Demystifying Electric Grid Application of Measurement-Based Modal Analysis

Thomas J. Overbye O'Donnell Foundation Chair III Texas A&M University overbye@tamu.edu

Texas A&M Smart Grid Center Webinar June 2, 2021

Acknowledgments

- Work presented here has been supported by a variety of sources including PSERC, the Texas A&M Smart Grid Center, DOE, ARPA-E, NSF, EPRI, BPA, and PowerWorld. Their support is gratefully acknowledged!
- Slides also include contributions from many of my students, postdocs, staff and colleagues at TAMU, UIUC, other PSERC schools, and PowerWorld
 - Special thanks to Bernie Lesieutre, Alex Borden and Jim Gronquist!

Overview

- Electric grids are in a time of rapid transition, with lots of positive developments. It is a very exciting time to be in the field! However, there are also lots of challenges.
- To meet these challenges we need to widely leverage tools from other domains and make them useful
- This webinar presents one such tool, the application of measurement-based modal analysis techniques for large-scale electric grids

Signals

- Throughout the talk I'll be using the term "signal," which has several definitions
- A definition from Merrian-Webster is
 - "A detectable physical quantity or impulse by which messages or information can be transmitted."
- A common electrical engineering definition is "any time-varying quantity"
- Our focus today is on such time-varying signals, particularly associated with oscillations

Oscillations

- An oscillation is just a repetitive motion that can be either undamped, positively damped (decaying with time) or negatively damped (growing with time)
- If the oscillation can be written as a sinusoid then

 $e^{\alpha t} \left(a \cos(\omega t) + b \sin(\omega t) \right) = e^{\alpha t} C \cos(\omega t + \theta)$ where $C = \sqrt{A^2 + B^2}$ and $\theta = \tan\left(\frac{-b}{a}\right)$

• The damping ratio is

$$\xi = \frac{-\alpha}{\sqrt{\alpha^2 + \omega^2}}$$

The percent damping is just the damping ratio multiplied by 100; goal is sufficiently positive damping

Power System Oscillations

- Power systems can experience a wide range of oscillations, ranging from highly damped and high frequency switching transients to sustained low frequency (< 2 Hz) inter-area oscillations affecting an entire interconnect
- Types of oscillations include
 - Transients: Usually high frequency and highly damped
 - Local plant: Usually from 1 to 5 Hz
 - Inter-area oscillations: From 0.15 to 1 Hz
 - Slower dynamics: Such as AGC, less than 0.15 Hz
 - Subsynchronous resonance: 10 to 50 Hz (less than synchronous)

Example Oscillations

 The left graph shows an oscillation that was observed during a 1996 WECC Blackout, the right from the 8/14/2003 blackout

Small Signal Analysis and Measurement-Based Modal Analysis

- Small signal analysis has been used for decades to determine power system frequency response
 - It is a model-based approach that considers the properties of a power system, linearized about an operating point
- Measurement-based modal analysis determines the observed dynamic properties of a system
 - Input can either be measurements from devices (such as PMUs) or dynamic simulation results
 - The same approach can be used regardless of the measurement source
- Focus here is on the measurement-based approach

Ring-down Modal Analysis

- Ring-down analysis seeks to determine the frequency and damping of key power system modes following some disturbance
- There are several different techniques, with the Prony approach the oldest (from 1795)
- Regardless of technique, the goal is to represent the response of a sampled signal as a set of exponentially damped sinusoidals (modes)

$$y(t) = \sum_{i=1}^{q} A_i e^{\sigma_i t} \cos\left(\omega_i t + \phi_i\right) \quad \text{Damping (\%)} = \frac{-\alpha_i}{\sqrt{\alpha_i^2 + \omega_i^2}} \times 100$$

Where We Are Going: Extracting the Modes from Signals

- The goal is to gain information about the electric grid by extracting modal information from its signals
 The frequency and damping of the modes is key
- The premise is we'll be able to reproduce a complex signal, over a period of time, as a set a of sinusoidal modes
 - We'll also allow for linear detrending

 $0.1t + \cos(2\pi 2t)$

Example: The Summation of two damped exponentials

- This example was created by going from the modes to a signal
- We'll be going in the opposite direction (i.e., from a measured signal to the modes)

Some Reasonable Expectations

- Verifiable to show how well the modes match the original signal(s)
 - We'll show this
- Flexible to handle between one and many signals
 - We'll go up to simultaneously considering 40,000 signals
- Fast
 - What is presented will be, with a discussion of the computational scaling

Easy to use

 This is software implementation specific; results shown here were done using the modal analysis tool integrated into PowerWorld Simulator (version 22)

Example: One Signal

This could be any signal; image shows the result of the original signal (blue) and the reproduced signal (red)

