding to a real eigenvalue, and
6 (t;, @) =e™cos(a;,qt;) and ¢, (a) =e™sin(a;,,t )

for a complex eigenvector value
AT

i+1




Measurement-Based Modal Analysis

* Error (residual) value at each point | is
rj (tj’a) — yj _9j(tj’a)
* The closeness of the fit can be quantified using the
Euclidean norm of the residuals

1 & . 5 _E 2
E;(yj o yj (tj’a)) — ZHr(a)Hz

.« Hence we need to determine o, and b

J,(t,0)= > b0




Sampling Rate and Aliasing

* The Nyquist-Shannon sampling theory requires
sampling at twice the highest desired frequency
— For example, to see a 5 Hz frequency we need to sample the
signal at a rate of at least 10 Hz
« Sampling shifts the frequency spectrum by 1/T (where
T Is the sample time), which causes frequency overlap

* This is known as aliasing, which
can cause a high frequency NG
signal to appear to be a lower freqt | v

pass filters

MY




One Solution Approach:
The Matrix Pencil Method

There are several algorithms for finding the
modes. We'll use the Matrix Pencil Method

— This Is a newer technique for determining modes from
noisy signals (from about 1990, introduced to power
system problems in 2005); it is an alternative to the
Prony Method (which dates back to 1795, introduced
Into power in 1990 by Hauer, Demeure and Scharf)

Given m samples, with L=m/2, the first step is to form the Hankel

Matrix, Y such that - .
Vi Yo o Vi

- . Y2 Y3  Yie
This not a sparse matrix ¥ =| - S

ymL Yoo ym_

Refernece: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction,” IEEE Transactions on PoweA M
bystems, vol. 20, no. 1, pp. 501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005.




Algorithm Detalls, cont.

« Then calculate Y’s singular values The computational
using an economy singular value  complexity

decomposition (SVD) increases

ith the cube of
Y =UZV' - -

_ _ the number of
» The ratio of each singular value measurements!

IS then compared to the largest

singular value o; retain the ones ~ This threshold
with a ratio > than a threshold Is a value that

— This determines the modal order, M can be changed;

Assuming V is ordered by singular SIECIERSE 0
values (highest to lowest), let V, be get more modes.
then matrix with the first M columns of V

HY




Aside: The Matrix Singular Value
Decomposition (SVD)

 The SVD is a factorization of a matrix that
generalizes the eigendecomposition to any m by n

matrix to produce L original concept is more than

Y =UxV' 100 years old, but has found lots
of recent applications

where X is a diagonal matrix of the singular values

The singular values are non-negative, real numbers
that can be used to indicate the major components
of a matrix (the gist is they provide a way to
decrease the rank of a matrix)

MY




Aside: SVD Image Compression
Example

Images can be
represented with
matrices. When
an SVD is applied
and only the
largest singular
values are retained
the image is
compressed.

ira
Figure 3.1: Image size 250x236 - modes used
{{1,2,4,6),{8,10,12,14},{16,18,20,25},{50,75,100,0riginal image}} T

Image Source: www.math.utah.edu/~goller/F15 M2270/BradyMathews SVDImage.pdf



http://www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf

Matrix Pencil Algorithm Detalls, cont.

* Then form the matrices V,; and V, such that
— V, Is the matrix consisting of all but the last row of V,
— V, Is the matrix consisting of all but the first row of V

* Discrete-time poles are found as the generalized
eigenvalues of the pair (V,'V,, V,'V,) = (A,B)

* These eigenvalues are the If B is nonsingular
discrete-time poles, z; with the (the situation here)
modal eigenvalues then then the generalized

eigenvalues are the
eigenvalues of
B™A

In(z.) The log of a complex
A= "2 number z=r/0 is
AT In(r) +j0

T




Matrix Pencil Method with Many
Signals

« The Matrix Pencil approach can be used with one
signal or with multiple signals

» Multiple signals are handled by forming a Y, matrix for
each signal k using the measurements for that signal
and then combining the matrices

Yk Yok o Yk
Yok Yar o Yieox Therequved

: : ‘ : computation
scales linearly
with the number

of signals
AlM

_ym—L,k ym—L+1,k ym,k




Matrix Pencil Method with Many

Signals

 However, when dealing with many signals, usually the
signals are somewhat correlated, so vary few of the
signals are actually need to be included to determine

the desired modes
Ultimately we are finding

yj(tj1a):ibi¢i(tj’a)

The a Is common to all the signals (i.e., the system
modes) while the b vector is signal specific (i.e., how

the modes manifest in that signal)

