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Announcements

T

Homework 2 is due today
Homework 3 is due on on Thursday September 30
Read Chapter 5




Summary So Far

HiY
« The model as developed so far has been derived using
the following assumptions
— The stator has three coils in a balanced configuration, spaced
120 electrical degrees apart

— Rotor has four coils in a balanced configuration located 90
electrical degrees apart

— Relationship between the flux linkages and currents must
reflect a conservative coupling field

— The relationships between the flux linkages and currents must
be independent of 6. When expressed in the dgq0 coordinate

system



Assuming a Linear Magnetic Circuit

AP

If the flux linkages are assumed to be a linear function

of the currents then we can write

Lss (Hshaft )

I—sr (Hshaft )

Lrs (6shaft )

er (Qshaft )

The rotor

self-

Inductance
matrix

L, IS

Independent
of 9shaft



Conversion to dgO for Angle

Independence

quo Lssquo quo Lsr
LTt L
rs ' dgo rr

T



Conversion to dgO for Angle
Independence

AP

/Id:(L£S+Lmd)id+LSfdifd+L51dild | 3(I—A+LB)’

md
3, . : :
Ag = > Ltala + Ltaralta + La1ahd 3
L = —(LA — LB)
3 "2

g = > Liglg + Lgaalta + Ligagh
_ _ _ For a round rotor
ﬂ“q = ( Ly + I-mq) lg + leq'lq + I—32q|2q machine L IS small

3 _ _ and hence L4 IS
ﬂlq — E leqlq + qulqllq + L1q2q|2q close to Lmq. For a
3 salient pole machine
Aoq = > Lsoqlg + Ligoghg + Logaglzg L4 IS substantially
larger
Ao = Lyslo



Convert to Normalized atf = o

S

Convert to per unit, and assume frequency of .

Then define new per unit reactance variables

X _ 605 Lﬁs X _ 605 I—md _ a)S Lmq
s 7 ’ md 7 J mg 7
BDQ BDQ BDQ
L 4 GNP ;L ty14 Lt
= ' 1d = , fd1d —
Lo Zg1p L gep L1
_ b x =2 sLagzg ;L1429 Lsiq
19 ’ 2q — ’ 1929 —
Lo L0 Lo Lqu

Xzfd = de - de’ led = de - de
X(lq :qu_xmq’ X£2q :XZq_X
Xd=X€S+de, Xq=X£S+qu

mg

T



Key Simulation Parameters
Al
* The key parameters that occur in most models can

then be defined as

1 X 2 These values
X§ = Xps+————=Xa =" will be used in
+ fd all the
Kma Xt synchronous
1 X %q machine models
Xg =X+ =X, —
q I q
X1 " Xl i
mg g In a salient rotor machine
T Xfd T - X1 Xing is small so X, = X',
R oGRy, also X, Is small so
T'yo Is small



Key Simulation Parameters

T

* And the subtransient parameters

) 1 These values
Xa =Rt~ 1 71 will be used in the
+ + - :
Xy Xug Xoug subtransient machine
. models. It is common
Xg=Xps+ 1 1 1 to assume X", = X",
+ +

= T =
a)sRld 1 + 1 qo a)sRZq 1 + 1




Example Xd/Xqg Ratios for a

WECC Case
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Example X'g/Xg Ratios for a

WECC Case
Xap/Xq

1.2

1
0.8
0o —Xqp/Xq
0.4 ,‘_/
0.2 Ir_.

0 I I I |

0 500 1000 1500 2000

About 75% are Clearly Salient Pole Machines!

10



Internal Variables
HiY
* Define the following variables, which are quite

Important in subsequent models
Hence E'q and E'd are

E' A de W scaled flux linkages
q= fd fd and Efd is the scaled
field voltage
, m
Ed A X qu
19
X
md
2R, Vd

11



Dynamic Model Development
HiY
* In developing the dynamic model not all of the currents
and fluxes are independent
— In this formulation only seven out of fourteen are independent
« Approach is to eliminate the rotor currents, retaining

the terminal currents (I, 1, 1) for matching the
network boundary conditions

12



Rotor Currents

T

 Use new variables to solve for the rotor currents

(Xc’al'_xés) ' (Xé—Xg)
E +
(X4 —Xy5) 0 (Xg—X,5) 1

g =—Xglg +

1 / /
lg =——| Eq+(Xg = Xg)(lg =g ) |

md

XI_x”
g =959 yg +(X§—Xs) g — E
1d (Xé—ng)Z[ 1d ( d és) d q]