Ubject (Jein bus]_16.50 1 Field Statestics Modes and Damping Object Fields Undamped Modes 0 Trend 1.000 0.0000617 0.00 Image: I	Start Time Used End Time Used Time Window 3.000000 10.000000 Contingency	Gen Speed 3 - 10 My Transient Contingency
Field TSSpeed Statistics Modes and Damping Object Fields Undamped Modes A (constant) B (incar) C (quadratic) 0 Trend 1.00 0.0000617 0.00 Image: Trend Time Image: Trend Time Time Time Time Options * Modes for Selected Signal Image: Trend Time Angle Rank Frequency Damping & Mode Image: Trend Time Image: Trend Ti	Object	Gen Bus1_16.50 T
Statistics Modes and Damping Object Fields Undamped Modes A (constant) B (linear) C (quadratic) 0 Trend 1.00 0.0000617 0.0 II III III IIII IIIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Field	TSSpeed
Undamped Modes A (constant) B (lnear) C (quadratic) 0 Trend 1.00 0.0000617 0.0 1 1.00 0.0000617 0.0 0.0 Modes frequency Set * Columns * Br * Br * Br * Columns	Statistics Modes and Damping Object Fields	
Image: Control = 1 Image: Control = 2 Image: C	Undamped Modes A (constant) 0 Trend 1.00	B (linear) C (quadratic) 0.0000617 0.0
Modes for Selected Signal Update Auto Mode include Reproduce Magnitude End Aand Frequency Mode Frequency Mod	: 🧱 💽 🎬 키는 1:08 +09 🏄 🏭 Record	is + Set + Columns + 📴 + 🏙 + 问: 🇱 f(x) + 田 Options +
Mode Include Reproduce Magnitude End Magle Include End Rank Mode Frequency Mode Damping % Mode Lambda 1 YES 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465 2 YES 0.00007 0.0000488 69.05 24.01 1.384 4.986 -0.427 4 YES 0.0000167 0.000223 -0.553 2.017 6.99 -0.888 5 TES 0 0.0000223 0.00000445 -59.64 0.553 2.017 6.99 -0.888 0.9994 -	Modes for Selected Signal	Update Auto
	Mode Include Reproduce Magnitude End Ar 1 YES 0.00166 0.0000643 3 2 YES 0.00114 0.0000256 3 3 YES 0.0000167 0.000243 -3 5 YES ∎ 0.0000223 000000445	Igle Rank Mode Frequency Mode Damping % Mode Lambda 111.15 41.13 0.171 39.67 -0.465 0.00 28.28 0.000 100.00 -0.543 69.05 24.01 1.364 4.98 -0.427 180.00 6.02 0.000 -100.00 0.383 -59.64 0.553 2.017 6.99 -0.888 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996

Verification: Linear Trend Line Only

💽 Result Analysis Signal	- 🗆 ×
Start Time Used End Time Used Time Window Gen Speed 3 - 10	
3.000000 10.000000 Contingency My Transient Contingency	
Object Gen 'Bus1_16.50' '1'	
Field TSSpeed	
Statistics Modes and Damping Object Fields	
Undamped Modes A (constant) B (linear) C (quadratic)	
Modes for Selected Signal	
Mode Include Reproduce Magnitude End Angle Angle Rank Mode Frequency Mode Damping % Mode Lambda 1 NO 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465 2 NO 0.00114 0.000256 0.00 28.28 0.000 100.00 -0.543 3 NO 0.00097 0.000488 69.05 24.01 1.364 4.98 -0.427 4 NO 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 5 NO 0.0000223 J000000445 -59.64 0.553 2.017 6.99 -0.888	1.0012 1.001 1.0008 1.0004 1.0004 1.0002 1 0.9998 0.9996 0.9994
	3 4 5 6 7 8 9 10
	OK Cancel

Verification: Linear Trend Line + One Mode

💽 Result Analysis Signal	- 🗆 X
Start Time Used End Time Used Time Window Gen Speed 3 - 10	
3.000000 10.000000 Contingency My Transient Contingency	
Object Gen 'Bus1_16.50' '1'	
Field TSSpeed	
Statistics Modes and Damping Object Fields	
Undamped Modes A (constant) B (linear) C (quadratic) 0 Trend 1.00 0.0000617 0.0 : □ □ □ 0.0 0.0 : □ □ □ 0.0 0.0	
Modes for Selected Signal Update Auto	1.0012
Mode Include Reproduce Magnitude End Angle End Rank Mode Frequency Mode Damping % Mode Lambda 1 YES 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465 2 NO 0.00114 0.000256 0.00 28.28 0.000 100.00 -0.543 3 NO 0.00097 0.0000488 69.05 24.01 1.364 4.98 -0.427 4 NO 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 5 NO 0.00000223 J000000445 -59.64 0.553 2.017 6.99 -0.888	1.001 1.000 1.0006
	OK Cancel