MY




Quickly Determining the b Vectors

* AKkey insight is from an approach known as the
Variable Projection Method (from Borden, 2013) that
for any signal k

Y = (I)((l)bk
And then the residual is minimized by selecting b, = ®(a)"y,

where ®(a) 1s the m by n matrix with values Where m is the

@ (o) =e“" if &, corresponds to a real eigenvalue, number of

measurements

and n is the
for a complex eigenvalue; t, = (j—1)AT number of

Finally, ®(a)" is the pseudoinverse of ®(a) modes

and @ ; (a) =™ cos(a;,qt;) and @ ., (a) =™ sin(a; .t

North American Power Symposium, Manhattan, KS, Sept. 2013

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013AHM
32



lterative Matrix Pencil Method

 When there are a large number of signals the
iterative matrix pencil method works by

— Selecting an initial signal to calculate the a vector

— Quickly calculating the b vectors for all the signals, and

getting a cost function for how closely the reconstructed
signals match their sampled values

— Selecting a signal that has a high cost function, and

repeating the above adding this signal to the algorithm to
get an updated a

An open access paper describing this is W. Trinh, K.S. Shetye, I. Idehen, T.J.
Overbye, "lterative Matrix Pencil Method for Power System Modal Analysis,"
Proc. 52nd Hawalii International Conference on System Sciences, Wailea, Hl,
January 2019; available at scholarspace.manoa.hawaii.edu/handle/10125/59803




Texas 2000 Bus Synthetic Grid Example

« This synthetic grids serves an electric load on the
ERCOT footprint (the grid itself is fictional)

 We'll use the lterative Matrix Pencil Method to

examine Iits modes
— The contingency is the loss of two large generators

The measurements will be the

frequencies at all 2000 buses

Bus Frequency (Hz)




2000 Bus System Example, Initially
Just One Signal

Initially our goal is to understand the modal frequencies
and their damping

First we'll consider just one of the 2000 signals;
arbitrarily | selected bus 8126 (Mount Pleasant)

60
59.98 |
59.96 |
59.94
59.92

59.9
59.88 ]
59.86 |
59.84 ]

Bus Frequency (Hz)

59.82 ]
59.8 |
59.78 L

8 0 12 14 16 18 20
Simulation Time (Seconds)

2127 (MIAMI 0) — Frequency, Bus 1079 (ODESSA1 8)
7042 (VICTORIAZ2 0) v — Frequency, Bus 5260 (GLEN ROSE 1 0)
us 8082 (FRANKLIN 0) v — Frequency, Bus 7159 (HOUSTON 5 0)
IV — Frequency, Bus 4192 (BROWNSVILLE 1 0)
, Bus 4195 (OILTON 0) v - Frequency, Bus 8126 (MOUNT PLEASANT 1 0)
v




Some Initial Considerations

The input is a dynamics study running using a %z
cycle time step; data was saved every 3 steps, so at
40 Hz

— The contingency was applied at time = 2 seconds

We need to pick the portion of the signal to consider
and the sampling frequency

— Because of the underlying SVD, the algorithm scales with
the cube of the number of time points (in a single signal)

| selected between 2 and 17 seconds
| sampled at ten times per second (so a total of 150

samples)
AlM




2000 Bus System Example,
One Signal

 The results from the Matrix Pencil Method are

Number of Complex and Real Modes IZI Indude Detrend in Reproduced Signals

[ ] subtract Reproduced from Actual C al C u I ate d
Lowest Percent Damping 10.137 IUpdate Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses I I IOd e
Frequency [Hz})| Damping (%) |Largest ¥ [Mame of Signa Largest Mame of Signa Lambda Include in i nformati On

Component with Largest |Component in |with Largest Reproduced
Mode, Component in | Mode, Scaled |Component in Signal
Unscaled hMode, Mode, Scaled
Unscaled

0.44275 Bus 1073 [ODE® 12,224 Bus 7310 (WHA

0,38466 Bus 2120 [PARI: 11.54% Bus 8078 [MT. E

0,23093 Bus 2115 [PARI® 6801 Bus 2115 [PARI®

0.16911 Bus 1073 [ODE® 4,954 Bus 7310 (WHA

0,08179 Bus 1051 [MOMN 2.551 Bus 6147 [SAM .

0,04603 Bus 1074 (ODE® 1063 Bus 3035 [CHEF

=] o)

== === =]
2 D W gnoan L

LN =] — Cr
R = a3 i o

PWDVectorGrid Variables

Verification of
results

T T T T
6 8 10 12
Time (Seconds)

== Original Value == Reproduced Value.




Some Observations

* These results are based on the consideration of just
one signal

 The start time should be at or after the event!

