ECEN 667 Power System Stability

Lecture 5: Three-Phase Line Modeling, Stability Overview

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

A M

- Homework 1 is due on Thursday September 16
- Starting read Chapter 3
- Reference for modeling three-phase lines is W.
 Kersting, *Distribution System Modeling and Analysis*, 4th Edition, CRC Press, 2018

Lumped Capacitance Model

• The trapezoidal approach can also be applied to model lumped capacitors

$$i(t) = C \frac{dv(t)}{dt}$$

• Integrating over a time step gives

$$v(t + \Delta t) = v(t) + \frac{1}{C} \int_{t}^{t + \Delta t} i(t)$$

• Which can be approximated by the trapezoidal as

$$v(t + \Delta t) = v(t) + \frac{\Delta t}{2C} \left(i(t + \Delta t) + i(t) \right)$$

Lumped Capacitance Model

$$v(t + \Delta t) = v(t) + \frac{\Delta t}{2C} \left(i(t + \Delta t) + i(t) \right)$$
$$i(t + \Delta t) = \frac{v(t + \Delta t)}{\Delta t/2C} - \frac{v(t)}{\Delta t/2C} - i(t)$$

• Hence we can derive a circuit model similar to what was done for the inductor

 $\frac{i(t_{1}^{*}+At)}{V(t_{1}^{*}+At)} = \frac{\Delta t}{\Delta c} \oplus -\frac{v(t)}{\Delta t/2C} - i(t)$

This is a current source that depends on the past current and voltage values

Example 2.1: Line Closing

Figure 2.8: Single line and R-L load circuit at $t = t_i + 0.0001$

Note we have two separate circuits, coupled together only by past values

Modeling Transmission Lines

- A M
- Undergraduate power classes usually derive a per phase model for a uniformly transposed transmission line $L = \frac{\mu_0}{2\pi} \ln \frac{D_m}{R_b} = 2 \times 10^{-7} \ln \frac{D_m}{R_b} \text{ H/m}$ $C = \frac{2\pi\varepsilon}{\ln \frac{D_m}{R_b^c}}$
 - $D_{m} = \left[d_{ab} d_{ac} d_{bc} \right]^{\frac{1}{3}} \qquad R_{b} = \left(r' d_{12} \cdots d_{1n} \right)^{\frac{1}{n}}$ $R_{b}^{c} = \left(r d_{12} \cdots d_{1n} \right)^{\frac{1}{n}} \text{ (note r NOT r')}$ $\varepsilon \text{ in air } = \varepsilon_{o} = 8.854 \times 10^{-12} \text{ F/m}$

Modeling Transmission Lines

- Resistance is just the Ω per unit length times the length
- Calculate the per phase inductance and capacitance per km of a balanced 3φ, 60 Hz, line with horizontal phase spacing of 10m using three conductor bundling with a spacing between conductors in the bundle of 0.3m. Assume the line is uniformly transposed and the conductors have a 1.5 cm radius and resistance = 0.06 Ω/km

Modeling Transmission Lines

$$D_{m} = (10 \times 10 \times 20)^{\frac{1}{3}} = 12.6m$$

$$R_{b} = (0.78 \times 0.015 \times 0.3 \times 0.3)^{\frac{1}{3}} = 0.102m$$

$$L = 2 \times 10^{-7} \ln \frac{12.6}{0.102} = 9.63 \times 10^{-7} \text{H/m} = 9.63 \times 10^{-4} \text{H/km}$$

$$R_{b}^{c} = (0.015 \times 0.3 \times 0.3)^{\frac{1}{3}} = 0.1105m$$

$$C = \frac{2\pi \times 8.854 \times 10^{-12}}{\ln^{12.6}/0.1105} = 1.17 \times 10^{-11} \text{F/m} = 1.17 \times 10^{-8} \text{F/km}$$

- Resistance is $0.06/3=0.02\Omega/km$
 - Divide by three because three conductors per bundle

Untransposed Lines with Ground Conductors

- To model untransposed lines, perhaps with grounded neutral wires, we use the approach of Carson (from 1926) of modeling the earth return with equivalent conductors located in the ground under the real wires
 - Earth return conductors have the same
 GMR of their above ground conductor
 (or bundle) and carry the opposite current
- Distance between conductors is

