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Announcements

• Start reading Chapters 1 and 2 from the book (Chapter 
1 is Introduction, Chapter 2 is Electromagnetic 
Transients)

• On campus students consider signing up for the Energy 
and Power Group seminar on Fridays at 1130am in 
ETB 1020 (ECEN 681, Section 604)

• As noted, we’ll be hosting the North American Power 
Symposium (NAPS) on Nov 14-16, 2021.  If you 
would like to help with NAPS contact Prof. Kate Davis 
at katedavis@tamu.edu
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ERCOT EDP Reach, Sept 10

• RSVP by today
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PowerWorld Simulator

• Class will make extensive use of PowerWorld 
Simulator and DS.  If you do not have a copy of version 
22, the free 42 bus student versions are available for 
download at 

http://www.powerworld.com/gloveroverbyesarma
• Start getting familiar with this package, particularly the 

power flow basics.  Stability aspects will be covered in 
class

• Free training material is available at 
http://www.powerworld.com/training/online-training
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Modeling Cautions!

• "All models are wrong but some are useful," George 
Box, Empirical Model-Building and Response 
Surfaces, (1987, p. 424)
– Models are an approximation to reality, not reality, so they 

always have some degree of approximation
– Box went on to say that the practical question is how wrong to 

they have to be to not be useful
• A good part of engineering is deciding what is the 

appropriate level of modeling, and knowing under 
what conditions the model will fail

• Always keep in mind what problem you are trying to 
solve!
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Static versus Dynamic Analysis

• Statics versus dynamics appears in many fields
• An equilibrium point is a point at which the model is not 

changing
– Real systems are always changing, but over the time period of 

interest an unchanging system can be a useful approximation
• Static analysis looks at how the equilibrium points 

change to a change in the model
– Power system example is power flow 

• Dynamic analysis looks at how the system responds 
over time when it is perturbed away from an equilibrium 
point
– Power system example is transient stability 5



Slow versus Fast Dynamics

• Key analysis question in setting up and solving models 
is to determine the time frame of interest

• Values that change slowing (relative to the time frame 
of interest) can be assumed as constant
– Power flow example is the load real and reactive values are 

assumed constant (sometimes voltage dependence is included)
• Values that change quickly (relative to the time frame of 

interest) can be assumed to be algebraic
– A generator's terminal voltage in power flow is an algebraic 

constraint, but not in transient stability
– In power flow and transient stability the network power 

balance equations are assumed algebraic 
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Dynamics Example 1
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1996: Transient Stability Model Errors Lead to Blackouts 



Dynamics Example: August 14 Blackout

Image from August 14, 2003 Blackout Final Report, energy.gov, Figure 6.26 
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Dynamics Example 3
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Source: Arizona-Southern California Outages
on September 8, 2011 Report, 
FERC and NERC,April 2012

We’ve come a long
ways since 1996
towards improved 
simulations. Still,
a finding from 
the 2011 Blackout
is the simulations
didn’t match
the actual system
response and 
need to be improved. 



Models and Their Parameters

• Models and their parameters are often tightly coupled
– The parameters for a particular model might have been 

derived from actual results on the object of interest
• Changing the model (even correcting an "incorrect" 

simulation implementation) can result in unexpected 
results!

• Using a more detailed simulation approach without 
changing the model can also result in incorrect results
– More detailed models are not necessarily more accurate
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Positive Sequence versus 
Full Three-Phase

• Large-scale electrical systems are almost exclusively 
three-phase.  Common analysis tools such as power 
flow and transient stability often assume balanced 
operation
– This allows modeling of just the positive sequence though full 

three-phase models are sometimes used particularly for 
distribution systems

– Course assumes knowledge of sequence analysis
• Other applications, such as electromagnetic transients 

(commonly known as electromagnetic transients 
programs [EMTP]) consider the full three phase models
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Power Flow Versus Dynamics

• The power flow is used to determine a quasi steady-
state operating condition for a power system
– Goal is to solve a set of algebraic equations g(x) = 0
– Models employed reflect the steady-state assumption, such as 

generator PV buses, constant power loads, LTC transformers
• Dynamic analysis is used to determine how the system 

changes with time, usually after some disturbance 
perturbs it away from a quasi-steady state equilibrium 
point 
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Example: Transient Stability

• Transient stability is used to determine whether 
following a disturbance (contingency) the power 
system returns to a steady-state operating point
– Goal is to solve a set of differential and algebraic equations, 

dx/dt = f(x,y), g(x,y) = 0
– Starts in steady-state, and hopefully returns to steady-state.
– Models reflect the transient stability time frame (up to dozens 

of seconds), with some values assumed to be slow enough to 
hold constant (LTC tap changing), while others are still fast 
enough to treat as algebraic (synchronous machine stator 
dynamics, voltage source converter dynamics).
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Interactive Simulation: PowerWorld 
Dynamics Studio (DS)
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Power System Stability Terms

• Terms continue to evolve, but a good reference is [1]; 
image shows Figure 4 from this reference