If it isn’t then... The results show the algorithm
trying to match the first two flat
M seconds; this should not be done!!

Results

Number of Complex and Reeal Modes Indude Detrend in Reproduced Signals

[]subtract Reproduced from Actual

W i -100.000
LonesEbercenEamang Update Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses

Frequency (Hz}| Damping (%) |Largest ¥ |Name of Signa Largest MName of Signa Lambda
Component  |with Largest |Component in |with Largest
Mode, Component in | Mode, S5caled |Component in
Unscaled Mode, Mode, Scaled
Unscaled
100,000 0.93636 Bus 1073 (ODES 14,030 Bus 1077 (ODE!
44,396 0.82180 Bus 1073 [ODE® 12,073 Bus 1077 [ODE®
34.809 0.43068 Bus 4026 (CHRI 8.463 Bus 4026 (CHRI
4,729 0.10932 Bus 1073 [ODE® 1.587 Bus 1073 (ODE®
6111 0.09142 Bus 2115 [PARIS 1.684 Bus 2115 (PARIE
) 6110 0.05556 Bus 4192 (BROW 1.042 Bus 4192 (BROV
‘5 io 954 3484 0.02405 Bus 1051 (MON 0.397 Bus 6147 (SAN., -
Time (Seconds) ) -100.000 0.01406 Bus 4026 (CHRI 0,276 Bus 4026 (CHRI 0.

- - -
== QOriginal Value == Reproduced Valuel &




2000 Bus System Example,
One Signal Included, Cost for All

* Using the previously discussed pseudoinverse
approach, for a given set of modes (a) the b,
vectors for all the signals can be quickly calculated

_|_
b, =®(a)y,
— The dimensions of the pseudoinverse are the number of
modes by the number of sample points for one signal

 This allows each cost function to be calculated

* The lterative Matrix Pencil approach sequentially
adds the signals with the worst match (i.e., the
highest cost function)

MY




2000 Bus System Example,
Worst Match (Bus 7061)

PWDVectorGrid Variables

e
8 10
Time (Seconds)

== QOriginal Value == Reproduced VaIue.




2000 Bus System Example,

With two signals

Number of Complex and Real Modes IZ' Indude Detrend in Reproduced Signals
(] 5ubtract Reproduced from Actual

Lowest Percent Damping 7.359

Real and Complex Modes - Editable to Change Initial Guesses

Frequency (Hz}| Damping (3% Largest Name of Signa
Component in |with Largest

Unscaled Mode,
Unscaled

Update Reproduced Signals

Largest Name of Signa
Component in |with Largest
Mode, Component in| Mode, Scaled |Component in

Mode, Scaled

Two Sianals

0.04028 Bus 7329 [NEW
0.10763 Bus 4030 [FANK
0.04666 Bus 6147 [SAM .
0.21220 Bus 1031 [MON
0.20903 Bus 2120 [PARI:
0.44679 Bus 1051 [MON
0.19570 Bus 1073 (ODE:
0.09305 Bus 1031 [MON
0.02993 [Bus 1073 [ODE!

= 02 P P — QO L

With one signal

Number of Complex and Real Mades l:l Indude Detrend in Reproduced Signals

1.730 Bus 7307 [WHA
4,475 Bus 4030 [FANK
1,801 Bus 6147 [SANM .
5.762 Bus 8077 [MT. E
£.350 Bus 4192 [BROV
13.024 Bus 7311 (WHA
5,372 Bus 7311 (WHA
1.767 Bus 1031 [MON
1.182 Bus 7307 [WHA

[ subtract Reproduced from Actual

Lowest Percent Damping 10,137

Real and Complex Modes - Editable to Change Initial Guesses

Frequency (Hz}| Damping (%z) |Largest ¥ |Name of Signa
Component  (with Largest

Unscaled Mode,
Unscaled

Update Reproduced Signals

Largest MName of Signa
Component in (with Largest
Mode, Component in | Mode, Scaled |Component in

Mode, Scaled

044275 Bus 1073 [ODE:
0.38466 Bus 2120 [PARI:
0.23093 Bus 2115 [PARI?
0.16911 Bus 1073 [ODE:
0.08179 Bus 1051 (MON
0.04603 Bus 1074 [ODE:

12,224 Bus 7310 [WHA
11,549 Bus 8078 [MT. E
6,801 Bus 2115 [PARI?
4,954 Bus 7310 (WHA
2,551 Bus 6147 [SAM .
1.063 Bus 3035 [CHEF

=== = =]

The new match on
the bus that was
previously worst
(Bus 7061) is now
quite good!