 $D_{kk'} = 658.5 \sqrt{\rho/f} \,\mathrm{m}$

Note this depends on frequency!

where ρ is the earth resistivity in Ω -m with 100 Ω -m a typical value

Untransposed Lines with Ground Conductors

- The resistance of the equivalent conductors is $R_{k'}=9.869\times10^{-7}\times f \Omega/m$ with f the frequency, which is also added in series to the R of the actual conductors
- Conductors are mutually coupled; we'll be assuming three phase conductors and N grounded neutral wires
- Total current in all conductors sums to zero

Untransposed Lines with Ground Conductors

- The relationships between voltages and currents per unit length is $\begin{bmatrix}
 E_{Aa} \\
 E_{Bb} \\
 E_{Cc} \\
 0 \\
 \vdots \\
 0
 \end{bmatrix} = (\mathbf{R} + j\omega \mathbf{L}) \begin{bmatrix}
 I_a \\
 I_b \\
 I_c \\
 I_{nl} \\
 \vdots \\
 InN
 \end{bmatrix}$
- Where the diagonal resistance are the conductor resistance plus $R_{k'}$ and the off-diagonals are all $R_{k'}$
- The inductances are $L_{km} = 2 \times 10^{-7} \ln \left(\frac{D_{km'}}{D_{km}} \right)$ with D_{kk} just the GMR for the conductor (or bundle) $D_{km'} \approx D_{kk'}$

Untransposed Lines with Ground Conductors

• This then gives an equation of the form

• Which can be reduced to just the phase values

$$\mathbf{E}_{p} = \left[\mathbf{Z}_{A} - \mathbf{Z}_{B}\mathbf{Z}_{D}^{-1}\mathbf{Z}_{C}\right]\mathbf{I}_{p} = \mathbf{Z}_{p}\mathbf{I}_{p}$$

• We'll use \mathbf{Z}_{p} with symmetrical components

- Given a 60 Hz overhead distribution line with the tower configuration (N=1 neutral wire) with the phases using Linnet conductors and the neutral 4/0 6/1 ACSR, determine Z_p in ohms per mile
 - Linnet has a GMR = 0.0244ft, and R = 0.306Ω /mile

- $R_{k'}=9.869 \times 10^{-7} \times f \Omega/m$ is 0.0953 Ω /mile at 60 Hz
- Phase R diagonal values are $0.306 + 0.0953 = 0.401 \Omega$ /mile
- The neutral R values are 0.592 + 0.0953= 0.6873 Ω /mile

• Example inductances are worked with $\rho = 100\Omega$ -m

$$D_{kk'} = 658.5 \sqrt{\frac{100}{60}} m = 850.1m = 2789 \text{ ft}$$
$$L_{km} = 2 \times 10^{-7} \ln\left(\frac{D_{km'}}{D_{km}}\right) \approx 2 \times 10^{-7} \ln\left(\frac{D_{kk'}}{D_{km}}\right)$$

• Note at 2789 ft, $D_{kk'}$ is much, much larger than the distances between the conductors, justifying the above assumption

• Working some of the inductance values

$$L_{aa} = 2 \times 10^{-7} \ln \left(\frac{2789}{0.0244}\right) = 2.329 \times 10^{-6} \,\mathrm{H/m}$$

Phases a and b are separated by 2.5 feet, while it is 5.66 feet between phase a and the ground conductor

$$L_{ab} = 2 \times 10^{-7} \ln\left(\frac{2789}{2.5}\right) = 1.403 \times 10^{-6} \,\text{H/m}$$
$$L_{an} = 2 \times 10^{-7} \ln\left(\frac{2789}{5.66}\right) = 1.240 \times 10^{-6} \,\text{H/m}$$

Even though the distances are worked here in feet, the result is in H/m because of the units on μ_0

- Continue to create the 4 by 4 symmetric **L** matrix
- Then $\mathbf{Z} = \mathbf{R} + j\omega \mathbf{L}$

 $\mathbf{Z} = \begin{bmatrix} 0.4013 + j1.4133 & 0.0953 + j0.8515 & 0.0953 + j0.7266 & 0.0953 + j0.7524 \\ 0.0953 + j0.8515 & 0.4013 + j1.4133 & 0.0953 + j0.7802 & 0.0953 + j0.7865 \\ 0.0953 + j0.7266 & 0.0953 + j0.7802 & 0.4013 + j1.4133 & 0.0953 + j0.7674 \\ 0.0953 + j0.7524 & 0.0953 + j0.7865 & 0.0953 + j0.7674 & 0.6873 + j1.5465 \end{bmatrix}$

