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Announcements

o

Homework 1 1s due on Thursday September 16
Starting read Chapter 3

Reference for modeling three-phase lines 1s W.
Kersting, Distribution System Modeling and Analysis,
4t Edition, CRC Press, 2018



Special Case 2: Wave Equation

Al
The lossless line (R'=0, G'=0), which gives

ov_ 00 D0

Ox ot Ox ot

This 1s the wave equation with a general solution of

i(x,t):—fl(x—vpt)—fz(x+vpt) Zcisthe
characteristic
V(x»t):Zcfl(x_"pf)_chz(xJFfo) impedance
1 and v, 1s the
z, =~NL'/C", vV, = TC velocity of

propagation



Special Case 2: Wave Equation

Al
* This can be thought of as two waves, one traveling in

the positive x direction with velocity v, and one in the
opposite direction

* The values of f, and f, depend upon the boundary
(terminal) conditions

Boundaries
(x.t) = — v f)— / are recelving
z(x ) fl(x " ) fz(x+vp ) end with x=0
v(x,t):ZCfl(x—vpt)—Zsz(x+vpt) and the
1 sending end

=JL'/C', v = with x=d

P LrCr




Calculating v,

* To calculate v, for a line in air we go back to the
definition of L' and C'

D 2re
be ;OTIH(V'), ln&
by = 1 _ 1
! L'C lnly ln%,
\/ Hoto lnD/ \/lnl%

With '=0.78r this 1s very close to the speed of light

o



Important Insight

[

The amount of time for the wave to go between the

terminals 1s d/v = 1 seconds

— To an observer traveling along the line with the wave, x+v t,
will appear constant

What appears at one end of the line impacts the other

end T seconds later
Both sides of

i(x,t)=—f1(x—vpt)—f2(x+vpf) the bottom

equation are
V(X’t) =z./y (x - th) ~z.Jy (x T th) cgnstant

v(x,t)+zci(x,t) :—2ch2(x+vpt) when x+v,t 1s
constant



Determining the Constants

Al
* If just the terminal characteristics are desired, then an
approach known as Bergeron's method can be used.

* Knowing the values at the receiving end m (x=0) we get

i(x,t):—fl(x—vpt)—fz(x+vpt) |
This can be
v(x,t)zch1 (x—vpt)—chz (x+vpt) us.ed.to
i,y (1) =i(0,6) == f,(—v, t) = fo(v, ?) climinate /,
V) =z fi(=v, t) =z fo (v, t)



Determining the Constants
T

* Eliminating f, we get
V) =z fi(v, )=z f5 (v, )

i (—vp t) _ Vin(r) + £ (Vp t) Solve for f; and

Z, replace it in the

equation from the

i, (1) =—-2-2f,(v,t) previous slide

Ze



Determining the Constants

Al
* To solve for f, we need to look at what 1s going on at
the sending end (1.¢., k at which x=d) © = d/v, seconds

in the past

odfeb-gek

i) o)

pP

vy [t —j} =z_f; (Zd —vpt) — 2z, f5 (vpt)

P



Determining the Constants

o

* Dividing v, by z_, and then adding it with 1, gives

Then substituting for f, in 1, gives

i, ()= —V’”Z(t) +i (t—jj‘l-zlvk [r—jj

c p c p

Hence i ,(?) depends on current conditions at m and
past conditions at & 9



Equivalent Circuit Representation

o

* The receiving end can be represented in circuit form as

{

d

[ ——

Vp

J

1
+—,
Z
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l'__
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J

'?‘

m
-+
Vn

—

v

m

Since T = d/v,, [, just depends
on the voltage and current at
the other end of the line from

T seconds 1n the past. Since
these are known values, it
looks like a time-varying

current source

10



Repeating for the Sending End
T

* The sending end has a similar representation

CA ‘!
&
-+ Both ends of
Y 3 é .
_"E ¢ i ‘ []' IM*:" " the line are

represented

7 1 d by Norton
k=l t—— |—— V|t — - alent
Z, vy equivalents

11



Lumped Parameter Model

Al
* In the special case of constant frequency, book shows
the derivation of the common lumped parameter model

This 1s used 1n
power flow and
(?d ) transient

y stability; 1n
EMTP the
frequency 1s not
constant

\ Fl

- smhxd
¥d

Y=!

+9
+0

Q.