13



Rotor Currents

AP

(Xo—Xs) (Xq—Xq)
__ywmp U (s ' q q
Wq— XCIICI [Xa_xgs)Ed +(Xq_X€S)W2q
1 : :
lig = mq[—Ed+(xq—xq)(|q—|2q)]
X! — X"
Izq_(xqq—x:)z[WZQ+(Xé X5 ) g +Ej |
Wo_xés(_lo)

14



Final Complete Model

1 dy @
@, d
1 dy, Q
=RI ——wy , +]
@, df T o, Vd T
1 d
Yo _RI +Vo
@, d |
dE;
Tdod—tqz—Eq—(xd—xa)
! dE’ ! !
Too— =—Eq +(Xq—X;)

def

wil

T

These first three equations

Ine what are known

as the stator transients; we

| shortly approximate

them as algebraic constraints

X! — X!

(X(’:l _st)

X - X!

5 (Va0 +(X§ = Xs)lg —Ef) |+ Eq

(xa—x&)

2(1//2(1+(x(;|—xgs)|q+|z(;)

15



Final Complete Model
T

dt
d TFW is the friction
q”o%:‘ 2q~ Eo =(X4 =X g and windage
do component
— =0 — W
dt
ZG)—I_SIC;—Z)—TM (Wdlq—l//qld)_TFw
" (xg_xﬁs) ' (Xé_xﬁs)
Wy =—Xglg +-— E,t+-— 1
; e (Xd_xzs) ! (Xd_Xzs) .
(Xg—Xys) (Xq—Xq)
o =—Xelg —7— Ey +7— W
! o (Xq_xfs) ; (Xq_xés) 5

Vs :_stlo 16



Single-Machine Steady-State

0=Rly +yq +V4 (0 = g )

0=Rql, —wg +V,
0=RI, +V,

0=y + By —(X§ ~X,o) g
0=—Ea+(xq—xa)|q
0=—w5, = _(Xa _Xzs)lq
0=w-aw,

0=T, —(Wdlq —qud)_TFW

AP

Waq = Eé — Xglg
W, :_X(’:;Iq —E('j
Vo =—Xslg

The key variable
we need to
determine the
Initial conditions

Is actually 5, which
doesn't appear
explicitly in these

equations!
17



Field Current
T

The field current, Iy, is defined in steady-state as
L = B 1 Xing

However, what is usually used in transient stability
simulations for the field current is the product

| fd ><md
So the value of X, IS not needed

18



Single-Machine Steady-State
T

* Previous derivation was done assuming a linear
magnetic circuit

« We'll consider the nonlinear magnetic circuit later but
will first do the steady-state condition (3.6)

 In steady-state the speed Is constant (equal to ®,), IS
constant, and all the derivatives are zero

 [Initial values are determined from the terminal
conditions: voltage magnitude, voltage angle, real and
reactive power injection

19



Determining & without Saturation

HiY

* In order to get the initial values for the variables we
need to determine o

« We'll eventually consider two approaches: the simple
one when there Is no saturation, and then later a
general approach for models with saturation

* To derive the simple approach we have

Vg = Rylq +E§ + X1,
Vy =Ryl +E; — Xj 14

20



Determining 6 without Saturation

Since j = eI(7/2)

E={(Xq—X)lg +Ef [e¥
In terms of the terminal values

~
o
~/

~ _ ~ JX¢  Kg Tas
E=Vas+(RS+JXq)|aS :

~ 4 +
Theangleon E =6 E

AP

21



Machine voltage and current are “transformed” into
the d-q reference frame using the rotor angle, 6

- Terminal voltage in network (power flow) reference frame

D-g Reference Frame

are Vs =V, =V, 4}V,

<I

<

Q< Q_< |
|

- sing  cosS
| —C0SS  SING |
sind —cosS
COSO  sind |

V

o

v,
V.
v,

T



A Steady-State Example
T

« Assume a generator is supplying 1.0 pu real power at
0.95 pf lagging into an infinite bus at 1.0 pu voltage
through the below network. Generator pu values are

R=0, X4=2.1, X,=2.0, X'4=0.3, X';=0.5

Bus 1 Bus 2

P> > > > > E>

XTR = 0.10 Infinite Bus

1.095 pu x13 = 0.10 BYS3 w23 - 020

Deltz (Deg): 5208 -3 3> S0P > > >
Speed (Hz): 60.00
P: 100.00 MW  Angle = 6.59 Deg Angle = 0.00 Deg