- Partition the matrix and solve $\mathbf{Z}_p = \left[\mathbf{Z}_A \mathbf{Z}_B \mathbf{Z}_D^{-1} \mathbf{Z}_C\right]$
- The result in Ω /mile is

 $\mathbf{Z}_{p} = \begin{bmatrix} 0.4576 + 1.0780 & 0.1560 + j0.5017 & 0.1535 + j0.3849 \\ 0.1560 + j0.5017 & 0.4666 + j1.0482 & 0.1580 + j0.4236 \\ 0.1535 + j0.3849 & 0.1580 + j0.4236 & 0.4615 + j1.0651 \end{bmatrix}$

Modeling Line Capacitance

- For capacitance the earth is typically modeled as a perfectly conducting horizontal plane; then the earth plane is replaced by mirror image conductors
 - If conductor is distance H above ground, mirror image conductor is distance H below ground, hence their distance apart is 2H

Modeling Line Capacitance

• The relationship between the voltage to neutral and charges are then given as

$$V_{kn} = \frac{1}{2\pi\varepsilon} \sum_{m=a}^{nN} q_m \ln \frac{H_{km}}{D_{km}} = \sum_{m=a}^{nN} q_m P_{km}$$
$$P_{km} = \frac{1}{2\pi\varepsilon} \ln \frac{H_{km}}{D_{km}}$$

- P's are called potential coefficient:
- Where D_{km} is the distance between the conductors, H_{km} is the distance to a mirror image conductor and $D_{kk} = R_b^c$

Earth plane H_{aa} Hab \dot{H}_{an1}

Modeling Line Capacitance

A M

• Then we setup the matrix relationship

• And solve $\mathbf{V}_p = \begin{bmatrix} \mathbf{P}_A - \mathbf{P}_B \mathbf{P}_D^{-1} \mathbf{P}_C \end{bmatrix} \mathbf{Q}_p$ $\mathbf{C}_p = \begin{bmatrix} \mathbf{P}_A - \mathbf{P}_B \mathbf{P}_D^{-1} \mathbf{P}_C \end{bmatrix}^{-1}$

Continuing the Previous Example

- In example 4.1, assume the below conductor radii For the phase conductor $R_b^c = 0.0300$ ft For the neutral conductor $R_n^c = 0.0235$ ft
- Calculating some values

$$\varepsilon_{0} = 8.85 \times 10^{-12} \,\mathrm{F/m} = 1.424 \times 10^{-2} \,\mu\mathrm{F/mile}$$

$$P_{aa} = \frac{1}{2\pi\varepsilon_{0}} \ln\left(\frac{2 \times 29.0}{0.0300}\right) = 11.177 \ln\left(\frac{2 \times 29.0}{0.0300}\right) = 84.57 \,\mathrm{mile/\muF}$$

$$P_{ab} = 11.177 \ln\left(\frac{58.05}{2.5}\right) = 35.15 \,\mathrm{mile/\muF}$$

$$P_{an} = 11.177 \ln\left(\frac{54.148}{5.6569}\right) = 25.25 \,\mathrm{mile/\muF}$$

Continuing the Previous Example

• Solving we get

$$\mathbf{P}_{p} = \begin{bmatrix} \mathbf{P}_{A} - \mathbf{P}_{B} \mathbf{P}_{D}^{-1} \mathbf{P}_{C} \end{bmatrix} = \begin{bmatrix} 77.12 & 26.79 & 15.84 \\ 26.79 & 75.17 & 19.80 \\ 15.87 & 19.80 & 76.29 \end{bmatrix} \text{ mile/}\mu\text{F}$$
$$\mathbf{C}_{p} = \begin{bmatrix} \mathbf{P}_{p} \end{bmatrix}^{-1} = \begin{bmatrix} 0.0150 & -0.0049 & -0.0018 \\ -0.0049 & 0.0158 & -0.0030 \\ -0.0018 & -0.0030 & 0.0137 \end{bmatrix} \mu\text{F/mile}$$