(12— ) Y tan
2

@)

';k _ZZ_

el
ol
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Including Line Resistance

Al

* An approach for adding line resistance, while keeping
the simplicity of the lossless line model, 1s to just to
place 2 of the resistance at each end of the line

— Another, more accurate approach, 1s to place Y4 at each end,
and '2 1n the middle

* Standalone resistance, such as modeling the resistance
of a switch, 1s just represented as an algebraic equation

13



Numerical Integration with Trapezoidal
Method T

* Numerical integration 1s often done using the
trapezoidal method discussed last time

~ Here we show how it can be applied to inductors and
capacitors

* For a general function the trapezoidal approach 1s

x =1(x(¢))
x(¢+ At) =x(¢) + —[ F(x(@)+ f(x(t+ Ar))]

* Trapezoidal integration introduces error on the order of
A3, but it is numerically stable

14



Trapezoidal Applied to Inductor with
Resistance

A}
 For alossless inductor,
v=r @ DY g) =

dt dt L

This 1s a linear
. . At .
i(t+ At) :z(t)+z(v(t)+v(t+At)) equation
e This can be represented as a Norton equivalent with
current 1nto the equivalent defined as positive (the last
two terms are the current source)

v(t+ At) i)+ V()

(1 +Af) =
( ) 2L/ At 2L/ At

15



Trapezoidal Applied to Inductor with

Resistance
A]M
 For an inductor 1n series with a resistance we have
di
V=IR+ L—
i c
o+~
a_ R,1, i(0)=i" & K
dad L L L

16



Trapezoidal Applied to Inductor with

Resistance [
| | At| R, 1 |
i(t; + At) = l(fi)+2{_L’(ti)+LV(ti) This also

becomes a

R 1
— it + At)+—v(t; + Az‘)} Norton

L L .

equivalent. A

similar
expression will
be developed
for capacitors

17



RL Example

Al
Assume a series RL circuit with an open switch with
R= 2002 and L = 0.3H, connected to a voltage source

with v = 133,0003/2 cos (277601 o
Assume the switch 1s closed at t=0 +*- R
The exact solution is v L

-

i=—712.4¢%°7" +578.8/2 cos(27z60t —29.50)

7

v=iR + LE; R/L=667, so the
P dc offset decays
R B i(o):io quickly

18



RL Example Trapezoidal Solution

Alw
2L 2%0.3
At 0.0001
At =0.0001sec

1=0 i(0)=0 1999573 e @sas

£ =0.0001

v(0) - Ri(0)
6000

= 6000

oo.) 2 OOJ'L

c(. oool) ¢0.6A

i(0)+ = 31.35A

187,957 31.35x6000

: ion- i(0.0001) = + = 60.65A
Numeric solution: i( ) 6200 6200

Exact solution:
i(0.0001) = —712.4¢~%77 +-578.8\2 cos(2ﬂ60 %0001 — 29.5%)

=—-666.4+727.0

=60.64 19



RL Example Trapezoidal Solution

ATy

t=0.0002 cl.o002) 200

137,s8¢ C'S %6033 &60&

Solving for 1(0.0002) Vo +(97,q:7
- 200% $0.6
K—iﬂ/

g9.9A4

i(0.0002) = 117.3A

Compare to the exact solution

i(0.0002) = 117.3A

20



Full Solution Over Three Cycles

1000

800

600

400

200

-200

-400

-600

-800

-1000

0 0.01

0.02

0.05

e De[taT=0.0001

Exact

o

21



A Favorite Problem: R=0 Case, with

v(t) = Sin(2*pi*60) -

PWFullMatrixGrid Variables

3,200
3,000
2,800
2,600-
2,400

Note that
the current
1S never
negative!

2,200
2,000

@ 1,800~
= i
T 1,600
1,400 -
1,200}
1,000}
800
600
400
200}

22



Lumped Capacitance Model
[
* The trapezoidal approach can also be applied to model
lumped capacitors

0= 0

dt
* Integrating over a time step gives

vt + At) = v(t) + é [

*  Which can be approximated by the trapezoidal as

At . .
V(T + At) —v(t)+E(z(t+At)+z(t)) )



Lumped Capacitance Model

Al
v(t + At) = v(t) + 2A_é (i(t+ A1) +i(1))

v(t+ A1) (1)
At/2C  At/2C

e Hence we can derive a circuit model similar to what
was done for the inductor

i(t+At) =

—i(t)

