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Announcements

• Homework 2 is due on Thursday September 23

• Read Chapter 5

• The EPG dinner will again take place this semester, 

hosted by Dr. Begovic and his wife on Saturday 

September 25th from 5 to 7:30pm. This is for all EPG 

Faculty, Staff and Students including families (and 

anyone in 667 is eligible). The meal will be catered.  

However you must RSVP by today at   

https://forms.gle/XyN3hc6Md1Mi3YUv9
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Kersting Example 4.1

• For this example the full Z matrix is

• Partition the matrix and solve

• The result in W/mile is 
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Kersting Example 4.1, cont.

• Then to convert to the sequence matrix
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2
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1

1 1 1

1   with 1 120

1

Then

0.7735 1.9536 0.0256 0.0115 0.321 0.0159

Z 0.0321 0.0159 0.3061 0.6270 0.0723 0.0060

0.0256 0.0115 0.0723 0.0059 0.3061 0.6270

s p

j j j

j j j

j j j

  
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−

 
 

= =   
 
 

+ + − + 
 = = − + + − −
 

+ − +  

A

A Z A

The diagonal elements are the sequence values, with the positive

and negative sequence values equal, and the zero sequence about 

three times their value.  The non-zero off-diagonals indicates that 

there is mutual coupling between the phases.  



Substation Bus
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Symmetric Line Spacing – 69 kV
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Bundled Conductor Pictures

6Photo Source: BPA and American Electric Power

The AEP Wyoming-Jackson Ferry 765 kV line 

uses 6-bundle conductors. Conductors in a 

bundle are at the same voltage!



Returning to the Simulation: Generator 
Angles on Different Reference Frames
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Both are equally “correct”, but it is much easier

to see the rotor angle variation when using the

average of generator angles reference frame
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Plot Designer with New Plots with the 
WSCC Nine Bus Case

Note that when new plots are added using “Add Plot”, new Folders 

appear in the plot list.  This will result in separate plots for each group
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Gen 3 Open Contingency Results

The left figure shows the generator speed, while the right figure 

shows the generator mechanical power inputs for the loss of 

generator 3.  This is a severe contingency since more than 25% of 

the system generation is lost, resulting in a frequency dip of almost 

one Hz.  Notice frequency does not return to 60 Hz.    
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Load Modeling

• The load model used in transient stability can have a 

significant impact on the results 

• By default PowerWorld uses constant impedance models 

but makes it very easy to add more complex loads.

• The default (global) models are specified on the Options, 

Power System Model page.  

These models 

are used only

when no other 

models are

specified.
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Load Modeling

• More detailed models are added by selecting Case 

Information, Model Explorer, Transient Stability, 

Load Characteristics Models.

• Models can be specified for the entire case (system), or 

individual areas, zones, owners, buses or loads.  

• To insert a load model click right click and select insert 

to display the Load Characteristic Information dialog.

Right click

here to get

local menu and

select insert.
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Dynamic Load Models

• Loads can either be static or dynamic, with dynamic 

models often used to represent induction motors

• Some load models include a mixture of different types 

of loads; one example is the CLOD model represents a 

mixture of static and dynamic models

• Loads models/changed in PowerWorld using the Load 

Characteristic Information Dialog 

• Next slide shows voltage results for static versus 

dynamic load models

• Case Name: WSCC_9Bus_Load
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WSCC Case Without/With Complex 
Load Models

• Below graphs compare the voltage response following 

a fault with a static impedance load (left) and the 

CLOD model, which includes induction motors (right) 
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Under-Voltage Motor Tripping

• In the PowerWorld CLOD model, under-voltage motor 

tripping may be set by the following parameters

– Vi = voltage at which trip will occur (default = 0.75 pu)

– Ti (cycles) = length of time voltage needs to be below Vi 

before trip will occur (default = 60 cycles, or 1 second)

• In this example change the tripping values to 0.8 pu and 

30 cycles and you will see the motors tripping out on 

buses 5, 6, and 8 (the load buses) – this is especially 

visible on the bus voltages plot.  These trips allow the 

clearing time to be a bit longer than would otherwise be 

the case.

• Set Vi = 0 in this model to turn off motor tripping. 
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37 Bus System

• Next we consider a slightly larger, ten generator, 37 

bus system.  To view this system open case 

AGL37_TS.  The system one-line is shown below.  

To see summary

listings of the 

transient stability 

models in this case

select “Stability 

Case Info” from the 

ribbon, and then 

either “TS Generator

Summary” or “TS

Case Summary” 
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Transient Stability Case and Model 
Summary Displays

Right click on a line

and select “Show 

Dialog” for more

information.  
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37 Bus Case Solution

Graph

shows the

rotor angles

following

a line fault
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Stepping Through a Solution

• Simulator provides functionality to make it easy to see 

what is occurring during a solution.  This functionality 

is accessed on the States/Manual Control Page

Run a Specified Number of  Timesteps or Run 

Until a Specified Time, then Pause. 