Frequency Dependence

- We might note that the previous derivation for L assumed a frequency. For steady-state and transient stability analysis this is just the power grid frequency
- As we have seen in EMTP there are a number of difference frequencies present, particularly during transients
 - Coverage is beyond the scope of this class
 - An early paper is J.K. Snelson, "Propagation of Travelling on Transmission Lines: Frequency Dependent Parameters," IEEE Trans. Power App. and Syst., vol. PAS-91, pp. 85-91, 1972

Power System Overvoltages

- Line switching can cause transient overvoltages
 - Resistors (200 to 800Ω) are preinserted in EHV circuit breakers to reduce over voltages, and subsequently shorted
- Common overvoltage cause is lightning strikes
 - Lightning strikes themselves are quite fast, with rise times of 1 to 20 μ s, with a falloff to $\frac{1}{2}$ current within less than 100 μ s
 - Peak current is usually less than 100kA
 - Shield wires above the transmission line greatly reduce the current that gets into the phase conductors
 - EMTP studies can show how these overvoltage propagate down the line

Insulation Coordination

- Insulation coordination is the process of correlating electric equipment insulation strength with expected overvoltages
- The expected overvoltages are time-varying, with a peak value and a decay characteristic
- Transformers are particularly vulnerable
- Surge arrestors are placed in parallel (phase to ground) to cap the overvoltages
 - They have high impedance during normal voltages, and low impedance during overvoltages; airgap devices have been common, though gapless designs are also used

Stability Simulation Overview

- In next several lectures we'll be deriving models used primarily in time-domain stability analysis (covering from cycles to dozens of seconds)
- Goal is to provide a good understanding of 1) the theoretical foundations, 2) applications and 3) some familiarity the commercial packages
- Next several slides provide an overview using PowerWorld Simulator
 - Learning by doing!

PowerWorld Simulator

- Class will make extensive use of PowerWorld Simulator. If you do not have a copy of v22, the free 42 bus student version is available for download at http://www.powerworld.com/gloveroverbyesarma
- Start getting familiar with this package, particularly the power flow basics. Stability aspects will be covered in class
- Free training material is available at

http://www.powerworld.com/training/online-training

Power Flow to Transient Stability

- With PowerWorld Simulator a power flow case can be quickly transformed into a transient stability case
 - This requires the addition of at least one dynamic model
- PowerWorld Simulator supports hundreds of different dynamic models. These slides cover just a few of them
 - Default values are provided for most models allowing easy experimentation
 - Creating a new transient stability case from a power flow case would usually only be done for training/academic purposes; for commercial studies the dynamic models from existing datasets would be used.

Power Flow vs. Transient Stability

- Power flow determines quasi-steady state solution and provides the transient stability initial conditions
- Transient stability is used to determine whether following a contingency the power system returns to a steady-state operating point
 - Goal is to solve a set of differential and algebraic equations, dx/dt = f(x,y), g(x,y) = 0
 - Starts in steady-state, and hopefully returns to steady-state.
 - Models reflect the transient stability time frame (up to dozens of seconds), with some values assumed to be slow enough to hold constant (LTC tap changing), while others are still fast enough to treat as algebraic (synchronous machine stator dynamics, voltage source converter dynamics).

First Example Case

- Open the case Example_13_4_NoModels
 - Cases are on the class website
- Add a dynamic generator model to an existing "no model" power flow case by:
 - In run mode, right-click on the generator symbol for bus 4, then select "Generator Information Dialog" from the local menu
 - This displays the Generator Information Dialog, select the "Stability" tab to view the transient stability models; none are initially defined.
 - Select the "Machine models" tab to enter a dynamic machine model for the _ generator at bus 4. Click "Insert" to enter a machine model. From the Model Type list select GENCLS, which represents a simple "Classical" machine model. Use the default values. Values are per unit using the 28 generator MVA base.