T4 )
-

\/f (ke ﬂ{-‘}

v(t) . This 1s a current
A /2C —i?)  source that depends
on the past values

24



Example 2.1: Line Closing

o

:.006‘ €
S Se i

V| ! A ‘V}_
R'eG=o0 Hoon

-
-

Dt z.,000] gee

L'=1.5x10H/mi o
y Switch 1s closed at
C'=0.02x10 " F/mi time t = 0.0001 sec

25



Example 2.1: Line Closing

o

Initial conditions: i, =i, =v, =v, =0
for £ <0.0001 sec

L' ]
zZ. = =274Q) v =182.574mi / sec
el roJre
4 =(0.00055sec 7
vy v 50002

Because of finite propagation speed, the receiving end
of the line will not respond to energizing the sending

end for at least 0.00055 seconds
26



Example 2.1: Line Closing

i1 (t; + 0.0001)
-

_+_

v (i +0.0001) C)‘” “f+°'0'30”§ 274 Q CD

o

i2 (1; —0.00045)

V5 (1, —0.00045)

i» (t; + 0.0001)
o

_+_
400 Q

i1 (t; — 0.00045) C‘)

é 274 Q

LV (1j — 0.00045) v2 (r; +0.0001)

_+_
274 5000 %v_; {r;+0.0001® i (t;) +
Q _I

274
Note this 1s v,(t) =
Vy(t) - 400%1,(t)

V

v3 (1)

5000

Figure 2.8: Single line and R-L load circust at ¢ = t; + 0.0001

Note we have two separate circuits, coupled together

only by past values

27



Example 2.1: t=0.0001

Needi; (—0.00045), v, (—0.00045), i,(~0.00045),
v, (=0.00045), ,(0), v5(0), v,(0.0001)

o

~0.00045)=0 i,(0)=
~0.00045)=0 v;(0)=
-0.00045)=0 v, (0.

A
Vi

I

Vs

(
(
(
(0.0001) = 230,000\E cos(2760x0.0001) = 187,661 7

28



Example 2.1: t=0.0001

':' (.O OD‘>

o

29



Example 2.1: t=0.0001

T
i, (0.0001) = 6854

v, (0.0001) =187,661V . Instantaneously
i,(0.0001)=0 changed from zero
v,(0.0001) =0 at £=0.0001 sec.
v,(0.0001) =0

30



Example 2.1: t=0.0002

Al

Need: Circuit 1s essentially
i; (=0.00035) =0 the same
v (~0.00035) =0 i, (0.0002) = 683 4
i, (~0.00035) =0 v,(0.0002) =187,2617
v, (~0.00035) = 0 i,(0.0002) = 0.

1,(0.0001) = 0 v, (0.0002) = 0.

1, (0.0001) =0 v,(0.0002) = 0.

3 . —

v,(0.0002) =187,261V Wave is traveling

down the line
31



Example 2.1: t=0.0002 to 0.006

Al
d
—=0.00055 Ar=0.0001
Vp
t, =0 t=0.0001« switch closed
t. =0.0001 t =0.0002
=0.0002 =0.0003
=0.0003 =0.0004
=0.0004 =0.0005
=0.0005 =0.0006 <~ With interpolation
— 0.0006 =0.0007 <« receiving end

will see wave 19



Example 2.1: t=0.0007

[
Need: 4(-00015) i1(.0001) = 685 4
v1(.00015), v,(.00015) i1(.0002) = 6834
I (.0006), V3 (.0006), v, (.0007)
(linear interpolation) 1(00015) ~ i (0001)+ .00015-.0001
.0002 —.0001

x (#1(.0002)—7;(.0001))

. . t,(r00015) %

¢ed el {3y A
— ,

;
,0001

33



Example 2.1: t=0.0007

o

For ¢, =.0006 (= .0007 sec) at the sending end

v

¢,(,0007)

i1(.0007)= 6624

v1(.0007

)

= 181,293V

This current
source will stay
zero until we get a
response from the
recerving end, at
about 271 seconds

34



Example 2.1: t=0.0007

For ¢, = .0006 (¢ = .0007 sec) at the receiving end

v(.0007)=356,731V
ir(.0007) =664

o

35



Values

Example 2.1: First Three Cycles

AT
| s Red is the
l\ sending
end voltage (in
| kv), while green

IS the receiving
end voltage.
Note the
approximate
- voltage

o oms oo oon  om oms 0w ows ow o 0w doubling at the
receiving end

36



Example 2.1: First Three Cycles
iy

j‘;ﬁ? N\ ~\ ,

- i\ / Graph shows

o \ [\ [~ the current (in

[ \ [ \ [ :

o0 | \ [ / amps) into the
/ \ \ / RL load over

'1233 1/ \\ | \\ 1’ the first three

oot \ " \" | CycCles.