e e e
6 8 10
Time (Seconds)

== Original Value == Reproduced Valuel




2000 Bus System Example,

lterative Matrix Pencill

« The lterative Matrix Pencil intelligently adds signals
until a specified number is met
— Doing ten iterations takes about four seconds

Indude Detrend in Reproduced Signals
[ ]subtract Reproduced from Actual

Mumber of Complex and Real Modes |11

™ i 6.082
Lowest Percent Damping Update Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses

Frequency [Hz})| Damping % & Largest Mame of Signa Largest Mame of Signa Lambda Include in

Component in (with Largest |Component in [with Largest Reproduced
Mode, Component in | Mode, Scaled |Component in Signal
Unscaled Mode, Mode, Scaled
Unscaled

6.082 0.10313 Bus BROWMSYI 3.2592 Bus BROWMNSVI
7.063 0.04357 Bus SAN ANTCOHI 1.890 Bus SAN ANTOI
7.246 0.03780 Bus ODESSA1. 1.420 Bus CHRISTINE
7.897 0.07205 Bus BROWMSVI 2,300 Bus BROWNSVI
3.562 0.04387 Bus FANMNIM 2 F 2,032 Bus FANMIN 2 F
11.936 0,.21348 Bus MOMAHAN 4,054 Bus MOMNAHAM
14,207 019906 Bus ODESSA 1. 5.268 Bus WHARTOM
39.346 0.55936 Bus MOMNAHAN 12,994 Bus WHARTOMN
39.972 0,03815 Bus ODESSA1. 11596 Bus POINT COM
57.683 061264 Bus ODESSA 1. 18,504 Bus POIMT COR
100 (W M.59R5M Bus CHOFRS4 10 14.434 Rus WHLARTOIM

1 I 1 1 I ]
B == B = T =N = |
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e L e I e R N D W i

1 1 I I 1
0 T O TR e T e |




Takeaways So Far

 Modal analysis can be quickly done on a large
number of signals

— Computationally is an O(N3) process for one signal, where
N Is the number of sample points; it varies linearly with the
number of included signals

— The number of sample points can be automatically
determined from the highest desired frequency (the
Nyquist-Shannon sampling theory requires sampling at
twice the highest desired frequency)

— Determining how all the signals are manifested in the
modes is quite fast!!




Getting Mode Detalls

« An advantage of this approach is the contribution of
each mode in each signal is directly available

8 Modal Analysis Mode Details

Frequency (Hz) and Damping (%&) | 0.631Hz, Damping = 6.082%

R T

Custom Floating Point Field

% ‘*| Tag ;0_3 M 9&., Records = Set~ Columns = | E' "g‘;e' - iggn Tl ~ ﬁ Options =

Standard
Deviation

Type Mame Description | Post-Detrend | Angle [Deg)

Transfer Results from Selected Column to Object Custom Floating Pont Field

Transfer Results

Magnitude, W1
Unscaled

Magnitude
Scaled by 5D

Cost Function

0.031

0.031

0.031

0.031

} 0.031
WSV 0.031

M BEMNITC O ' 0.031
'ORT ISABEL O Fr | 0.031
5 FRESNOS 0 0.031

/ ' 0,030

0.030

0.030

QORPUS CHRISTI 3 5 Fr q y 0,030
AM PERLITA O Fr 0.030
EBASTIAM 21 Fr 0,030
EBASTIAN 2 0 Fr. 0.030
PUS CHRISTI 3 { i 0.030
14 Fr 0.030

MTA ROSA 1 & Fr 0.030
EBASTIAN 10 Fr 0.030
M PERLITA 1 Fr. ' 0.030
ARLINGEN 10 F 0.030
} 0.030
0.030

0,030

0.030

0,030

0.030

0.030

0.030

0.030

0,030

0.030

0.030

176.451
176.451
176.454
176.525
176.456
176.522
176,452
176,519
176.4580
177.479
177.619
176.500
177,488
176.760
176,485
176.500
177.256
176,457
176.462
176,504
176.588
176.483
178.815
176,459
176,377
176,439
176.423
176.455
176.315
176.363
176.399
176.399
176.399
176.399

0.10313
0.10248
0.10148
0.10041

0.10032
0.09964
0.09836
0.09817
0.09601

0.09573
0.09533
0.09462
0.09393
0.09338
009249
0.09234
0.09203
0.09189
0.09183
0.09153
0.09134
0.09114
0.09102
0.09095
0.09081

