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Announcements
[
* Start reading Chapters 1 and 2 from the book (Chapter
1 1s Introduction, Chapter 2 1s Electromagnetic
Transients)

* On campus students consider signing up for the Energy
and Power Group seminar on Fridays at 1130am in
ETB 1020 (ECEN 681, Section 604)

* Asnoted, we’ll be hosting the North American Power
Symposium (NAPS) on Nov 14-16, 2021. If you
would like to help with NAPS contact Prof. Kate Davis

at katedavis@tamu.edu



ERCOT EDP Reach, Sept 10
T

e RSVP by today

The event will provide graduate students, college
juniors and seniors a real-time look into the facets of
power systems engineering.

Resume critiques, an overview of ERCOT, engineer
panel, and information on internships and the
Engineer Development Program (EDP)
will be available.

Scan the QR Code and RSVP by Sept. 2, 2021.
If you have any questions, please email
EDPReach@ercot.com.

ercot=



PowerWorld Simulator

[
e (lass will make extensive use of PowerWorld
Simulator and DS. If you do not have a copy of version
22, the free 42 bus student versions are available for
download at

http://www.powerworld.com/gloveroverbyesarma

* Start getting familiar with this package, particularly the
power flow basics. Stability aspects will be covered 1n
class

* Free training material 1s available at

http://www.powerworld.com/training/online-training



Modeling Cautions!

I
"All models are wrong but some are useful," George
Box, Empirical Model-Building and Response

Surfaces, (1987, p. 424)

~ Models are an approximation to reality, not reality, so they
always have some degree of approximation

—- Box went on to say that the practical question 1s how wrong to
they have to be to not be useful

A good part of engineering 1s deciding what 1s the

appropriate level of modeling, and knowing under

what conditions the model will fail

Always keep 1n mind what problem you are trying to
solve!



Static versus Dynamic Analysis

[

Statics versus dynamics appears 1n many fields

An equilibrium point is a point at which the model 1s not

changing

- Real systems are always changing, but over the time period of
interest an unchanging system can be a useful approximation

Static analysis looks at how the equilibrium points
change to a change in the model

— Power system example 1s power flow

Dynamic analysis looks at how the system responds
over time when 1t 1s perturbed away from an equilibrium
point

— Power system example 1s transient stability 5



Slow versus Fast Dynamics

[
Key analysis question 1n setting up and solving models
1s to determine the time frame of interest

Values that change slowing (relative to the time frame

of 1nterest) can be assumed as constant

- Power flow example 1s the load real and reactive values are
assumed constant (sometimes voltage dependence 1s included)

Values that change quickly (relative to the time frame of

interest) can be assumed to be algebraic

— A generator's terminal voltage in power flow 1s an algebraic
constraint, but not in transient stability

— In power flow and transient stability the network power
balance equations are assumed algebraic



1996: Transient Stability Model Errors Lead to Blackouts
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Dynamics Example: August 14 Blackout
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Image from August 14, 2003 Blackout Final Report, energy.gov, Figure 6.26
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Dynamics Example 3

Figure 14: Actual and Simulated Frequency at Miguel 500 kV Bus
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Models and Their Parameters
Al
Models and their parameters are often tightly coupled

— The parameters for a particular model might have been
derived from actual results on the object of interest

Changing the model (even correcting an "incorrect"
simulation implementation) can result in unexpected
results!

Using a more detailed simulation approach without
changing the model can also result 1n incorrect results

— More detailed models are not necessarily more accurate

10



Positive Sequence versus
Full Three-Phase

* Large-scale electrical systems are almost exclusively
three-phase. Common analysis tools such as power
flow and transient stability often assume balanced
operation

A

— This allows modeling of just the positive sequence though full
three-phase models are sometimes used particularly for
distribution systems

— Course assumes knowledge of sequence analysis
* Other applications, such as electromagnetic transients

(commonly known as electromagnetic transients
programs [EMTP]) consider the full three phase models

11



Power Flow Versus Dynamics

o

The power flow 1s used to determine a quasi steady-

state operating condition

for a power system

— Goal 1s to solve a set of algebraic equations g(x) =0

~ Models employed reflect the steady-state assumption, such as
generator PV buses, constant power loads, LTC transformers

Dynamic analysis 1s used
changes with time, usuall

| to determine how the system
y after some disturbance

perturbs 1t away from a ¢
point

uasi-steady state equilibrium

12



Example: Transient Stability
[
* Transient stability 1s used to determine whether
following a disturbance (contingency) the power
system returns to a steady-state operating point

— Goal 1s to solve a set of differential and algebraic equations,
dx/dt = f(x,y), g(x,y) =0

— Starts 1n steady-state, and hopefully returns to steady-state.

— Models reflect the transient stability time frame (up to dozens
of seconds), with some values assumed to be slow enough to
hold constant (LTC tap changing), while others are still fast

enough to treat as algebraic (synchronous machine stator
dynamics, voltage source converter dynamics).