Eqp: 1.130
Edp: 0.533




A Steady-State Example, cont.
Al

* First determine the current out of the generator from
the initial conditions, then the terminal voltage

|1=1.0526./—18.20°=1— j0.3288

V, =1.0£0°+( j0.22)(1.0526 £ —18.20°)
=1.0946.,11.59° =1.0723+ j0.220



A Steady-State Example, cont.
Al
« We can then get the initial angle and initial dq values
E =1.0946.£11.59°+( j2.0)(1.052£—18.2°) = 2.814£52.1°
— 0 =52.1°
A {0.7889 —0.6146}{1.0723} - {0.7107}

_Vq__ 0.6146 0.7889 || 0.220 0.8326

1, [0.7889 -0.61461[ 1.000 ] [0.9909
| | |0.6146 0.7889 || -0.3287| |0.3553

| 9

Vy + jV, =V,e’e!"*%) =1.0945./(11.6 + 90— 52.1)
=1.0945.,49.5° = 0.710+ j0.832



A Steady-State Example, cont
Al
« The Initial state variable are determined by solving

with the differential equations equal to zero.

E, =V, +R, + X, =0.8326+(0.3)(0.9909) = 1.1299

E, =V, —R I, - X/I, =0.7107 — (0.5)(0.3553) = 0.5330

E =E, +(Xy = X{)1; =1.1299 +(2.1-0.3)(0.9909) = 2.9135



Single Machine, Infinite Bus System
(SMIB)

Re Xep

AP

Usually infinite bus
angle, 0., Is zero

Vs , B

- h

This example can be simplified by combining machine
values with line values Ve =Wy + W

Xde — Xd + Xep
Re =R + R,

etc



Introduce New Constants

W = Tg (a) — (g ) “Transient Speed”
.- °H Mechanical time
s constant
1
E=— A small parameter
Ws

We are ignoring the exciter and governor for now;
they will be covered in detall later

T



Stator Flux Differential Equations

Al
v _ Ry +|1+ 50 Wae + Vs SIN(5—0O,)
dt T

d ¥aqe
dt

£ =Rselq—[1+T£a)tjwde+vscos(5—¢9vs)

S

dy
& dtoe — Rselo




Elimination of Stator Transients
HIY
« |f we assume the stator flux equations are much faster
than the remaining equations, then letting € go to zero
allows us to replace the differential equations with

algebraic equations _ _
This assumption

0=Rgelg +¥ge +VsSin(6—6s) might not be valid if
we are considering
faster dynamics on
other devices (such as
converter dynamics)

0=Rgelq —Wge +V5COS(5 — 0,5 )



Impact on Studies

T

6 2.5 K
— Py, py, included —— p,;, p, included

- — p¥,, p¥, neglected = = pY,, py, neglected

Speed deviation in rad/s
Rotor angle in radians

;

Fault cleared

0.0 . 1

= 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time in seconds

1 1
0 0.5 1.0 1.5 2.0
Time in seconds

Figure 5.4 Effect of neglecting stator transients

Figure 5.3 Effect of neglecting stator transients .
on rotor angle swings

on speed deviation

Stator transients are not usually considered

In transient stability studies
Image Source: P. Kundur, Power System Stability and Control, EPRI, McGraw-Hill, 1994



Machine Variable Summary

Al

« Three fast dynamic states, now eliminated

l//de’ WqE’ Woe We'“ get
e Seven not so fast dynamic states to the

' ' exciter

Eq: %14, Eq.W2q:0, @ Egq a)r?d
« Eight algebraic states governor

Ly 1go 10V Vg Vs Wed » Weq shortly

Re Xep

V= V& +VZ
vy By Via = Relg = Xeplq +Vssin(5 -6,
- 1 Vy =Rl + Xgply +V5€08(5—0,4)



Network Expressions

V, =R, I, =Xl +V,sin(5-6,)
V, =R, + X, |4 +V, cos(5—-6,)

ep " d

These two equations can be written as one complex
equation.

(Vg + Vg 1072 = (Rg + Xep NIg + ilg 1072

+Vsej6?VS

T



Machine Variable Summary

Al
Three fast dynamic states, now eliminated
Wder Vager Yoe
Seven not so fast dynamic states
We'll get
Eq1W1d1Ed1W2q151thfd to the
exciter
Eight algebraic states e
governor
shortly

Id1|q1 |01Vd 1Vq1vt1Wed1qu



"
Wage = —Xgelg +

¥Yqe ==X

Woe

—X

Stator Flux Expressions

S
X
O ~
|
>
O 3
N

(Xg _XKS) '
E.+

/ / W
(Xd_xfs) ! (Xd_xés) .