0.09075
0.09065

0.09043

0.09034
0.09016
0.08996
0.03996
0.08996
0.0.8996

3.29203
3.27853
3.25747
3.23684
3.23265
3.22005
319018
318788
3.13896
3.15533
314610
3.10807
311626
3.08711
3.05364
3.05579
3.06646
3.04368
3.04122
3.03706
3.03507
3.02757
3.06810
3.02245
3.01773
3.01600
3.01479
3.01019
3.00472
3.00188
2.99744
2.99744
2.99744
2,95744

0.0019
0.0019
0.0018
0.0017
0.0013
0.0017
0.0017
0.0016
0.0016
0.0013
0.0013
0.0015
0.0013
0.0014
0.0014
0.0014
0.0013
0.0014
0.0014
0.0014
0.0014
0.0014
0.0019
0.0014
0.0014
0.0014
0.0014
0.0014
0.0014
0.0015
0.0014
0.0014
0.0014
0.0014

This slide
shows the
mode with the
lowest
damping,
sorted by the
signals with the
largest
magnitude in
the mode

A|M




Visualizing the Modes

 If the grid has embedded geographic coordinates,
the contributions for the mode to each signal can be

readily visualized
Image shows the

magnitudes of the
components for the
0.63 Hz mode; the
display was pruned
to only show some
of the values

MY




Application to a Larger System

« The following few slides show an application to a
larger, 110 bus real system modeling a proposed ac
Interconnection of the North American Eastern and
Western grids.

Takeaway from the project is there are no show

stoppers to doing this though if the grids are
interconnected, ol L
there should be 7 e e "
more than a few

Interconnection

points

(we studied nine)




WECC Frequency Comparison: With
and Without the AC Interconnection

VS

The graph
compares the
frequency
response for
three WECC
buses for a
severe
contingency
with the
Interface (thick

- | lines) and

without (thin
lines)




Bus Freguency Results for a Generator
Outage Contingency

Image shows the
frequencies at all 110,000
buses; it was run for 80
seconds just to
demonstrate

the system stays stable

——
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I
e
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-
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o
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e

(IS

0 165 20 25 30 35 40 45 B0 6K 60
Simulation Time (Seconds)

For modal analysis we’ll be looking at the first 20 second Al‘M




Spatial Frequency Contour
(Mowes Can Also be Easily Created)

Transient Stability Time
(Sec): 2.000

2 This visualization
“"is using geographic
data views and a
contour to show
the response of
the 110,000 bus
~model; red values
/ are frequencies
~ less than 60 Hz

MY




lterative Matrix Pencil Method Applied to
43,400 Substation Signals

Processing all 43,400 signals took about 75 seconds (with 20
seconds of simulation data, sampling at 10 Hz)

H.ESUITS

Indude Detrend in Reproduced Signals
[ ] Subtract Reproduced from Actual

Mumber of Complex and Real Modes |11

W i 1.334
bl smakizal ol T Update Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses

Frequency (Hz}| Damping (%c) |Largest ¥ [Mame of Signa Largest Mame of Signa Lambda Include ir
Component  |with Largest |Component in |with Largest Feproduce

Mode, Component in| Mode, Scaled |Component in Signal

Unscaled Mode, Mode, Scaled

Unscaled

100,000 040738 Substation 337 33.497 Substation 337
B5.660 0.30063 Substation 337 24,165 Substation 337
28.635 0.15452 Substation 337 £.082 Substation 337
17.971 0.0824% Substation 320 3.246 Substation 320
16,180 0.06326 Substation 337 2,801 Substation 337
6. 884 0.05116 Substation 300 3.202 Substation 300
14,975 0.04579 Substation 341 3,651 Substation 337
100,000 0.04051 Substation 337 8.528 Substation 347
5.285 0.02356 Substation 337 1,809 Substation 337
8.085 0.01473 Substation 320 1.188 Substation 320
1.3°84 LON37TR Subhstationn 337 NARR Substatinn 337

iiu
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lterative Matrix Pencil Method Applied to
43,400 Substation Signals

Verifying the Results

The worst match (out of
43,400 signals); note the
change in the y-axis

Matching for a large
deviation example

PWDVectorGrid Variables




Large System Visualization of a Mode

using Geographic Data Views
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Summary

The webinar has covered the power system
application of measurement-based modal analysis

Techniques are now available that can be readily
applied to both small and large sets of power system
measurements, either from the actual system or
from simulations

The result is measurement-based modal analysis is
now be a standard power system analysis tool

Large-scale system results can also be readily
visualized

MY




Questions?
overbye@tamu.edu

Prepublication copies of papers can be downloaded at
overbye.engr.tamu.edu/publications (with paper 3 from 2021
[and its references] a good p
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