Adding a Machine Model

💭 Generato	r Informatio	n for F	Present							_		×
Bus Number	4		~	Find	By Number	Statu	s Den					
Bus Name	Bus 4		~	Find	d By Name	Closed	osed					
ID	1				Find	Energ	ized) (Offli	ine)				
Area Name	Home (1)					● YE	S (Onl	ine)				
Labels	no labels					Fuel Ty	pe [Unkr	nown			\sim
1	Generator MVA	Base	100.00			Unit Ty	pe [UN (Unknown)			\sim
Power and Vol	tage Control	Costs	OPF F	aults	Owners, A	rea, etc.	Cust	om	Stability			
Machine Mode	els Exciters	Goverr	nors Stabi	lizers	Other Mod	els Step	up Tra	ansfo	rmer Te	rminal ai	nd State	
Inse	rt	Delete	Gen M	/A Bas	e 100.0		Show I	Block	Diagram	Creat	te VCurve	
Type Active	- GENCLS		✓ ✓ Activ	e (onl	y one may b	e active)	Set	to De	efaults			
Parameters												
PU values sł	hown/entered	using d	evice base (of 100	.0 MVA 🗸							
н	3.00000											
D	0.00000											
Ra	0.00000											
Xdp	0.20000											
RComp	0.00000											
XComp	0.00000											
				_								
OK	Save		Save to Au	ĸ		Cano	el		Help		Print	

The GENCLS model represents the machine dynamics as a fixed voltage magnitude behind a transient impedance Ra + jXdp.

Press "Ok" when done to save the data and close the dialog

Transient Stability Form Overview

- Most of the PowerWorld Simulator transient stability functionality is accessed using the Transient Stability Analysis form. To view this form, from the ribbon select "Add Ons", "Transient Stability"
- Key pages of form for quick start examples (listed under "Select Step")
 - Simulation page: Used for specifying the starting and ending time for the simulation, the time step, defining the transient stability fault (contingency) events, and running the simulation
 - Options: Various options associated with transient stability
 - Result Storage: Used to specify the fields to save and where
 - Plots: Used to plot results
 - Results: Used to view the results (actual numbers, not plots)

Transient Stability Overview Form

Transient Stability Analysis		- □ >
Simulation Status Not Initialized		
Run Transient Stability Pause	Abort Restore Reference For Contingency: Find My Transient C	iontingency 🗸
Select Step	imulation Add [Delete Rename Clone Contingency
> Simulation	Control Definitions Violations	
> · Options > · Result Storage	Simulation Time Values	mmary Decilite
> · Plots	Start Time (seconde) 0 000	Generation Load
> Results from RAM	Start Time (seconds)	
Iransient Limit Monitors States/Manual Control	End Time (seconds) 5.000 Seconds	
> Validation	Time Step (cycles) 0.500	
···· SMIB Eigenvalues	Categories Change	
Modal Analysis	Transfer & Conference Elements	
by name simulator options	Transient Contingency Elements	I ransient Contingency Monitor Violations
	: 🔜 📑 判修 號 🐝 🖓 MA 🏨 İ 莊 Records ▼ Set ▼ Column	Is × 閏 × 闡示 ▼ 興 × 瀧 f(X) × ▼
	Object Pretty Time	Time Object Defined
	None Defined	
Process Contingencies		
One Contingency at a time Multiple Contingencies	<	> <
C Muruple Conungencies		
Save All Settings To Load A	Settings From Show Transient Contour Toolbar Auto Insert	Critical Clearing Time Calculator Help Close

AM

Infinite Bus Modeling

- Before doing our first transient stability run, it is useful to discuss the concept of an infinite bus. An infinite bus is assumed to have a fixed voltage magnitude and angle; hence its frequency is also fixed at the nominal value.
 - In real systems infinite buses obviously do not exist, but they can be a useful concept when learning about transient stability.
 - By default PowerWorld Simulator does NOT treat the slack bus as an infinite bus, but does provide this as an option.
 - For this first example we will use the option to treat the slack bus as an infinite bus. To do this select "Options" from the "Select Step" list. This displays the option page. Select the "Power System Model" tab, and then set Infinite Bus Modeling to "Model the power flow slack bus(es) as infinite buses" if it is not already set to do so.