”I .

ae'd (v \
K= Xos,

oe" 0

AP



Subtransient Algebraic Circuit

T

(Ig+ilg)et 8" X3 Rs Re e

V,e“"'s




Network Reference Frame

Al
* In transient stability the initial generator values are set
from a power flow solution, which has the terminal

voltage and power injection
— Current injection is just conjugate of Power/Voltage

« These values are on the network reference frame, with
the angle given by the slack bus angle
V.=V, +jV,, or V.=V +jV,

« Voltages at bus j converted to d-qg reference by

Vai| [siné —coss ||V, ;| |Vei| [ sing coss||Vy,
V| |coss sing ||V, ||Vi;| [-cosd sing ||V,



Network Reference Frame

T
Issue of calculating o, which is key, will be considered
for each model

Starting point Is the per unit stator voltages

V, =-y,o-R,

Vi, =v0—-R,

Equivalently, (V,+V, )+ R (14+il,) = o(-w, + jv,)
Sometimes the scaling of the flux by the speed is
neglected, but this can have a major solution impact

In per unit the initial speed iIs unity



Simplified Machine Models
HiY
« Often more simplified models were used to represent
synchronous machines

* These simplifications are becoming much less common
but they are still used in some situations and can be
helpful for understanding generator behavior

* Next several slides go through how these models can
be simplified, then we'll cover the standard industrial
models



Two-Axis Model

HiY
« |f we assume the damper winding dynamics are
sufficiently fast, then T"y, and T", go to zero, so there
Is an integral manifold for their dynamic states

w1 = Eq —(Xg = X5 )14
Waq =—Eg —(Xg—Xs)1,



Two-Axis Model

X!_X”
Iy — . d W1d+(x
(Xé _XKS)Z(

Which can be simplified to

Tdo

dt

/

L= Bl —(Xg = Xg)lg+Egq

/

d

_XfS)Id :O

Note this entire
term becomes zero

e

—ng)ld —E

/

g

)

AP

+Eqy



Two-Axis Model

Al
" dWZq ’ ’
qu dt :_WZq_Ed_(Xq_XES)Iq:O
. dE; , ’ Likewise this entire
Too = —Eq +(Xq - Xq)x term becomes zero
dt /
XI _X”
q g ' '
lg—— 7 (w2q + (X4 = X5 ) 1+ Ef )
_ (Xo—Xys) _
Which can simplified to
’ dE(’j ’ ’
Too— =—Eg +1(Xq—Xg)



Two-Axis Model

0

(Rs + Ro)ly —(X(’q + Xep)lq —Eg +Vssin(d — 60y )

0=(Rs +Re)lg +(Xg + Xep Jlg — Eg +Vsc08(5 —6ys)

Uy +jlp) oj(8-1/2) Xg R; R, JXep
_M'VV\F—.—’VW—KYW\_'

+

’ ’ ’ 4 nlg j(0-T/2 + T .evs
[Eq + Xg— XD, +jEg] el )<_> (Vg +jV,) (&) (—- Vse

1}
1

AP



Two-Axis Model

T

. dE; | , _
Tio— = —(Xg=Xg)lg +Eg No saturation
dE; effects are
Tao gy = +(Xa=X4)1q Included with
ds this model

— =0 — @
dt
2H do _

-~ =Ty —Eqla —Eglg—(Xq = Xa ) lalq —Tew
0=(Ry+Re )1y —(Xg+Xep ) 1g —Eg +Vgsin(5-6,)
0=(Ry+Re) 1y +( X+ Xep )1y — Ef +V5€08(5 — O45) \

Vg =Relg = Xeplg +VsSin(6—6,)

Vg =Rl + Xgylg +VCOS(5 - 6,5

Vp = V& +V/



Example (Used for All Models)
HiY
* Below example will be used with all models. Assume

a 100 MVA base, with gen supplying 1.0+j0.3286
power into infinite bus with unity voltage through
network impedance of j0.22

— Gives current of 1.0 - j0.3286 = 1.0526,-18.19 °

— Generator terminal voltage of 1.072+j0.22 = 1.0946 ~11.59 °

Sy Bus 1 X12 = 0.20 Bus 2 Sign convention
XTR = 0.10 Infinite Bus QN current 1S out
@); S = > of the generator is
100.00 MW 1.0946 pu 132010 BYS3 o3 020 100,00 MW positive
57.24 Mvar 11.59 Deg >: ; > > > > >§ ; > > > ; -32.86 Mvar
1.0463 pu 1.0000 pu

6.59 Deg 0.00 Deg



Two-Axis Example

Al
For the two-axis model assume H = 3.0 per unit-
seconds, R=0, X;=2.1, X,=2.0, X;=0.3, X, =0.5,
T'y = 7.0, Ty, = 0.75 per unit using the 100 MVA base.
Solving we get
E =1.0946.£11.59° +( j2.0)(1.0526 £ —18.19°) = 2.81/52.1°