Verification: Linear Trend Line + Two Modes

💭 Result Analysis Signal	- L X
Start Time Used End Time Used Time Window Gen Speed 3 - 10	
3.000000 10.000000 Contingency My Transient Contingency	
Object Gen 'Bus1_16.50' '1'	
Field TSSpeed	
Statistics Modes and Damping Object Fields	
Undamped Modes A (constant) B (linear) C (quadratic) 0 Trend 1.00 0.0000617 0.0	
: 📰 🛅 👫 號 👯 🛤 🌺 Records - Set - Columns - 📴 - 🎬 - 🏙 - 🇱 f(x) -	r Ⅲ Options ▼
Modes for Selected Signal Update Auto	1.0012
Mode Include Reproduce Magnitude End Angle End Rank Mode Frequency Mode Damping % Mode Lambda 1 YES 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465 2 YES 0.00114 0.000256 0.00 28.28 0.000 100.00 -0.543 3 NO 0.000097 0.000243 -180.00 6.02 0.000 -100.00 0.383 5 NO 0.0000223 000000445 -59.64 0.553 2.017 6.99 -0.888	1.001 1.008 1.0004
	OK Cancel

Verification: Linear Trend Line + Three Modes

😓 Result Analysis Signal	- L X
Start Time Used End Time Used Time Window Gen Speed 3 - 10	
3.000000 10.000000 Contingency My Transient Contingency	
Object Gen 'Bus1_16.50' '1'	
Field TSSpeed	
Statistics Modes and Damping Object Fields	
Undamped Modes A (constant) B (linear) C (quadratic) 0 Trend 1.00 0.0000617 0.0	
: 📃 🗋 🏦 兆 號 🦛 🦛 Records - Set - Columns - 📴 - 🗱 - 麗 - 麗 fi	(x) • 🖽 Options •
Modes for Selected Signal Update Auto	1.0012
Mode Include Reproduce Magnitude End Magle End Rank Mode Frequency Mode Damping % Mode Lambda 1 YES 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465 2 YES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 3 NO 0.00097 0.0000488 69.05 24.01 1.364 4.98 -0.427 4 YES 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 5 NO 0.0000223 >000000445 -59.64 0.553 2.017 6.99 -0.888	1.001 1.008 1.0006 1.0004 1.0002 1 0.9998 0.9996 0.9906 0.9996 0.9906 0.9006 0.9006 0.9006 0.9006 0.9006 0.9006 0.9006 0.900
	Raw Signal V Reproduced Signal
	OK Cancel

Verification: Linear Trend Line + Four Modes

💽 Result Analysis Signal	- 🗆 X
Start Time Used End Time Used Time Window Gen Speed 3 - 10	
3.000000 10.000000 Contingency My Transient Contingency	
Object Gen 'Bus1_16.50' '1'	
Field TSSpeed	
Statistics Modes and Damping Object Fields	
Undamped Modes A (constant) B (linear) C (quadratic) 0 Trend 1.00 0.0000617 0.0	
: 語 1 曲 1 * .00 +.00 例 照 Records * Set * Columns * 四 * 岡本 間 * 認 * 説 * 10 data	x) • 🖽 Options •
Mode Include Reproduce Magnitude End Angle End Rank Mode Frequency Mode Damping % Mode Lambda 1 YES 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465 2 YES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 3 YES 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 5 NO 0.0000223 3000000445 -59.64 0.553 2.017 6.99 -0.888	1.0012 1.001 1.0008 1.0004 1.0004 1.0004 1.0002 1 0.9998 0.9996 0.9994 3 4 5 6 7 8 9 10 IV - Reproduced Signal
	OK Cancel

Verification: Linear Trend Line + Five Modes

💭 Result Analysis Signal						-	L X
Start Time Used End Time Use	d Time Window	Gen Speed 3 - 10					
3.000000 10.00000	0 Contingency	My Transient Con	tingency				
	Object	Gen 'Bus1_16.50'	'1'				
	Field	TSSpeed					
Statistics Modes and Damping	Object Fields						
Undamped Modes 0 Trend •	A (constant)	B (linear) 0.0000617	C (quadra	tic)).0	14 _ SORT		
· · · · · · · · · · · · · · · · · · ·	and ABCD Record	s * Set * Colum	ns * 💾 *			T(X) * III Options *	
Mode Include Reproduce Magnitude Magnitude 1 YES 0.00166 2 YES 0.00114 3 YES 0.0000167 5 YES 0.0000223	Magnitude End Ar 0.0000643 - 0.0000256 - 0.0000488 - 0.0000443 - 0.0000445 -	ngle Rank 111.15 41.13 0.00 28.28 69.05 24.01 880.00 6.02 -59.64 0.553	Mode Frequency 0.171 0.000 1.364 0.000 2.017	Mode Damping % 39.67 100.00 4.98 -100.00 6.99	Mode Lambda -0.465 -0.543 -0.427 0.383 -0.888	1.0012 1.0012 1.0008 1.0006 1.0004 1.0002 1	\sim

It is hard to tell a difference on this one, illustrating that modes manifest differently in different signals

A Larger Example We'll Finish With

Applying the developed techniques to the response of all 43,400 substation frequencies from an 110,000 bus electric grid(20 million plus values)