Transient Stability Options Page

t Stability Analysis				- 🗆
Stem us Not Initialized ant Stability Pause odel ge > Results from RAM > Transient Limit Monitors > States/Manual Control > Validation - SMIB Eigenvalues - Modal Analysis - Dynamic Simulator Options	Abort Restore Reference For Contingency: Find Options Initial System Model Remedial Actions Result O Common Load Modeling Compatibility Options Result O Power System Values 60.000 Initial System Frequency (Hz) 60.000 Initial System Frequency (Hz) Initial System Frequency (Hz) 60.000 Initial Hz to First Value System MVA Base 100.00 Initial Point	My Transient Contingency Ind will be applied during the next transient stability ru- ptions Generic Limit Monitors Use Defined Models Integration Method Second Order Runge-Kutta Euler Infinite Bus Modeling No infinite buses (recommended setting) Model power flow slack buses as infinite buses	Bus Modeling	er Flow tcy Options o Hz Value f > Hz Value hange 0.000
	Solution Tolerance (MVA) 0.10000 Maximum Iterations 15 Abort after number of failed solutions 10 Force Network Equation Update 0.00 Use Voltage Extrapolation 1.0 Inner Loop Mismatch Scalar 1.0 Handling of Initial Limit Violations 0.00 Modify Limits and Run 0.4bert	Frequency Measurement Options Bus Frequency Measurement Time Constant (Sec.) Minimum PU voltage for relay frequency measurement O.300 Calculate Bus ROCOF (Rate of Change of Freq) Use Parallel Code	Geomagnetic Induced Current Options Ignore GIC Effects (Option Set on GIC f Just Calculate GIC with No Network GIC XF Time Constant (Sec)	Form) Solution 0.0
Process Contingencies One Contingency at a time Multiple Contingencies	O Run without Changing Limits			

This page is also used to specify the nominal system frequency₃

Specifying the Contingency Event

- To specify the transient stability contingency go back to the "Simulation" page and click on the "Insert Elements" button. This displays the Transient Stability Contingency Element Dialog, which is used to specify the events that occur during the study.
- Usually start at time > 0 to showcase runs flat
- The event for this example will be a self-clearing, balanced 3-phase, solid (no impedance) fault at bus 1, starting at time = 1.00 seconds, and clearing at time = 1.05 seconds.
 - For the first action just choose all the defaults and select "Insert." Insert will add the action but not close the dialog.
 - For second action change the Time to 1.05 seconds the Type to "Clear Fault." Select "OK," which saves the action and closes the dialog.

Inserting Transient Stability Contingency Elements

	💽 Transient Stability Analysis
Click to	Simulation Status Not Initialized
•	Run Transient Stability Pause Abort Restore Reference For Contingency: Find My Transient Contingency ✓
insert	Select Step Simulation Add Delete Rename Clone C
new	Control Definitions Violations
	> · Plots Start Time (seconds) 0.000 ▲ Start Time Start in Generation Load
elements	Results from RAM Specify Time Step in Transient Limit Monitors End Time (seconds) 5.000 Seconds
	> States Manual Control Time Step (cycles) 0.500 ♀ Islanded 0.00
Summary	SMIB Eigenvalues Categories Change
of all	Dynamic Simulator Options Transient Contingency Elements
01 all	Insert Clear All Insert Apply/Clear/Open Time Shift (seconds) 0.000
elements	: 📰 部 카이 🖧 🍰 🦛 🏙 Records - Set - Columns - 📴 - 🏙 + 🐲 - 🕆
in	Object Pretty Time Time Object (Cycles) (Seconds)
111	1 Bus Bus 1 60.0 1.000000 Bus '1' 2 Bus Bus 1 63.0 1.050000 Bus '1'
contingency	,
and time of	
action	
	Process Contingencies
	Multiple Contingencies
	Save All Settings To Load All Settings From Show Transient Contour Toolbar Auto Insert Critical Clearing Time Calculator.