[1] IEEE/PES Power System Dynamic Performance Committee, “Stability definitions and characterization of dynamic 
behavior in systems with high penetration of power electronic interfaced technologies”, PES-TR77, April 2020 15



Physical Structure 
Power System Components
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P. Sauer and M. Pai, Power System Dynamics and Stability



Physical Structure 
Power System Components
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Differential Algebraic Equations

• Many problems, including many in the power area, can 
be formulated as a set of differential, algebraic 
equations (DAE) of the form

• A power example is transient stability, in which f
represents (primarily) the generator dynamics, and g
(primarily) the bus power balance equations

• We'll initially consider the simpler problem of just 

( , )
( , )

=
=

x f x y
0 g x y


( )=x f x
18



Ordinary Differential Equations (ODEs) 

• Assume we have a problem of the form

• This is known as an initial value problem, since the 
initial value of x is given at some time t0
– We need to determine x(t) for future time
– Initial value, x0, must be either be given or determined by 

solving for an equilibrium point, f(x) = 0
– Higher-order systems can be put into this first order form

• Except for special cases, such as linear systems, an 
analytic solution is usually not possible – numerical 
methods must be used

0 0( ) with (t )= =x f x x x
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Equilibrium Points

• An equilibrium point x* satisfies

• An equilibrium point is stable if the response to a small 
disturbance remains small
– This is known as Lyapunov stability
– Formally, if for every ε > 0, there exists a δ = δ(ε) > 0 such 

that if x(0) – x* < δ, then x(t) – x* < ε for t ≥ 0
• An equilibrium point has asymptotic stability if there 

exists a δ > 0 such that if x(0) – x* < δ, then 

( *)= =x f x 0

lim ( ) *
t

t
→∞

− =x x 0
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Power System Application

• A typical power system application is to assume the 
power flow solution represents an equilibrium point

• Back solve to determine the initial state variables, x(0)
• At some point a contingency occurs, perturbing the 

state away from the equilibrium point
• Time domain simulation is used to determine whether 

the system returns to the equilibrium point
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Initial value Problem Examples

( )

0

0

1 2

2 1 2

Example 1:  Exponential Decay
A simple example with an analytic solution is

x with x(0)  x

This has a solution x(t)  x
Example 2: Mass-Spring System

or
x

1

t

x

e

kx gM Mx Dx

x

x k x g M D x
M

−

= − =

=

− = +

=

= − −



 




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Numerical Solution Methods

• Numerical solution methods do not generate exact 
solutions; they practically always introduce some error
– Methods assume time advances in discrete increments, called 

a stepsize (or time step), ∆t
– Speed accuracy tradeoff: a smaller ∆t usually gives a better 

solution, but it takes longer to compute 
– Numeric roundoff error due to finite computer word size

• Key issue is the derivative of x, f(x) depends on x, the 
value we are trying to determine

• A solution exists as long as f(x) is continuously 
differentiable
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Numerical Solution Methods

• There are a wide variety of different solution 
approaches, we will only touch on several

• One-step methods: require information about solution 
just at one point, x(t)
– Forward Euler 
– Runge-Kutta

• Multi-step methods: make use of information at more 
than one point, x(t), x(t-∆t), x(t-∆2t)…
– Adams-Bashforth

• Predictor-Corrector Methods: implicit
– Backward Euler
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Error Propagation

• At each time step the total round-off error is the sum of 
the local round-off at time and the propagated error 
from steps 1, 2 ,  … , k − 1

• An algorithm with the desirable property that local 
round-off error decays with increasing number of steps 
is said to be numerically stable

• Otherwise, the algorithm is numerically unstable
• Numerically unstable algorithms can nevertheless give 

quite good performance if appropriate time steps are 
used
– This is particularly true when coupled with algebraic 

equations 25



Forward Euler’s Method

• The simplest technique for numerically integrating 
such equations is known as the Euler's Method 
(sometimes the Forward Euler's Method)

• Key idea is to approximate

• In general, the smaller the ∆t, the more accurate the 
solution, but it also takes more time steps 

d ( ( ))  as 
dt t

Then
( ) ( ) ( ( ))

t

t t t t t

∆
= =

∆

+ ∆ ≈ + ∆

x xx f x

x x f x


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Euler’s Method Algorithm

0

0 0

end

Set t = t  (usually 0)
(t ) =

Pick the time step t, which is problem specific

While t  t  Do
( ) ( ) ( ( ))

End While

t t t t t
t t t

∆

≤
+ ∆ = + ∆
= + ∆

x x

x x  f x
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Euler’s Method Example 1

0

0

Consider the Exponential Decay Example
x with x(0)  x

This has a solution x(t)  x
Since we know the solution we can compare the accuracy
of Euler's method for different time steps

t

x

e−
= − =

=


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Euler’s Method Example 1, cont’d

t xactual(t) x(t)  ∆t=0.1 x(t)  ∆t=0.05

0 10 10 10

0.1 9.048 9 9.02

0.2 8.187 8.10 8.15

0.3 7.408 7.29 7.35

… … … …

1.0 3.678 3.49 3.58

… … … …

2.0 1.353 1.22 1.29
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Euler’s Method Example 2

1 2

2 1

1 2

1

Consider the equations describing the horizontal 
position of a cart attached to a lossless spring:

x

Assuming initial conditions of (0) 1 and x (0) 0,
the analytic solution is x ( ) cos .