13



Interactive Simulation: PowerWorld
Dynamics Studio (DS)
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Power System Stability Terms

* Terms continue to evolve, but a good reference 1s [1];

image shows Figure 4 from this reference

Power system stability
r Converter- Rotor angle Voltage Frequency
Resomance stability driven stability stability stability stability
e I Fast Slow e Small- Large- Small-
A ‘ e e interaction interaction e disturbance | | disturbance disturbance
| Short term Long term Short term Long term

Fig. 4. Classification of power system stability

o

[1] IEEE/PES Power System Dynamic Performance Committee, “Stability definitions and characterization of dynamic

behavior in systems with high penetration of power electronic interfaced technologies”, PES-TR77, April 2020
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Differential Algebraic Equations

Al
* Many problems, including many in the power area, can
be formulated as a set of differential, algebraic

equations (DAE) of the form
x=1(x,y)
0=g(x,y)

* A power example 1s transient stability, in which f
represents (primarily) the generator dynamics, and g
(primarily) the bus power balance equations

We'll mtially consider the simpler problem of just

X =1(x)
18



Ordinary Differential Equations (ODEs)
iy

* Assume we have a problem of the form
x=1(x) with x(ty) =X,
e This 1s known as an 1nitial value problem, since the
initial value of x 1s given at some time t,
~ We need to determine x(t) for future time
~ Imitial value, x,, must be either be given or determined by
solving for an equilibrium point, f(x) =0
— Higher-order systems can be put into this first order form
* Except for special cases, such as linear systems, an
analytic solution 1s usually not possible — numerical
methods must be used

19



Equilibrium Points

Al
An equilibrium point x* satisfies
x=1f(x*)=0
An equilibrium point is stable if the response to a small
disturbance remains small
— This 1s known as Lyapunov stability
— Formally, 1f for every € > 0, there exists a 0 = 0(¢) > 0 such
that 1f [1x(0) — x*[J <9, then LIx(t) — x*[I <gfort>0

An equilibrium point has asymptotic stability if there
exists a 0 > 0 such that if [1x(0) — x*[] <9, then

lim [x(#)—x* =0

[—>0

20



Power System Application

Al
A typical power system application 1s to assume the
power flow solution represents an equilibrium point

Back solve to determine the 1nitial state variables, x(0)

At some point a contingency occurs, perturbing the
state away from the equilibrium point

Time domain simulation 1s used to determine whether
the system returns to the equilibrium point

21



Initial value Problem Examples

o

Example 1: Exponential Decay
A simple example with an analytic solution 1s
X = —-x withx(0) = x,
This has a solution x(t) = x,e”’
Example 2: Mass-Spring System
— - kx—gM = Mx+ Dx
SPr:ﬂjé P spring torce N ir .
Mags § Pree doe to |

%MV l‘f’Y



Numerical Solution Methods

Al
Numerical solution methods do not generate exact
solutions; they practically always introduce some error

— Methods assume time advances 1n discrete increments, called
a stepsize (or time step), At

— Speed accuracy tradeoff: a smaller At usually gives a better
solution, but 1t takes longer to compute

— Numeric roundoff error due to finite computer word size

Key 1ssue 1s the derivative of x, f(x) depends on x, the
value we are trying to determine

A solution exists as long as f(x) 1s continuously
differentiable

23



Numerical Solution Methods

Al
* There are a wide variety of different solution
approaches, we will only touch on several

* One-step methods: require information about solution
just at one point, x(t)
— Forward Euler
— Runge-Kutta

* Multi-step methods: make use of information at more
than one point, x(t), x(t-At), x(t-A2t)...
— Adams-Bashforth

* Predictor-Corrector Methods: implicit

— Backward Euler
24



Error Propagation
Al
* At each time step the total round-off error 1s the sum of

the local round-off at time and the propagated error
fromsteps 1,2, ..., k—1
* An algorithm with the desirable property that local

round-off error decays with increasing number of steps
1s said to be numerically stable

* Otherwise, the algorithm 1s numerically unstable

* Numerically unstable algorithms can nevertheless give
quite good performance 1f appropriate time steps are
used

— This 1s particularly true when coupled with algebraic
equations 25



Forward Euler’s Method

Al
* The simplest technique for numerically integrating
such equations 1s known as the Euler's Method

(sometimes the Forward Euler's Method)

* Key idea 1s to approximate
x = f(x(¢)) = —as —
Then
X(t+At) = x(t)+ Atf(x(?))