\ " \ "/ \

400 L/ \ / \ /

450\/\\/\/

Column 1

To get a ballpark value on the expected current, solve the
simple circuit assuming the transmission line is just an inductor

L oms = 230,000/3 =311/—20.6° hence a peak value of 439 amps
’ 400+ j94.2+ j56.5 37




Three Node, Two Line Example

1 Graph shows the
\1_ voltages for a
] RN 7N total of 0.02
o LD /R

. | R a | seconds for the

: N\ VY Example 2.1 case
QY //) extended to
\\ N % connect another
\& A %f 120 mile line to
o o e o een o o o the recerving end

L Ny with an 1dentical
Note that there 1s no longer an 1nitial load

overshoot for the receiving (green) end
since wave continues into the second line

38



400

3004}

250
200

100

-50

-100

-200
-250

-350]

-400

Example 2.1 with Capacitance

Al
Below graph shows example 2.1 except the RL load 1s
replaced by a 5 uF capacitor (about 100 Mvar)

Graph on left 1s unrealistic case of no resistance 1n line

— Since there 1s no resistance, there 1s no damp (dissipation)

Graph on right has R=0.1 {3/mile
'R N T O O O O | " 1 N ,
150 \ “ h ’I
N\ ) A f 100 | ] 1
1 i \ [ [
,,,,,,,,, | 1 1|
! ’ -50 \
WL o] [\ \
U\ VA “ WA/ AN
1A VAR VALY ARV A Y
"""""""""""""""""" vV u UU - |

39



EMTP Network Solution
Y

 The EMTP network 1s represented in a manner quite
similar to what 1s done 1n the dc power flow or the
transient stability network power balance equations or

geomagnetic disturbance modeling (GMD)

* Solving set of dc equations for the nodal voltage vector
V with

V=Gl

where G 1s the bus conductance matrix and I is a
vector of the Norton current injections

40



EMTP Network Solution
Y

* Fixed voltage nodes can be handled in a manner
analogous to what 1s done for the slack bus: just

change the equation for node 1to V; =V, ¢ 4

* Because of the time delays associated with the
transmission line models G 1s often quite sparse, and
can often be decoupled

* Once all the nodal voltages are determined, the internal

device currents can be set 62(:0007)
, | ——
- E.g., in example 2.1 one we 3y N SN Hoon
know v, we can determine v, +'!_:_g“i’." "‘"ZW) Sounn 115700
e

13L3A
41



Three-Phase EMTP
T

What we just solved was either just for a single phase
system, or for a balanced three-phase system

— That 1s, per phase analysis (positive sequence)

EMTP type studies are often done on either balanced
systems operating under unbalanced conditions (1.e.,
during a fault) or on unbalanced systems operating
under unbalanced conditions

— Lightning strike studies
In this introduction to EMTP will just covered the
balanced system case (but with unbalanced conditions)

— Solved with symmetrical components
42



Modeling Transmission Lines
Al
Undergraduate power classes usually derive a per

phase model for a uniformly transposed transmission

line
L = ’uolan: 2><10_71nD’" H/m

27 R, R,
27TE
C = D
In—m
"
1
Dm = [dabdacdbc ]% Rb — (r'dlz Tt dln )A

1
Ry =(rd)y--d )4 (note r NOT r')

gmair = g, = 8.854x10'* F/m
43



Modeling Transmission Lines

[

* Resistance 1s just the Q per unit length times the length

* C(Calculate the per phase inductance and capacitance per
km of a balanced 3¢, 60 Hz, line with horizontal phase
spacing of 10m using three conductor bundling with a
spacing between conductors in the bundle of 0.3m.
Assume the line 1s uniformly transposed and the

conductors have a 1.5 cm radius and resistance = 0.06
Q/km

44



Modeling Transmission Lines
Al
D_ :(10><10><20)% =12.6m

R, =(0.78x0.015x0.3x0.3)'3 = 0.102m

12.6

L=2x10""1In 0100 =9.63x10"H/m = 9.63x10*H/km

RS =(0.015%0.3%0.3)'3 =0.1105m

 27x8.854x107"

C =
12.6
In"=20 1105

~1.17x10"F/m =1.17x10°F/km

e Resistance 1s 0.06/3=0.020/km

~ Divide by three because three conductors per bundle
45
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