Measurement-Based Modal Analysis

- There are a number of different approaches
- The idea of all techniques is to approximate a signal, y_{org}(t), by the sum of other, simpler signals (basis functions)
 - Basis functions are usually exponentials, with linear and quadratic functions used to detrend the signal
 - Properties of the original signal can be quantified from basis function properties
 - Examples are frequency and damping
 - Signal is considered over time with t=0 as the start
- Approaches sample the original signal y_{org}(t)

Measurement-Based Modal Analysis

 Vector y consists of m uniformly sampled points from y_{org}(t) at a sampling value of ∆T, starting with t=0, with values y_i for j=1...m

– Times are then $t_i = (j-1)\Delta T$

- At each time point j, the approximation of y_j is

$$\hat{y}_j(\mathbf{t}_j, \boldsymbol{\alpha}) = \sum_{i=1}^n b_i \phi_i(t_j, \boldsymbol{\alpha})$$

where $\boldsymbol{\alpha}$ is a vector with the real and imaginary eigenvalue components, with $\phi_i(t_j, \boldsymbol{\alpha}) = e^{\alpha_i t_j}$ for α_i corresponding to a real eigenvalue, and $\phi_i(t_j, \boldsymbol{\alpha}) = e^{\alpha_i t_j} \cos(\alpha_{i+1} t_j)$ and $\phi_{i+1}(\boldsymbol{\alpha}) = e^{\alpha_i t_j} \sin(\alpha_{i+1} t_j)$ for a complex eigenvector value

Measurement-Based Modal Analysis

• Error (residual) value at each point j is

$$r_j(t_j, \boldsymbol{\alpha}) = y_j - \hat{y}_j(t_j, \boldsymbol{\alpha})$$

 The closeness of the fit can be quantified using the Euclidean norm of the residuals

$$\frac{1}{2} \sum_{j=1}^{m} (y_j - \hat{y}_j(t_j, \boldsymbol{\alpha}))^2 = \frac{1}{2} \| \mathbf{r}(\boldsymbol{\alpha}) \|_2^2$$

• Hence we need to determine α and **b**

$$\hat{y}_j(\mathbf{t}_j, \boldsymbol{\alpha}) = \sum_{i=1}^n b_i \phi_i(t_j, \boldsymbol{\alpha})$$

Sampling Rate and Aliasing

- The Nyquist-Shannon sampling theory requires sampling at twice the highest desired frequency
 - For example, to see a 5 Hz frequency we need to sample the signal at a rate of at least 10 Hz
- Sampling shifts the frequency spectrum by 1/T (where T is the sample time), which causes frequency overlap
- This is known as aliasing, which can cause a high frequency signal to appear to be a lower frequency

One Solution Approach: The Matrix Pencil Method

- There are several algorithms for finding the modes. We'll use the Matrix Pencil Method
 - This is a newer technique for determining modes from noisy signals (from about 1990, introduced to power system problems in 2005); it is an alternative to the Prony Method (which dates back to 1795, introduced into power in 1990 by Hauer, Demeure and Scharf)
- Given m samples, with L=m/2, the first step is to form the Hankel Matrix, Y such that

This not a sparse matrix

$$\mathbf{Y} = \begin{bmatrix} y_1 & y_2 & \dots & y_{L+1} \\ y_2 & y_3 & \dots & y_{L+2} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m-L} & y_{m-L+1} & \dots & y_m \end{bmatrix}$$

Refernece: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction," IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005.

Algorithm Details, cont.

 Then calculate Y's singular values using an economy singular value decomposition (SVD)

 $\mathbf{Y} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathrm{T}}$

- The ratio of each singular value is then compared to the largest singular value σ_c ; retain the ones with a ratio > than a threshold
 - This determines the modal order, M
 - Assuming V is ordered by singular values (highest to lowest), let V_p be then matrix with the first M columns of V

The computational complexity increases with the cube of the number of measurements!

This threshold is a value that can be changed; decrease it to get more modes.

Aside: The Matrix Singular Value Decomposition (SVD)

 The SVD is a factorization of a matrix that generalizes the eigendecomposition to any m by n matrix to produce
 The original concept is more that

$\mathbf{Y} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$

The original concept is more than 100 years old, but has found lots of recent applications

where Σ is a diagonal matrix of the singular values

 The singular values are non-negative, real numbers that can be used to indicate the major components of a matrix (the gist is they provide a way to decrease the rank of a matrix)

Aside: SVD Image Compression Example

Images can be represented with matrices. When an SVD is applied and only the largest singular values are retained the image is compressed.

Figure 3.1: Image size 250x236 - modes used {{1,2,4,6},{8,10,12,14},{16,18,20,25},{50,75,100,original image}}

Image Source: www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf

Matrix Pencil Algorithm Details, cont.

