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Overview

• Electric grids are in a time of rapid transition, with 

lots of positive developments.  It is a very exciting 

time to be in the field!  However, there are also lots 

of challenges.

• To meet these challenges we need to widely 

leverage tools from other domains and make them 

useful

• This webinar presents one such tool, the application 

of measurement-based modal analysis techniques

for large-scale electric grids
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Signals

• Throughout the talk I’ll be using the term “signal,” 

which has several definitions

• A definition from Merrian-Webster is

– “A detectable physical quantity or impulse by which 

messages or information can be transmitted.”

• A common electrical engineering definition is “any 

time-varying quantity”

• Our focus today is on such time-varying signals, 

particularly associated with oscillations
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Oscillations

• An oscillation is just a repetitive motion that can be 

either undamped, positively damped (decaying with 

time) or negatively damped (growing with time)

• If the oscillation can be written as a sinusoid then

• The damping ratio is 
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The percent damping is just 

the damping ratio multiplied 

by 100; goal is sufficiently 

positive damping
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Power System Oscillations

• Power systems can experience a wide range of 

oscillations, ranging from highly damped and high 

frequency switching transients to sustained low 

frequency (< 2 Hz) inter-area oscillations affecting an 

entire interconnect

• Types of oscillations include

– Transients: Usually high frequency and highly damped

– Local plant: Usually from 1 to 5 Hz

– Inter-area oscillations: From 0.15 to 1 Hz

– Slower dynamics: Such as AGC, less than 0.15 Hz

– Subsynchronous resonance: 10 to 50 Hz (less than 

synchronous)
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Example Oscillations

• The left graph shows an oscillation that was 

observed during a 1996 WECC Blackout, the right 

from the 8/14/2003 blackout
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Small Signal Analysis and 

Measurement-Based Modal Analysis

• Small signal analysis has been used for decades to 

determine power system frequency response

– It is a model-based approach that considers the properties 

of a power system, linearized about an operating point

• Measurement-based modal analysis determines the 

observed dynamic properties of a system

– Input can either be measurements from devices (such as 

PMUs) or dynamic simulation results

– The same approach can be used regardless of the 

measurement source

• Focus here is on the measurement-based approach
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Ring-down Modal Analysis

• Ring-down analysis seeks to determine the 

frequency and damping of key power system 

modes following some disturbance

• There are several different techniques, with the 
Prony approach the oldest (from 1795)

• Regardless of technique, the goal is to represent 
the response of a sampled signal as a set of 
exponentially damped sinusoidals (modes)
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Where We Are Going: 

Extracting the Modes from Signals 
• The goal is to gain information about the electric 

grid by extracting modal information from its signals

– The frequency and damping of the modes is key

• The premise is we’ll be able to reproduce a complex 

signal, over a period of time, as a set a of sinusoidal 

modes

– We’ll also allow for linear 

detrending

0.1𝑡 + cos 2𝜋2𝑡
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Example: The Summation of two 

damped exponentials
• This example

was created by

going from the 

modes to 

a signal

• We’ll be going

in the opposite

direction (i.e., 

from a

measured 

signal to the

modes) 
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Some Reasonable Expectations

• Verifiable to show how well the modes match the 

original signal(s)

– We’ll show this

• Flexible to handle between one and many signals

– We’ll go up to simultaneously considering 40,000 signals

• Fast

– What is presented will be, with a discussion of the 

computational scaling

• Easy to use

– This is software implementation specific; results shown here 

were done using the modal analysis tool integrated into 

PowerWorld Simulator (version 22) 
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Example: One Signal
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This could be any signal; image shows the result of the 

original signal (blue) and the reproduced signal (red) 



Verification: 

Linear Trend Line Only
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Verification: 

Linear Trend Line + One Mode
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Verification: 

Linear Trend Line + Two Modes

16



Verification: 

Linear Trend Line + Three Modes
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Verification: 

Linear Trend Line + Four Modes
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Verification: 

Linear Trend Line + Five Modes

It is hard to tell a difference

on this one, illustrating that

modes manifest differently 

in different signals
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A Larger Example We’ll Finish With

Applying the developed techniques to the response of all 

43,400 substation frequencies from an 110,000 bus electric 

grid(20 million plus values)
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Measurement-Based Modal Analysis

• There are a number of different approaches

• The idea of all techniques is to approximate a 

signal, yorg(t), by the sum of other, simpler signals 

(basis functions)