— 0 =52.1°

'V, | [0.7889 -0.6146[1.0723] [0.7107
. 0.220 | |0.8326

V, | |0.6146 0.7889
1, [0.7889 -0.61461] 1.000 ] [0.9909
1, -0.3287 | | 0.3553

0.6146 0.7889




Two-Axis Example

And E!=0.8326+(0.3)(0.9909)=1.130
E! =0.7107 — (0.5)(0.3553) = 0.533
E,, =1.1299+ (2.1—0.3)(0.9909) = 2.913

Saved as case B4 TwoAXiIS
Assume a fault at bus 3 at time t=1.0, cleared by
opening both lines into bus 3 at time t=1.1 seconds

T



Two-Axis Example

PowerWorld allows the gen states to be easily stored

Result Storage

Where to Save/Store Results
Store Results to RAM
[ save Results to Hard Drive

Save the Results stored to RAM in the PWE file
Store to RAM Options

Gen Bus 4 #1 Machine State\Edp

Save Results Every n Timesteps:

Do Not Combine RAM Results with Hard Drive Results
[ 5ave the Min/Max Results stored to RAM in the PWE file

Save to Hard Drive Options

Mote: Al fields that are spedfied in a plot series of defined plot will also be stored to RAM,

[ 5tore Results for Open Devices

Set All to NO for All Types Set Save All by Type ...

Generator  Bus load  Switched Shunt Branch Transformer DC Transmission Line VSCDCLine Mult-Terminal DC Record  Multi-Terminal DC Converter  Area  Zone  Interf
setalno | | ] B ek %D %0 @k 8 Records - Geo~ Set~ Columns - - g W S OBH- W - B | Options -
Save All| Save |[Save Save Save Save Save Save | SaveV |Save EfdSave Ifd| Save Save Save Save | Save |Save Save (S
From Rotor |Rotor Speed MW MW MW Mvar pu Vstab | VOEL | VUEL pu Status [Maching Exciter |C
Selection: Angle [Angle Mech Accel State State |S
Mo Shif
1|NO MO NO NO MO NO NO NO NO NO NO NO NO NO NO NO NO NO

Make Plot —

3 o MO YES NO YES MO YES NO YES NO MO M O O O MO HES || NO §

Gen Bus 4 #1 Machine State\Edp

0.56
G h sh
rapn SNOWs

0.5 - - -
variation In
0.46
0.44 E 9
0.42 d

T T T T T T
0] 1 2 3 4 5

Time

== Gen Bus 4 #1 Machine State\Edp .

A|M

@



Flux Decay Model

If we assume T, Is sufficiently fast that its
equation becomes an algebraic constraint

Ty dE, =—E; +(xq _ X;) l, =0 This model
dt assumes that
dE, ,

T, —%=—E/ —(X, - X!)I, +E, =¥ stays constant.
dt In previous example
9_ To0'=0.75
dt

2H dow , ,

=T —Eily - Eol, = (X =Xg)lgly —Tey

=Ty —(Xq = X )by —Efly = (X = Xg ) 11, = Try
=Ty —Efly = (X, = X gl = Tay

T



Rotor Angle Sensitivity to Tgop

« Graph shows variation in the rotor angle as Tqop Is
varied, showing the flux decay iIs the same as Tqop =0

80

= Flux Decay
75 ———Two-Axis TqOp=0.75
Two-Axis TqOp=0.1
70 e TWO-AXis TqOp=0.05
/ =—=Two-Axis Tq0p=0.02
(%]
5 65 \
bo
]
c \
1]
= 60
s
<
g
2 55 /
)

wu
o

N
9y

S
o




Classical Model

do

— = —

dt

) dt Xd +Xep

This Is a pendulum model

The classical
model had
been widely
used because
It Is simple.
At best it
can only
approximate
a very short

term response.

It is no longer
common.

AP



Classical Model Justification

HiY
 |tis difficult to justify. One approach would be to
go from the flux decay model and assume

Xq = Xy Tyo =
E'=E, ¢&°=0
* Or go back to the two-axis model and assume
XézXé Tyo = Tq'ozoo
(Eq =const E4 =const)
E' = \/E’OZ +EY°
q d

EIO
5'0 = tanl( %0}—72'/2
d




Classical Model Response

AP

Rotor angle variation for same fault as before

Gen Bus 4 #1 Rotor Angle

Notice that
NN A AN N eventhough
° the rotor
. angle is
quite different,
» ] its initial increase
: (of about 24
2 degrees) is
T A V similar. However
b+ § ¥ ¥ ¥ ' —  thereisno
=R damping.

Saved as case B4 GENCLS