Event Contingency Dialog

escription 1.0			
	Insert Save Delete		
Object Type	Choose the Element		
Branch/Transform	Filter Advanced v Run v		~
Generator	Auvalueu v Dus v Service Auvalueu v Dus v Service Auvalueu v Dus v		Ť
			_
O Switched Shunt	1 (Bus 1) [138.0 kV]		
O DC Line	2 (Bus 2) [138.0 kV]		
O Injection Group	3 (Bus 3) [138.0 kV] 4 (Bus 4) [13.80 kV]		
O Line Shunt			
Simulation			
O Transformer			
() Area			
īme īme (Seconds)	1.00000		
Time Time (Seconds) Description Type	1.00000 ★ Parameters Fault Type Balanced 3 Phase Fault Across Solid not used 0.00 ★ not used 0.00 ★ Calculate Effective Impedance from Sequerts Networks		
Time Time (Seconds) Description Type (a) Apply Fault (Clear Fault (Clear Fault (Clear Fault) (Clear Fault)	1.00000 € Parameters Fault Type Balanced 3 Phase Fault Across Solid not used 0.00 € not used 0.00 € Calculate Effective Impedance from Sequence Networks Self Clearing Fault		
Time Time (Seconds) Description Type Apply Fault Clear Fault Open	1.00000 Parameters Fault Type Balanced 3 Phase Fault Across Solid not used 0.00 Calculate Effective Impedance from Sequence Networks Self Clearing Fault		
Time Time (Seconds) Description Type Apply Fault Clear Fault Open Comment:	1.00000 Parameters Fault Type Balanced 3 Phase Fault Across Solid not used 0.00 not used 0.00 Calculate Effective Impedance from Sequerts Networks Self Clearing Fault		
Time Time (Seconds) Description Type Apply Fault Clear Fault Open Comment:	1.00000 Parameters Fault Type Balanced 3 Phase Fault Across Solid not used 0.00 ot used 0.00 Calculate Effective Impedance from Sequence Networks Self Clearing Fault		

Determining the Results to View

- For large cases, transient stability solutions can generate huge amounts of data. PowerWorld Simulator provides easy ways to choose which fields to save for later viewing. These choices can be made on the "Result Storage" page.
- For this example we'll save the generator 4 rotor angle, speed, MW terminal power and Mvar terminal power.
- From the "Result Storage" page, select the generator tab and double click on the specified fields to set their values to "Yes".

Result Storage Page

AM

Result	💽 Transient Stability Analysis 📃 💷 💌
Result	Simulation Status Not Initialized
Storage >	Run Transient Stability Pause Abort For Contingency: My Transient Contingency Run Transient Stability Pause Abort For Contingency: My Transient Contingency
Storage	Select Step Result Storage
Page	Implication Where to Save/Store Results Save Results Every n Timesteps: Implication Implication Implication
	Generator Save the Results stored to RAM in the PWB file
	Bus Store to RAM Options Save to Hard Drive Options
	Branch Note: All fields that are specified in a plot series of defined plot will also be stored to RAM.
	C Transmission Line Store Results for Open Devices Set All to NO for All Types Set Save All by Type
	Zone Generator Bus Load Branch DC Transmission Line Area Zone
Generator Tab	Save to Hard Drive Option: Set All NO <
	Group by Object Process Contingencies One Contingency at a time Multiple Contingencies Save All Settings To Load All Settings From

Double Click on Fields (which sets them to yes) to Store Their Value_{\$8}

Saving Changes and Doing Simulation

- The last step before doing the run is to specify an ending time for the simulation, and a time step.
- Go to the "Simulation" page, verify that the end time is 5.0 seconds, and that the Time Step is 0.5 cycles
 - PowerWorld Simulator allows the time step to be specified in either seconds or cycles, with 0.25 or 0.5 cycles recommended
- Before doing your first simulation, save all the changes made so far by using the main PowerWorld Simulator Ribbon, select "Save Case As" with a name of "Example_13_4_WithCLSModel_ReadyToRun"
- Click on "Run Transient Stability" to solve.

Doing the Run

Once the contingency runs the "Results" page may be opened

Transient Stability Results

- Once the transient stability run finishes, the "Results" page provides both a minimum/maximum summary of values from the simulation, and time step values for the fields selected to view.
- The Time Values and Minimum/Maximum Values tabs display standard PowerWorld Simulator case information displays, so the results can easily be transferred to other programs (such as Excel) by rightclicking on a field and selecting "Copy/Paste/Send"

Results: Time Values

	A
Lots of	C Transient Stability Analysis
options	Run Transient Stability Pause Abort Restore Reference For Contingency: My Transient Contingency
are	Select Step Results from RAM Simulation Time Values Minimum/Maximum Values Summary Events Solution Details
available	Control Generator Bus Load Switched Shunt Branch DC Transmission Line VSC DC Line Multi-Termin Column Order
for	▷ Options ○ Result Storage
showing	> Plots Column Filtering #1 Rotor #1 Speed #1 MW #1 Mvar > Results from RAM Filter Modify #1 Column Filtering Terminal Terminal > Transient Limit Monitors 100 50 50 50 50 50
and	> States/Manual Control > Validation
filtering	MIB Eigenvalues 4 0.025 20.18 60 100 58.5305 Choose Fields to Display 5 0.033 20.18 60 100 58.5305 6 0.042 20.18 60 100 58.5305
the	Image: Constraint of the second system Image: Consecond system Image: Constraint of t
results.	V Field Voltage (pu) 0
	Image: Non-Venturial Image: No
	Rotor Angle, No Shift 15 0.117 20.18 60 100 58.5305