See detailed results

at the Paused Time 

Transfer results

to Power Flow

to view using

standard 

PowerWorld 

displays and 

one-lines
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Physical Structure 
Power System Components

Generator

P, Q

Network

Network 

control

Loads

Load 

control

Fuel 

Source

Supply 

control

Furnace 

and Boiler

Pressure 

control

Turbine

Speed 

control

V, ITorqueSteamFuel

Electrical SystemMechanical System

Voltage 

Control

P. Sauer and M. Pai, Power System Dynamics and Stability, Stipes Publishing, 2006.
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Dynamic Models 
in the Physical Structure
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P. Sauer and M. Pai, Power System Dynamics and Stability, Stipes Publishing, 2006.
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Generator Models

• Generators can 

have several 

classes of models 

assigned to them

– Machine Models

– Exciter

– Governors

– Stabilizers

• Others also available 

– Excitation limiters, voltage compensation, turbine load 

controllers, and generator relay model
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Generator Models

22



Machine Models

23



Synchronous Machine Modeling

• Electric machines are used to convert mechanical 

energy into electrical energy (generators) and from 

electrical energy into mechanical energy (motors)

– Many devices can operate in either mode, but are usually 

customized for one or the other

• Vast majority of electricity is generated using 

synchronous generators and some is consumed using 

synchronous motors, so we'll start there

• There is much literature on subject, and sometimes it is 

overly confusing with the use of different conventions 

and nomenclature

24



Synchronous Machine Modeling

3 bal. windings (a,b,c) – stator

Field winding (fd) on rotor

Damper in “d” axis

(1d) on rotor

Two dampers in “q” axis

(1q, 2q) on rotor
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Two Main Types of Synchronous 
Machines

• Round Rotor

– Air-gap is constant, used with higher speed machines

• Salient Rotor (often called Salient Pole) 

– Air-gap varies circumferentially

– Used with many pole, slower machines such as hydro

– Narrowest part of gap in the d-axis and the widest along the q-

axis
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Dq0 Reference Frame

• Stator is stationary, rotor is rotating at synchronous 

speed

• Rotor values need to be transformed to fixed reference 

frame for analysis

• Done using Park's transformation into what is known as 

the dq0 reference frame (direct, quadrature, zero)

– Parks’ 1929 paper voted 2nd most important power paper of  

20th century at the 2000 NAPS Meeting 

(1st was Fortescue’s sym. components)

• Convention used here is the q-axis leads the d-axis 

(which is the IEEE standard)
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Synchronous Machine Stator 

Image Source: Glover/Overbye/Sarma Book, Sixth Edition, Beginning of Chapter 8 Photo
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Synchronous Machine Rotors

• Rotors are essentially electromagnets

Image Source: Dr. Gleb Tcheslavski, ee.lamar.edu/gleb/teaching.htm

Two pole (P)

round rotor

Six pole salient 

rotor
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Synchronous Machine Rotor

Image Source: Dr. Gleb Tcheslavski, ee.lamar.edu/gleb/teaching.htm

High pole

salient 

rotor

Shaft

Part of exciter,

which is used

to control the 

field current 
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Fundamental Laws

• Kirchhoff’s Voltage Law, Ohm’s Law, Faraday’s 

Law, Newton’s Second Law
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The rotor winds are the 

field winding and then

three damper windings

(added to provide 

damping)



Dq0 Transformations 
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In the next few slides

we’ll quickly go 

through how these

basic equations are

transformed into the

standard machine

models.  The point

is to show the physical

basis for the models.
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Dq0 Transformations 
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Transformed System
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We are now in the dq0 space 



Electrical & Mechanical Relationships

Electrical system:

2

(voltage)

(power)
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P is the 

number of

poles (e.g.,

2,4,6); Tfw

is the friction

and windage

torque
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Torque Derivation

• Torque is derived by looking at the overall energy 

balance in the system

• Three systems: electrical, mechanical and the coupling 

magnetic field

– Electrical system losses are in the form of resistance

– Mechanical system losses are in the form of friction

• Coupling field is assumed to be lossless, hence we can 

track how energy moves between the electrical and 

mechanical systems
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Energy Conversion
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The coupling field stores and discharges energy but has no losses 