We

x
x x

x
t t

=
= −

= =
=





 can again compare the results of the analytic and
numerical solutions
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Euler's Method Example 2, cont'd

1 1 2

2 2 1

Starting from the initial conditions at t =0 we next
calculate the value of x(t) at time t = 0.25.

(0.25) (0) 0.25 (0) 1.0
(0.25) (0) 0.25 (0) 0.25

Then we continue on to the next time step, t 

x x x
x x x

= + =
= − = −

1 1 2

2 2 1

= 0.50
(0.50) (0.25) 0.25 (0.25)

1.0 0.25 ( 0.25) 0.9375
(0.50) (0.25) 0.25 (0.25)

0.25 0.25 (1.0) 0.50

x x x

x x x

= + =
= + × − =
= − =
= − − × = −
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Euler's Method Example 2, cont'd

t x1
actual(t) x1(t)  ∆t=0.25

0 1 1

0.25 0.9689 1

0.50 0.8776 0.9375

0.75 0.7317 0.8125

1.00 0.5403 0.6289

… … …

10.0 -0.8391 -3.129

100.0 0.8623 -151,983

Since we 
know from
the exact
solution that
x1 is bounded
between 
-1 and 1, 
clearly the
method is
numerically
unstable
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Euler's Method Example 2, cont'd

∆t x1(10)

actual -0.8391

0.25 -3.129

0.10 -1.4088

0.01 -0.8823

0.001 -0.8423

Below is a comparison of the solution values for x1(t)
at time t = 10 seconds
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Second Order Runge-Kutta Method

• Runge-Kutta methods improve on Euler's method by 
evaluating f(x) at selected points over the time step

• Simplest method is the second order method in which

• That is, k1 is what we get from Euler's; k2 improves on 
this by reevaluating at the estimated end of the time 
step

( ) ( ) ( )

( )( )
( )( )

1 2

1

2 1

1                
2

where   
    

       

t t t

t t

t t +

+ ∆ = + +

= ∆

= ∆

x x k k

k f x

k f x k
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Second Order Runge-Kutta Algorithm

t = 0, x(0)  =  x0, ∆t = step size
While t ≤ tfinal Do 

k1 = ∆t f(x(t))
k2 = ∆t f(x(t) + k1)
x(t+∆t)  =   x(t) + ( k1 + k2)/2
t = t + ∆t

End While
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RK2 Oscillating Cart

• Consider the same example from before the position of 
a cart attached to a lossless spring.  Again, with initial 
conditions of x1(0) =1 and x2(0) = 0, the analytic 
solution is x1(t) = cos(t) 

• With ∆t=0.25 
at t = 0

1 2

2 1

x x
x x

=
= −



 1
0 0

(0.25)
1 0.25

1 0 1
(0) 1

0 0.25 0.25

   
= × =   − −   

     
+ = + =     − −     

k

x k
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RK2 Oscillating Cart

( )

( )

2 1

1 2

0.0625
(0.25) (0)

0.25
1 0.968751(0.25)

20 0.25

− 
= × + =  − 

   
= + + =   −   

k f x k

x k k
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Comparison

• The below table compares the numeric and exact 
solutions for x1(t) using the RK2 algorithm

38

time actual x1(t) x1(t) with RK2
∆t=0.25

0 1 1
0.25 0.9689 0.969
0.50 0.8776 0.876
0.75 0.7317 0.728
1.00 0.5403 0.533
10.0 -0.8391 -0.795
100.0 0.8623 1.072



Comparison of x1(10) for varying ∆t

• The below table compares the x1(10) values for 
different values of ∆t; recall with Euler's with ∆t=0.1 
was -1.41 and with 0.01 was -0.8823

∆t x1(10)
actual -0.8391
0.25 -0.7946
0.10 -0.8310
0.01 -0.8390
0.001 -0.8391
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RK2 Versus Euler's

• RK2 requires twice the function evaluations per 
iteration, but gives much better results

• With RK2 the error tends to vary with the cube of the 
step size, compared with the square of the step size for 
Euler's

• The smaller error allows for larger step sizes compared 
to Eulers
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Fourth Order Runge-Kutta

• Other Runge-Kutta algorithms are possible, including 
the fourth order 

( ) ( ) ( )

( )( )

( )

( )

( )( )

1 2 3 4

1

2 1

3 2

4 2

1               2 2  
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where   
    

       

 

1
2
1
2

     

     

t t t

t t

t t

t t

t t

+ ∆ = + + + +

= ∆

= ∆

= ∆

 + 
 
 

=

+


+∆




x x k k k k

k f x

k f x k

k f x k

k f x k 41
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