* In general, the smaller the At, the more accurate the
solution, but 1t also takes more time steps

26



Euler’'s Method Algorithm
T

Set t = t, (usually 0)
X(t)) = X
Pick the time step At, which 1s problem specific
Whilet < t*™ Do
x(t+At) = x(t)+ Atf(x(1))
I = t+ At
End While

27



Euler’'s Method Example 1
T

Consider the Exponential Decay Example

-x  withx(0) = x,

X
This has a solution x(t) = xye”’
Since we know the solution we can compare the accuracy

of Euler's method for different time steps

28



Euler’s Method Example 1, cont’d

t xactual(ty | x(t) At=0.1 | x(t) At=0.05
0 10 10 10
0.1 9.048 9 9.02
0.2 8.187 8.10 8.15
0.3 7.408 7.29 7.35
1.0 3.678 3.49 3.58
2.0 1.353 1.22 1.29

A

29



Euler’'s Method Example 2
T

Consider the equations describing the horizontal

position of a cart attached to a lossless spring:

Assuming 1nitial conditions of x;(0) =1 and x,(0) =0,

the analytic solution is x,(¢) = cost.

We can again compare the results of the analytic and

numerical solutions

30



Euler's Method Example 2, cont'd
T

Starting from the 1nitial conditions at t =0 we next
calculate the value of x(t) at time t = 0.25.
x(0.25) = x(0)+0.25x,(0) = 1.0
x,(0.25) = x,(0)-0.25x,(0) = —0.25
Then we continue on to the next time step, t = 0.50
x1(0.50) = x(0.25)+0.25x,(0.25) =
= 1.04+0.25x(-0.25) = 0.9375
x,(0.50) = x,(0.25)—-0.25x,(0.25) =
= —0.25-0.25%x(1.0) =—-0.50

31



Euler's Method Example 2, cont'd

AlM
X Actual(t) x,(t) At=0.25
Since we
0 1 1
know from
0.25 0.9689 1 the exact
0.50 0.8776 0.9375 solution that
X, 1s bounded
0.75 0.7317 0.8125
between
1.00 0.5403 0.6289 -1 and 1,
clearly the
method 1s
10.0 -0.8391 -3.129 numerically
100.0 0.8623 -151,983 unstable

32



Euler's Method Example 2, cont'd

Below 1s a comparison of the solution values for x,(t)

at ttime t = 10 seconds

At x,(10)
actual -0.8391
0.25 -3.129
0.10 -1.4088
0.01 -0.8823
0.001 -0.8423

o

33



Second Order Runge-Kutta Method
iy

Runge-Kutta methods improve on Euler's method by
evaluating f(x) at selected points over the time step

Simplest method 1s the second order method 1n which

x(1+Ar)= x(t)+%( K, +k,)

where
k, = At f(x(t))
k, = Ar f(x(r)+k, )

That 1s, k; 1s what we get from Euler's; k, improves on

this by reevaluating at the estimated end of the time

step 34



Second Order Runge-Kutta Algorithm
iy
t=0,x(0) = x,, At = step size
While t < tfinal Do
kl = At f(x(t))
k2 = At f(x(t) + k1)
x(t+At) = x(t) + (k1 + k2)/2
t = t+At
End While

35



RK2 Oscillating Cart
iy

* Consider the same example from before the position of
a cart attached to a lossless spring. Again, with 1nitial
conditions of x,(0) =1 and x,(0) = 0, the analytic

solution 1s x,(t) = cos(t)

X X k, =(0.25) | |
- - = . X =
’ 1 ! 1] |-025
*  With At=0.25 11 o 17 1 7
= x(0)+kl=| [+ =
att=0 O+KE=1 017 2025 | —025

36



k, = (0.25)xf (x(0) + k) =

x(0.25) =

RK2 Oscillating Cart

1
+—(k; +k, )=
(ki k)

—0.0625 ]

~0.25
70.96875

025

o

37



Comparison

o

* The below table compares the numeric and exact
solutions for x,(t) using the RK2 algorithm

time actual x,(t)  x,(t) with RK2
At=0.25
0 1 1
0.25 0.9689 0.969
0.50 0.8776 0.876
0.75 0.7317 0.728
1.00 0.5403 0.533
10.0 -0.8391 -0.795

100.0 0.8623 1.072

38



Comparison of x,(10) for varying At

The below table compares the x,(10) values for
different values of At; recall with Euler's with At=0.1
was -1.41 and with 0.01 was -0.8823

At
actual
0.25
0.10
0.01
0.001

x,(10)
-0.8391
-0.7946
-0.8310
-0.8390
-0.8391

A

39



RK2 Versus Euler's

Al
 RK2 requires twice the function evaluations per
iteration, but gives much better results

* With RK2 the error tends to vary with the cube of the
step size, compared with the square of the step size for
Euler's

* The smaller error allows for larger step sizes compared
to Eulers

40



Fourth Order Runge-Kutta
I
* Other Runge-Kutta algorithms are possible, including
the fourth order

x(7+At)= X(t)+é( k,+ 2k, + 2k, +k, )

where

=Atf(x k, ) "
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