Change to Conservation of Power
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With the Transformed Variables
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With the Transformed Variables
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d
ii

dt

dP
P

q
q

q
q

d
d

fd
fd

o
o

q
q

qd
shaftd

ddq
shaft

elect
trans

2
2

1
1

1
13

2

3

22

3

2

3

22

3











++

++++

++−=

40



Change in Coupling Field Energy

fdW

dt
=

P
Te

2
+

dt

d
ai +

dt

d a
bi

dt

d b

+ ci +
dt

d c
fdi +

dt

d fd
di1

dt

d d1

+ qi1 +
dt

d q1
qi2

dt

d q2

This requires the lossless coupling field assumption

First term on 

right is what is 

going on

mechanically, 

other terms are 

what is going 

on electrically
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Change in Coupling Field Energy

For independent states , a, b, c, fd, 1d, 1q, 2q

fdW

dt
=

fW






+

dt

d f

a

W






+

dt

d a f

b

W





 dt

d b

+
f

c

W






+

dt

d c f

fd

W






+

dt

d fd

1

f

d

W





 dt

d d1

+
1

f

q

W






+

dt

d q1

2

f

q

W





 dt

d q2
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Equate the Coefficients

2 f f
e a

a

W W
T i

P  

 
= =

 
etc.

There are eight such “reciprocity conditions for 

this model.

These are key conditions – i.e. the first one gives 

an expression for the torque in terms of the 

coupling field energy.

43



Equate the Coefficients

=




shaft

fW


( )

3

2 2
d q q d e

P
i i T − +

d
d

f
i

W

2

3
=







3
, , 3

2

f f
q o

q o

W W
i i

 

 
= =

 

fd
fd

f
i

W
=






1 1 2

1 1 2

, , ,
f f f

d q q
d q q

W W W
i i i

  

  
= = =

  

These are key conditions – i.e. the first one gives an expression for 

the torque in terms of the coupling field energy.
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Coupling Field Energy

• The coupling field energy is calculated using a path 

independent integration

– For integral to be path independent, the partial derivatives of 

all integrands with respect to the other states must be equal

• Since integration is path independent, choose a 

convenient path

– Start with a de-energized system so variables are zero

– Integrate shaft position while other variables are zero

– Integrate sources in sequence with shaft at final value

3
For example, 

2

fdd

fd d

ii

 


=

 
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Define Unscaled Variables

1
1 1 1

fd
fd fd fd

d
d d d

d
r i v

dt

d
r i v

dt





= − +

= − +

2
shaft s

P
t   −

d
s d q d

q
s q d q

o
s o o

d
r i v

dt

d
r i v

dt

d
r i v

dt









= − + +

= − − +

= − +

1
1 1 1

2
2 2 2

q
q q q

q
q q q

d
r i v

dt

d
r i v

dt





= − +

= − +

( )
2 3

2 2

s

m d q q d f

d

dt

d P
J T i i T

p dt



 


 

= −

  
= + − −  

  

s is the rated

synchronous speed

 plays an important role! 
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Synchronous Machine Equations 
in Per Unit

1

1

1

d
s d q d

s s

q
s q d q

s s

o
s o o

s

d
R I V

dt

d
R I V

dt

d
R I V

dt

 


 

 


 





= + +

= − +

= +

1
1 1 1
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fd fd fd

s

d
d d d

s

d
R I V

dt

d
R I V

dt








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1
1 1 1

2
2 2
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1
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q
q q q

s

q
q q

s

d
R I V

dt

d
R I V

dt




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
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= − +

( )
2

s

M d q q d FW
s

d

dt

H d
T I I T

dt


 


 



= −

= − − −

Units of H are 

seconds
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Sinusoidal Steady-State 
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( )
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
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cos2
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2
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cos2





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


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
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isssc
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vsssc

vsssb
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tII

tII

tII

tVV

tVV

tVV
Here we consider the 

application to balanced, 

sinusoidal conditions
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Simplifying Using 

• Define

• Hence

• These algebraic 

equations can be 

written as complex 

equations 

( )

( )

( )

( )issq

issd

vssq

vssd

II

II

VV

VV









−=

−=

−=

−=

cos

sin

cos

sin

2
shaft s

P
t   −

The conclusion is 

if we know , then

we can easily relate

the phase to the dq

values!

( ) ( )

( ) ( )

/ 2

/ 2

jj vsV jV e V e
d q s

jj isI jI e I e
d q s

 

 

−
+ =

−
+ =
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Summary So Far

• The model as developed so far has been derived using 

the following assumptions

– The stator has three coils in a balanced configuration, spaced 

120 electrical degrees apart

– Rotor has four coils in a balanced configuration located 90 

electrical degrees apart

– Relationship between the flux linkages and currents must 

reflect a conservative coupling field

– The relationships between the flux linkages and currents must 

be independent of shaft when expressed in the dq0 coordinate 

system 
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