- Then form the matrices V_1 and V_2 such that
 - V_1 is the matrix consisting of all but the last row of V_p
 - V₂ is the matrix consisting of all but the first row of V_p
- Discrete-time poles are found as the generalized eigenvalues of the pair (V₂^TV₁, V₁^TV₁) = (A,B)
- These eigenvalues are the discrete-time poles, z_i with the modal eigenvalues then

 $\lambda_i = \frac{\ln(z_i)}{\Delta T}$

The log of a complex number $z=r \angle \theta$ is $ln(r) + j\theta$

If B is nonsingular (the situation here) then the generalized eigenvalues are the eigenvalues of B⁻¹A

Matrix Pencil Method with Many Signals

- The Matrix Pencil approach can be used with one signal or with multiple signals
- Multiple signals are handled by forming a Y_k matrix for each signal k using the measurements for that signal and then combining the matrices

$$\mathbf{Y}_{k} = \begin{bmatrix} y_{1,k} & y_{2,k} & \cdots & y_{L+1,k} \\ y_{2,k} & y_{3,k} & \cdots & y_{L+2,k} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m-L,k} & y_{m-L+1,k} & \cdots & y_{m,k} \end{bmatrix}$$
$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_{l} \\ \vdots \\ \mathbf{Y}_{N} \end{bmatrix}$$

The required computation scales linearly with the number of signals

Matrix Pencil Method with Many Signals

- However, when dealing with many signals, usually the signals are somewhat correlated, so vary few of the signals are actually need to be included to determine the desired modes
- Ultimately we are finding

$$y_j(t_j, \boldsymbol{\alpha}) = \sum_{i=1}^n b_i \phi_i(t_j, \boldsymbol{\alpha})$$

The α is common to all the signals (i.e., the system modes) while the b vector is signal specific (i.e., how the modes manifest in that signal)

Quickly Determining the b Vectors

 A key insight is from an approach known as the Variable Projection Method (from Borden, 2013) that for any signal k

 $\mathbf{y}_k = \mathbf{\Phi}(\boldsymbol{\alpha})\mathbf{b}_k$

And then the residual is minimized by selecting $\mathbf{b}_{k} = \mathbf{\Phi}(\mathbf{\alpha})^{+} \mathbf{y}_{k}$ where $\mathbf{\Phi}(\mathbf{\alpha})$ is the m by n matrix with values $\Phi_{ji}(\mathbf{\alpha}) = e^{\alpha_{i}t_{j}}$ if α_{i} corresponds to a real eigenvalue, and $\Phi_{ji}(\mathbf{\alpha}) = e^{\alpha_{i}t_{j}} \cos(\alpha_{i+1}t_{j})$ and $\Phi_{ji+1}(\mathbf{\alpha}) = e^{\alpha_{i}t_{j}} \sin(\alpha_{i+1}t_{j})$ for a complex eigenvalue; $t_{j} = (j-1)\Delta T$ Finally, $\mathbf{\Phi}(\mathbf{\alpha})^{+}$ is the pseudoinverse of $\mathbf{\Phi}(\mathbf{\alpha})$

Where m is the number of measurements and n is the number of modes

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013 North American Power Symposium, Manhattan, KS, Sept. 2013

Iterative Matrix Pencil Method

- When there are a large number of signals the iterative matrix pencil method works by
 - Selecting an initial signal to calculate the α vector
 - Quickly calculating the **b** vectors for all the signals, and getting a cost function for how closely the reconstructed signals match their sampled values
 - Selecting a signal that has a high cost function, and repeating the above adding this signal to the algorithm to get an updated α

An open access paper describing this is W. Trinh, K.S. Shetye, I. Idehen, T.J. Overbye, "Iterative Matrix Pencil Method for Power System Modal Analysis," *Proc. 52nd Hawaii International Conference on System Sciences*, Wailea, HI, January 2019; available at scholarspace.manoa.hawaii.edu/handle/10125/59803

Texas 2000 Bus Synthetic Grid Example

- This synthetic grids serves an electric load on the ERCOT footprint (the grid itself is fictional)
- We'll use the Iterative Matrix Pencil Method to examine its modes

The contingency is the loss of two large generators

2000 Bus System Example, Initially Just One Signal

- Initially our goal is to understand the modal frequencies and their damping
- First we'll consider just one of the 2000 signals; arbitrarily I selected bus 8126 (Mount Pleasant)

Some Initial Considerations

- The input is a dynamics study running using a ¹/₂ cycle time step; data was saved every 3 steps, so at 40 Hz
 - The contingency was applied at time = 2 seconds
- We need to pick the portion of the signal to consider and the sampling frequency
 - Because of the underlying SVD, the algorithm scales with the cube of the number of time points (in a single signal)
- I selected between 2 and 17 seconds
- I sampled at ten times per second (so a total of 150 samples)

2000 Bus System Example, One Signal

• The results from the Matrix Pencil Method are

Verification of results

Some Observations

- These results are based on the consideration of just one signal
- The start time **should** be at or after the event!