– Basis functions are usually exponentials, with linear and 

quadratic functions used to detrend the signal

– Properties of the original signal can be quantified from 

basis function properties 

• Examples are frequency and damping

– Signal is considered over time with t=0 as the start

• Approaches sample the original signal yorg(t)
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Measurement-Based Modal Analysis

• Vector y consists of m uniformly sampled 

points from yorg(t) at a sampling value of DT, 

starting with t=0, with values yj for j=1…m

– Times are then tj= (j-1)DT

– At each time point j, the approximation of yj is 
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Measurement-Based Modal Analysis

• Error (residual) value at each point j is

• The closeness of the fit can be quantified using the 

Euclidean norm of the residuals

• Hence we need to determine  and b

ˆ( , ) ( , )j j j j jr t y y t= −α α
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Sampling Rate and Aliasing

• The Nyquist-Shannon sampling theory requires 

sampling at twice the highest desired frequency

– For example, to see a 5 Hz frequency we need to sample the 

signal at a rate of at least 10 Hz

• Sampling shifts the frequency spectrum by 1/T (where 

T is the sample time), which causes frequency overlap

• This is known as aliasing, which 

can cause a high frequency 

signal to appear to be a lower frequency signal

– Aliasing can be reduced by fast sampling and/or low

pass filters   

Image: upload.wikimedia.org/wikipedia/commons/thumb/2/28/AliasingSines.svg/2000px-AliasingSines.svg.png
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One Solution Approach: 

The Matrix Pencil Method
• There are several algorithms for finding the 

modes.  We’ll use the Matrix Pencil Method

– This is a newer technique for determining modes from 

noisy signals (from about 1990,  introduced to power 

system problems in 2005); it is an alternative to the 

Prony Method (which dates back to 1795, introduced 

into power in 1990 by Hauer, Demeure and Scharf)

• Given m samples, with L=m/2, the first step is to form the Hankel 

Matrix, Y such that 

Refernece: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction," IEEE Transactions on Power 

Systems, vol. 20, no. 1, pp. 501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005.
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YThis not a sparse matrix
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Algorithm Details, cont.

• Then calculate Y’s singular values 

using an economy singular value 

decomposition (SVD)

• The ratio of each singular value 

is then compared to the largest

singular value c; retain the ones 

with a ratio > than a threshold

– This determines the modal order, M

– Assuming V is ordered by singular 

values (highest to lowest), let Vp be 

then matrix with the first M columns of V

= T
Y UΣV

The computational

complexity 

increases

with the cube of 

the number of 

measurements!

This threshold

is a value that

can be changed;

decrease it to 

get more modes.
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Aside: The Matrix Singular Value 

Decomposition (SVD) 
• The SVD is a factorization of a matrix that 

generalizes the eigendecomposition to any m by n 

matrix to produce

where S is a diagonal matrix of the singular values

• The singular values are non-negative, real numbers 

that can be used to indicate the major components 

of a matrix (the gist is they provide a way to 

decrease the rank of a matrix)

= T
Y UΣV

The original concept is more than

100 years old, but has found lots 

of recent applications
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Aside: SVD Image Compression 

Example

Image Source: www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf

Images can be

represented with

matrices.  When

an SVD is applied

and only the 

largest singular

values are retained

the image is

compressed.   
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Matrix Pencil Algorithm Details, cont.

• Then form the matrices V1 and V2 such that

– V1 is the matrix consisting of all but the last row of Vp

– V2 is the matrix consisting of all but the first row of Vp

• Discrete-time poles are found as the generalized 

eigenvalues of the pair (V2
TV1, V1

TV1) = (A,B)

• These eigenvalues are the 

discrete-time poles, zi with the 

modal eigenvalues then 

ln( )i
i

z

T
 =

D

The log of a complex

number z=r is 

ln(r) + j

If B is nonsingular 

(the situation here) 

then the generalized 

eigenvalues are the 

eigenvalues of

B
-1

A
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Matrix Pencil Method with Many 

Signals
• The Matrix Pencil approach can be used with one 

signal or with multiple signals

• Multiple signals are handled by forming a Yk matrix for 

each signal k using the measurements for that signal 

and then combining the matrices

,k ,k ,k
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The required 

computation

scales linearly 

with the number

of signals
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Matrix Pencil Method with Many 