By default the results are shown for each time step. Results can be saved saved every "n" timesteps using an option on the Results Storage Page

Results: Minimum and Maximum Values

	💭 Transient Stability Analysis							_	
	Simulation Status Finished at 5.000)							
	Run Transient Stability Pause	Abort For Conting	ency: My Transient Conting	ency 🔻					
Minimum	Select Step	Results							
WIIIIIIIIII	- Simulation	Time Values From RAM	inimum/Maximum Values Su	mmary Events Soluti	on Details				
		Buses Generators							
and	Store to RAM Options	00. 0.+.0	AA AA 1919 Deserves	- Set - Columns -		X8_ 🥯 🏤 S		Vations -	
•	Generator	: 11 .00 +.0		· Set · Columns ·		rr t œrt	iico (x) ⊞ €	ptions +	
max1mum	Load	Number	Name Area Na	me Original Volt	Min Volt	Time Min Volt	Max Volt	Time Max Volt	Max-Min V
	Branch	1 1	Bus 1 Home Bus 2 Home	1.0477	1.0188	1.158	1.0616	4.792	0.
values are	···· DC Transmission Line	3 3	Bus 3 Home	1.0303	1.0082	4.525	1.0409	4.792	0.
values are	- Area	4 4	Bus 4 Home	1.0971	1.0630	3.575	1,1143	4.808	0.
availabla									
available									
C 11	⊡ Results								
tor all	Time Values From RAM Minimum Maximum Values								
	Buses								
generators	Generators								
generators	Summary								
and hugan	Events Solution Details								
and buses									
	····· SMIB Eigenvalues								
	Process Contingencies								
	 One Contingency at a time Multiple Contingencies 	•							۴.
								_	
	Save All Settings To Load	All Settings From							<u>C</u> lose

Quickly Plotting Results

- Time value results can be quickly plotted by using the standard case information display plotting capability.
 - Right-click on the desired column
 - Select Plot Columns
 - Use the Column Plot Dialog to customize the results.
 - Right-click on the plot to save, copy or print it.
- More comprehensive plotting capability is provided using the Transient Stability "Plots" page; this will be discussed later.

Generator 4 Rotor Angle Column Plot

Starting the event at t = 1.0 seconds allows for verification of an initially stable operating point. The small angle oscillation indicates the system is stable, although undamped.

GENROU Model

Generator Inf	formation for Current Case
Bus Number	4 Find By Number Status
Bus Name	Bus 4 Find By Name Open Generator MVA Base
ID	1 Find 100.00
Area Name	Home (1) Fuel Type Unknown
Labels	no labels Unit Type UN (Unknown)
Power and Vo	oltage Control Costs OPF Faults Owners, Area, etc. Custom Stability
Machine Mod	els Exciters Governors Stabilizers Other Models Step-up Transformer Terminal and State
	Insert Delete Gen MVA Base 100.0 Show Diagram Set to Default
Type Acti	ive - GENROU Active (only one may be active) Defaults:
Parameters	
PU values s	shown/entered using device base of 100.0 MVA 🔻
н	H 3.0000 ♠ Xdpp=Xqpp 0.1800 ♠ S(1.2) 0.0000 ♠
D	0.0000 XI 0.1500 RComp 0.0000 V
Ra	a 0.0000 Tdop 7.0000 XComp 0.0000
Xd	d 2.1000 Tqop 0.7500
Xq	g 0.5000 Tdopp 0.0350
Xdp	0.2000 Tqopp 0.0500
Xqp	o 0.5000 ♠ S(1.0) 0.0000 ♠
🗸 ок	Save Cancel ? Help Print

The GENROU model provides a good approximation for the behavior of a synchronous generator over the dynamics of interest during a transient stability study (up to about 10 Hz). It is used to represent a solid rotor machine with three damper windings.