 2000 Bus System Example, One Signal Included, Cost for All
 Using the previously discussed pseudoinverse approach, for a given set of modes (α) the b_k vectors for all the signals can be quickly calculated

$\mathbf{b}_k = \mathbf{\Phi}(\mathbf{\alpha})^+ \mathbf{y}_k$

- The dimensions of the pseudoinverse are the number of modes by the number of sample points for one signal
- This allows each cost function to be calculated
- The Iterative Matrix Pencil approach sequentially adds the signals with the worst match (i.e., the highest cost function)

2000 Bus System Example, Worst Match (Bus 7061)

2000 Bus System Example, Two Signals

ŝ

With two signals

Number of Complex and Real Modes	9 7.359	Include Detrend in Reproduced Signals Subtract Reproduced from Actual Update Reproduced Signals
Real and Complex Modes - Editable to	o Change Initial (Guesses

	Frequency (Hz)	Damping (%)	Largest Component in Mode, Unscaled	Name of Signal with Largest Component in Mode, Unscaled	Largest Component in Mode, Scaled	Name of Signal with Largest Component in Mode, Scaled	Lamb
1	2.266	17.168	0.04028	Bus 7329 (NEW	1.730	Bus 7307 (WHA	-2
2	1.413	21.844	0.10763	Bus 4030 (FANN	4.475	Bus 4030 (FANN	
3	0.958	7.359	0.04666	Bus 6147 (SAN /	1.801	Bus 6147 (SAN /	
4	0.701	11.705	0.21220	Bus 1051 (MON	5.762	Bus 8077 (MT. E	
5	0.630	13.361	0.20903	Bus 2120 (PARIS	6.350	Bus 4192 (BROV	
6	0.352	36.405	0.44679	Bus 1051 (MON	13.024	Bus 7311 (WHA	
7	0.322	14.403	0.19570	Bus 1073 (ODES	5.372	Bus 7311 (WHA	
8	0.000	100.000	0.09305	Bus 1051 (MON	1.767	Bus 1051 (MON	
9	0.064	36.756	0.02993	Bus 1073 (ODE	1.182	Bus 7307 (WHA	

The new match on the bus that was previously worst (Bus 7061) is now quite good!

With one signal

Number of Complex and Real Modes 6

Lowest Percent Damping

Include Detrend in Reproduced Signals				
Subtract Reproduced from Actual				
Update Reproduced Signals				

Real and Complex Modes - Editable to Change Initial Guesses

10.137

	Frequency (Hz)	Damping (%)	Largest Component Mode, Unscaled	Name of Signal with Largest Component in Mode, Unscaled	Largest Component in Mode, Scaled	Name of Signal with Largest Component in Mode, Scaled	Lambo
1	0.383	32.011	0.44275	Bus 1073 (ODES	12.224	Bus 7310 (WHA	-0
2	0.670	24.191	0.38466	Bus 2120 (PARIS	11.549	Bus 8078 (MT. E	-1
3	0.665	10.705	0.23093	Bus 2115 (PARIS	6.801	Bus 2115 (PARIS	-0
4	0.312	14.397	0.16911	Bus 1073 (ODES	4.954	Bus 7310 (WHA	-0
5	0.971	10.137	0.08179	Bus 1051 (MON	2.551	Bus 6147 (SAN /	-0
6	0.052	41.828	0.04603	Bus 1074 (ODES	1.063	Bus 3035 (CHER	-0

2000 Bus System Example, Iterative Matrix Pencil

- The Iterative Matrix Pencil intelligently adds signals
 until a specified number is met
 - Doing ten iterations takes about four seconds

Number	Number of Complex and Real Modes 11 Include Detrend in Reproduced Signals Subtract Reproduced from Actual								
Lowest F	Lowest Percent Damping 6.082 Update Reproduced Signals								
Real and	d Complex Mode	s - Editable to Ch	ange Initial Gues	sses					
	Frequency (Hz) Damping (% ▲ Largest Name of Signal Largest Signal Signal Signal Vinscaled Unscaled Unscaled Unscaled Unscaled Name of Signal Name of Sign								
1	0.631	6.082	0.10313	Bus BROWNSV	3.292	Bus BROWNSVI	-0.2415	YES	
2	0.959	7.068	0.04897	Bus SAN ANTO	1.890	Bus SAN ANTOI	-0.4269	YES	
3	1.364	7.246	0.03780	Bus ODESSA 1	1.420	Bus CHRISTINE	-0.6228	YES	
4	0.593	7.897	0.07205	Bus BROWNSV	2.300	Bus BROWNSVI	-0.2949	YES	
5	1.602	8.562	0.04887	Bus FANNIN 2 F	2.032	Bus FANNIN 2 F	-0.8650	YES	
6	0.732	11.936	0.21348	Bus MONAHAN	4.054	Bus MONAHAN	-0.5529	YES	
7	0.324	14.207	0.19906	Bus ODESSA 1	5.268	Bus WHARTON	-0.2917	YES	
8	0.324	39.346	0.55936	Bus MONAHAN	12.994	Bus WHARTON	-0.8722	YES	
9	0.060	39.972	0.03815	Bus ODESSA 1	1.196	Bus POINT CON	-0.1645	YES	
10	0.964	57.683	0.61264	Bus ODESSA 1	18.504	Bus POINT CON	-4.2760	YES	
11	0.000	100.000	0.59650	Bus ODESSA 1	14.434	Bus WHARTON	-2.5257	YES	