Signals
• However, when dealing with many signals, usually the 

signals are somewhat correlated, so vary few of the 

signals are actually need to be included to determine 

the desired modes

• Ultimately we are finding

• The  is common to all the signals (i.e., the system 

modes) while the b vector is signal specific (i.e., how 

the modes manifest in that signal)

1
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Quickly Determining the b Vectors

• A key insight is from an approach known as the 

Variable Projection Method (from Borden, 2013) that 

for any signal k 

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013 

North American Power Symposium, Manhattan, KS, Sept. 2013
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Iterative Matrix Pencil Method

• When there are a large number of signals the 

iterative matrix pencil method works by

– Selecting an initial signal to calculate the  vector

– Quickly calculating the b vectors for all the signals, and 

getting a cost function for how closely the reconstructed 

signals match their sampled values

– Selecting a signal that has a high cost function, and 

repeating the above adding this signal to the algorithm to 

get an updated 

An open access paper describing this is W. Trinh, K.S. Shetye, I. Idehen, T.J. 

Overbye, "Iterative Matrix Pencil Method for Power System Modal Analysis," 

Proc. 52nd Hawaii International Conference on System Sciences, Wailea, HI, 

January 2019; available at scholarspace.manoa.hawaii.edu/handle/10125/59803 
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Texas 2000 Bus Synthetic Grid Example

• This synthetic grids serves an electric load on the 
ERCOT footprint (the grid itself is fictional)

• We’ll use the Iterative Matrix Pencil Method to 
examine its modes
– The contingency is the loss of two large generators 

This is a synthetic power system model that does NOT represent 
the actual grid. It was developed as part of the US ARPA-E 
Grid Data research project and contains no CEII. To reference 
the model development approach, use:

For more information, contact abirchfield@tamu.edu.

A.B. Birchfield, T. Xu, K.M. Gegner, K.S. Shetye, and T.J. 
    Overbye, "Grid Structural Characteristics as Validation 
    Criteria for Synthetic Networks," IEEE Transactions on
    Power Systems, vol. 32, no. 4, pp. 3258-3265, July 2017.

Potential Coal Plant Retirements
StatusMax MWBus Number

Note: this grid is fictitious and doesn't 
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frequencies at all 2000 buses

34



2000 Bus System Example, Initially 

Just One Signal
• Initially our goal is to understand the modal frequencies 

and their damping 

• First we’ll consider just one of the 2000 signals; 

arbitrarily I selected bus 8126 (Mount Pleasant)

Simulation Time (Seconds)
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gfedcb

Frequency, Bus 8126 (MOUNT PLEASANT 1 0)

gfedcb

35



Some Initial Considerations

• The input is a dynamics study running using a ½ 

cycle time step; data was saved every 3 steps, so at 

40 Hz

– The contingency was applied at time = 2 seconds

• We need to pick the portion of the signal to consider 

and the sampling frequency

– Because of the underlying SVD, the algorithm scales with 

the cube of the number of time points (in a single signal)

• I selected between 2 and 17 seconds 

• I sampled at ten times per second (so a total of 150 

samples)
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2000 Bus System Example, 

One Signal
• The results from the Matrix Pencil Method are

Verification of 

results

Calculated 

mode 

information

PWDVectorGrid Variables

Time (Seconds)

161412108642
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lu

es

60

59.99

59.98

59.97

59.96

59.95

59.94

59.93

59.92

59.91

59.9

59.89

59.88

59.87

59.86

59.85

59.84

59.83

59.82

59.81

59.8

59.79

Original Value Reproduced Value
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Some Observations

• These results are based on the consideration of just 

one signal

• The start time should be at or after the event!

PWDVectorGrid Variables

Time (Seconds)

151050

V
a
lu

e
s

60

59.99

59.98

59.97

59.96

59.95

59.94

59.93

59.92

59.91

59.9

59.89

59.88

59.87

59.86

59.85

59.84

59.83

59.82

59.81

59.8

59.79

Original Value Reproduced Value

The results show the algorithm 

trying to match the first two flat 

seconds; this should not be done!!