Takeaways So Far

- Modal analysis can be quickly done on a large number of signals
 - Computationally is an O(N³) process for one signal, where N is the number of sample points; it varies linearly with the number of included signals
 - The number of sample points can be automatically determined from the highest desired frequency (the Nyquist-Shannon sampling theory requires sampling at twice the highest desired frequency)
 - Determining how all the signals are manifested in the modes is quite fast!!

Getting Mode Details

 An advantage of this approach is the contribution of each mode in each signal is directly available

🔵 Modal Analysis Mode Details

Frequency (Hz) and Damping (%) 0.631 Hz, Damping = 6.082%

Custom Floating Point Field

~

Transfer Results from Selected Column to Object Custom Floating Pont Field Transfer Results

		.0 .00 0 +.0 44 460 Records ▼ Set ▼ Col	lumns 🔻 📴 🔻		T → SORT ABED f(x) → [Dptions •			
	Туре	Name	Units	Description	Post-Detrend Standard Deviation	Angle (Deg)	Magnitude, 🕅 Unscaled	Magnitude Scaled by SD	Cost Function
1	Bus	Bus BROWNSVILLE 1 0 Frequency		Frequency	0.031	176.451	0.10313	3.29203	0.0019
2	Bus	Bus BROWNSVILLE 1 1 Frequency		Frequency	0.031	176.451	0.10248	3.27853	0.0019
3	Bus	Bus BROWNSVILLE 3 0 Frequency		Frequency	0.031	176.454	0.10148	3.25747	0.0018
4	Bus	Bus BROWNSVILLE 2 0 Frequency		Frequency	0.031	176.525	0.10041	3.23684	0.0017
5	Bus	Bus OLMITO 0 Frequency		Frequency	0.031	176.456	0.10032	3.23265	0.0018
6	Bus	Bus BROWNSVILLE 2 1 Frequency		Frequency	0.031	176.522	0.09964	3.22005	0.0017
7	Bus	Bus SAN BENITO 0 Frequency		Frequency	0.031	176.452	0.09836	3.19018	0.0017
8	Bus	Bus PORT ISABEL 0 Frequency		Frequency	0.031	176.519	0.09817	3.18788	0.0016
9	Bus	Bus LOS FRESNOS 0 Frequency		Frequency	0.031	176.480	0.09601	3.13896	0.0016
10	Bus	Bus CORPUS CHRISTI 3 3 Frequency		Frequency	0.030	177.479	0.09573	3.15533	0.0013
11	Bus	Bus CORPUS CHRISTI 3 2 Frequency		Frequency	0.030	177.619	0.09533	3.14610	0.001
12	Bus	Bus RIO HONDO 0 Frequency		Frequency	0.030	176.500	0.09462	3.10807	0.0015
13	Bus	Bus CORPUS CHRISTI 3 5 Frequency		Frequency	0.030	177,488	0.09393	3.11626	0.001
14	Bus	Bus SAN PERLITA 0 Frequency		Frequency	0.030	176.760	0.09338	3.08711	0.0014
15	Bus	Bus SEBASTIAN 2.1 Frequency		Frequency	0.030	176.485	0.09249	3.05864	0.0014
16	Bus	Bus SEBASTIAN 2.0 Frequency		Frequency	0.030	176,500	0.09234	3.05579	0.0014
17	Bus	Bus CORPUS CHRISTI 3 4 Frequency		Frequency	0.030	177,256	0.09203	3.06646	0.001
18	Bus	Bus SANTA ROSA 1 4 Frequency		Frequency	0.030	176.457	0.09189	3.04368	0.0014
19	Bus	Bus SANTA ROSA 1 8 Frequency		Frequency	0.030	176,462	0.09183	3.04122	0.0014
20	Bus	Bus SEBASTIAN 1.0 Frequency		Frequency	0.030	176.504	0.09153	3.03706	0.0014
21	Bus	Bus SAN PERLITA 1 Frequency		Frequency	0.030	176.588	0.09134	3.03507	0.0014
22	Bus	Bus HARLINGEN 1 0 Frequency		Frequency	0.030	176.483	0.09114	3.02757	0.0014
23	Bus	Bus CORPUS CHRISTI 1 3 Frequency		Frequency	0.030	178.815	0.09102	3.06810	0.0019
24	Bus	Bus MERCEDES 0 Frequency		Frequency	0.030	176.459	0.09095	3.02245	0.0014
25	Bus	Bus SANTA ROSA 1.6 Frequency		Frequency	0.030	176.377	0.09081	3.01773	0.0014
26	Bus	Bus SANTA ROSA 1.5 Frequency		Frequency	0.030	176.439	0.09075	3.01600	0.0014
27	Bus	Bus SANTA MARIA 0 Frequency		Frequency	0.030	176.423	0.09065	3.01479	0.0014
28	Bus	Bus HARLINGEN 2.0 Frequency		Frequency	0.030	176.455	0.09043	3.01019	0.0014
29	Bus	Bus SANTA ROSA 1.2 Frequency		Frequency	0.030	176.315	0.09034	3.00472	0.0014
30	Bus	Bus PROGRESO 0 Frequency		Frequency	0.030	176 363	0.09016	3.00188	0.001
31	Bus	Bus SANTA ROSA 1.9 Frequency		Frequency	0.030	176 399	0.08996	2 99744	0.0014
32	Bus	Bus SANTA ROSA 1 3 Frequency		Frequency	0.030	176 399	0.08996	2 99744	0.0014
33	Bus	Bus SANTA ROSA 1.1 Frequency		Frequency	0.030	176 399	0.08996	2 99744	0.0014
34	Bur	Bus SANTA BOSA 17 Frequency		Frequency	0.030	176 300	0.000990	2 00744	0.001