If it isn’t then…
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2000 Bus System Example, 

One Signal Included, Cost for All
• Using the previously discussed pseudoinverse 

approach, for a given set of modes () the bk

vectors for all the signals can be quickly calculated

– The dimensions of the pseudoinverse are the number of 

modes by the number of sample points for one signal

• This allows each cost function to be calculated

• The Iterative Matrix Pencil approach sequentially 

adds the signals with the worst match (i.e., the 

highest cost function)

( )k k

+=b Φ α y
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2000 Bus System Example, 

Worst Match (Bus 7061)

PWDVectorGrid Variables

Time (Seconds)

161412108642

V
a
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e
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59.95
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59.93

59.92

59.91

59.9

59.89

59.88

59.87

59.86

59.85

59.84

59.83

59.82

59.81

59.8

Original Value Reproduced Value
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2000 Bus System Example, 

Two Signals

PWDVectorGrid Variables

Time (Seconds)

161412108642

V
a
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e
s
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59.97

59.96

59.95

59.94

59.93
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59.87

59.86

59.85

59.84

59.83

59.82

59.81

Original Value Reproduced Value

The new match on 

the bus that was 

previously worst 

(Bus 7061) is now 

quite good!

With two signals

With one signal
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2000 Bus System Example, 

Iterative Matrix Pencil
• The Iterative Matrix Pencil intelligently adds signals 

until a specified number is met

– Doing ten iterations takes about four seconds
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Takeaways So Far

• Modal analysis can be quickly done on a large 
number of signals
– Computationally is an O(N3) process for one signal, where 

N is the number of sample points; it varies linearly with the 
number of included signals

– The number of sample points can be automatically 
determined from the highest desired frequency (the 
Nyquist-Shannon sampling theory requires sampling at 
twice the highest desired frequency)

– Determining how all the signals are manifested in the 
modes is quite fast!!
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Getting Mode Details

• An advantage of this approach is the contribution of 

each mode in each signal is directly available

This slide 

shows the 

mode with the 

lowest 

damping,

sorted by the 

signals with the 

largest 

magnitude in 

the mode
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Visualizing the Modes

• If the grid has embedded geographic coordinates, 

the contributions for the mode to each signal can be 

readily visualized

45

Image shows the 

magnitudes of the 

components for the 

0.63 Hz mode; the 

display was pruned 

to only show some 

of the values



Application to a Larger System

• The following few slides show an application to a 

larger, 110 bus real system modeling a proposed ac 

interconnection of the North American Eastern and 

Western grids.  

• Takeaway from the project is there are no show 

stoppers to doing this though if the grids are 

interconnected, 

there should be 

more than a few 

interconnection 

points 

(we studied nine)
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WECC Frequency Comparison: With 

and Without the AC Interconnection

47

The graph 

compares the 

frequency 

response for 

three WECC 

buses for a 

severe 

contingency  

with the 

interface (thick 

lines) and 

without (thin 

lines)



Bus Frequency Results for a Generator 

Outage Contingency

Image shows the 

frequencies at all 110,000 

buses; it was run for 80 

seconds just to 

demonstrate

the system stays stable

For modal analysis we’ll be looking at the first 20 second
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Spatial Frequency Contour

(Movies Can Also be Easily Created)
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This visualization

is using geographic

data views and a 

contour to show

the response of 

the 110,000 bus 

model; red values

are frequencies

less than 60 Hz



Iterative Matrix Pencil Method Applied to 

43,400 Substation Signals

Processing all 43,400 signals took about 75 seconds (with 20 

seconds of simulation data, sampling at 10 Hz)
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Iterative Matrix Pencil Method Applied to 

43,400 Substation Signals
Verifying the Results

PWDVectorGrid Variables

Time (Seconds)

2015105

V
a
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e
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59.97

59.96
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59.88

Original Value Reproduced Value

PWDVectorGrid Variables

Time (Seconds)
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V
a
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e
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60.0005
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59.9995

59.999

59.9985

59.998

59.9975

59.997

59.9965

59.996

59.9955

59.995

59.9945

59.994

Original Value Reproduced Value

Matching for a large 

deviation example

The worst match (out of 

43,400 signals); note the 

change in the y-axis
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Large System Visualization of a Mode 

using Geographic Data Views
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Summary

• The webinar has covered the power system 

application of measurement-based modal analysis 

• Techniques are now available that can be readily 

applied to both small and large sets of power system 

measurements, either from the actual system or 

from simulations

• The result is measurement-based modal analysis is 

now be a standard power system analysis tool

• Large-scale system results can also be readily 

visualized 
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Questions?
overbye@tamu.edu
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Prepublication copies of papers can be downloaded at

overbye.engr.tamu.edu/publications (with paper 3 from 2021 

[and its references] a good place to start) 