This slide shows the mode with the lowest damping, sorted by the signals with the largest magnitude in the mode

Visualizing the Modes

 If the grid has embedded geographic coordinates, the contributions for the mode to each signal can be readily visualized

Image shows the magnitudes of the components for the 0.63 Hz mode; the display was pruned to only show some of the values

Application to a Larger System

- The following few slides show an application to a larger, 110 bus real system modeling a proposed ac interconnection of the North American Eastern and Western grids.
- Takeaway from the project is there are no show stoppers to doing this though if the grids are

interconnected, there should be more than a few interconnection points (we studied nine)

WECC Frequency Comparison: With and Without the AC Interconnection

The graph compares the frequency response for three WECC buses for a severe contingency with the interface (thick lines) and without (thin lines)

Bus Frequency Results for a Generator Outage Contingency

For modal analysis we'll be looking at the first 20 second

Spatial Frequency Contour (Movies Can Also be Easily Created)

Iterative Matrix Pencil Method Applied to 43,400 Substation Signals

Processing all 43,400 signals took about 75 seconds (with 20 seconds of simulation data, sampling at 10 Hz)

Results										
Number of Comple										
Number of Comple	x anu	Real Houes		Subtract Reproduced from Actual						
Lowest Percent Da	amping		.384							
				Update Repro	duced Signals					
Real and Complex	Modes	s - Editable to Ch	ange Initial Gue	sses						
Frequence	v (H 7)	Damping (%)	Largest T	Name of Signal	Largest	Name of Signal	Lambda	Include in		
riequene	, (112)	Dumping (76)	Component	with Largest	Component in	with Largest	Lumbuu	Reproduce		
			Mode,	Component in	Mode, Scaled	Component in		Signal		
			Unscaled	Mode,		Mode, Scaled				
				Unscaled						
16	0.000	100.000	0.40738	Substation 337	33.497	Substation 337	-0.3848	YES		
2	0.033	65.660	0.30063	Substation 337	24.165	Substation 337	-0.1832	YES		
3	0.230	28.635	0.15452	Substation 337	6.082	Substation 337	-0.4316	YES		
4	0.347	17.971	0.08249	Substation 320	3.246	Substation 320	-0.3987	YES		
5	0.471	16.180	0.06326	Substation 337	2.801	Substation 337	-0.4848	YES		
6	0.758	6.884	0.05116	Substation 300	3.202	Substation 300	-0.3285	YES		
7	0.841	14.975	0.04579	Substation 341	3.651	Substation 337	-0.8004	YES		
8	0.000	100.000	0.04051	Substation 337	8.528	Substation 347	-0.0443	YES		
9	2.600	5.285	0.02356	Substation 337	1.909	Substation 337	-0.8646	YES		
10	1.872	8.085	0.01473	Substation 320	1.188	Substation 320	-0.9539	YES		
11	0.635	1.384	0.00376	Substation 337	0.166	Substation 337	-0.0552	YES		

Iterative Matrix Pencil Method Applied to 43,400 Substation Signals

Verifying the Results

Matching for a large deviation example

The worst match (out of 43,400 signals); note the change in the y-axis

Large System Visualization of a Mode using Geographic Data Views

Summary

- The webinar has covered the power system application of measurement-based modal analysis
- Techniques are now available that can be readily applied to both small and large sets of power system measurements, either from the actual system or from simulations
- The result is measurement-based modal analysis is now be a standard power system analysis tool
- Large-scale system results can also be readily visualized

Questions? overbye@tamu.edu

Prepublication copies of papers can be downloaded at overbye.engr.tamu.edu/publications (with paper 3 from 2021 [and its references] a good place to start)

