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Announcements

• Homework 2 is due today

• Homework 3 is due on on Thursday September 30

• Read Chapter 5
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Summary So Far

• The model as developed so far has been derived using 

the following assumptions

– The stator has three coils in a balanced configuration, spaced 

120 electrical degrees apart

– Rotor has four coils in a balanced configuration located 90 

electrical degrees apart

– Relationship between the flux linkages and currents must 

reflect a conservative coupling field

– The relationships between the flux linkages and currents must 

be independent of qshaft when expressed in the dq0 coordinate 

system 
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Assuming a Linear Magnetic Circuit

• If the flux linkages are assumed to be a linear function 

of the currents then we can write 

The rotor

self-

inductance

matrix 

Lrr is 
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of qshaft
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Conversion to dq0 for Angle 
Independence 
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Conversion to dq0 for Angle 
Independence 
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For a round rotor

machine LB is small

and hence Lmd is 

close to Lmq. For a

salient pole machine

Lmd is substantially

larger
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Convert to Normalized at f = ws

• Convert to per unit, and assume frequency of ws

• Then define new per unit reactance variables
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Key Simulation Parameters

• The key parameters that occur in most models can 

then be defined as 
2
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will be used in

all the 

synchronous

machine models

In a salient rotor machine

Xmq is small so Xq = X'q;

also X1q is small so 

T'q0 is small
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Key Simulation Parameters

• And the subtransient parameters

These values

will be used in the 

subtransient machine

models.  It is common

to assume X"d = X"q
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Example Xd/Xq Ratios for a 
WECC Case
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Example X'q/Xq Ratios for a 
WECC Case

About 75% are Clearly Salient Pole Machines! 10



Internal Variables

• Define the following variables, which are quite 

important in subsequent models

Hence E'q and E'd are 

scaled flux linkages

and Efd is the scaled

field voltage

1
1

X
mdE

q fdX
fd

X
mq

E
d qX

q

X
mdE V

fd fdR
fd





 

 



11



Dynamic Model Development

• In developing the dynamic model not all of the currents 

and fluxes are independent

– In this formulation only seven out of fourteen are independent

• Approach is to eliminate the rotor currents, retaining 

the terminal currents (Id, Iq, I0) for matching the 

network boundary conditions
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Rotor Currents

• Use new variables to solve for the rotor currents
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Rotor Currents
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Final Complete Model

These first three equations

define what are known 

as the stator transients; we

will shortly approximate 

them as algebraic constraints
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Final Complete Model
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Single-Machine Steady-State

The key variable

we need to 

determine the 

initial conditions

is actually , which

doesn't appear 

explicitly in these

equations!
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Field Current

• The field current, Ifd, is defined in steady-state as

• However, what is usually used in transient stability 

simulations for the field current is the product 

• So the value of Xmd is not needed

/fd fd mdI E X=

fd mdI X
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Single-Machine Steady-State

• Previous derivation was done assuming a linear 

magnetic circuit

• We'll consider the nonlinear magnetic circuit later but 

will first do the steady-state condition (3.6)

• In steady-state the speed is constant (equal to ws),  is 

constant, and all the derivatives are zero

• Initial values are determined from the terminal 

conditions: voltage magnitude, voltage angle, real and 

reactive power injection 
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Determining  without Saturation

• In order to get the initial values for the variables we 

need to determine 

• We'll eventually consider two approaches: the simple 

one when there is no saturation, and then later a 

general approach for models with saturation

• To derive the simple approach we have

d s d d q q

q s q q d d

V R I E X I

V R I E X I

 = + +

 = − + −
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Determining  without Saturation

• In terms of the terminal values
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D-q Reference Frame 

• Machine voltage and current are “transformed” into 

the d-q reference frame using the rotor angle, 

• Terminal voltage in network (power flow) reference frame 

are VS = Vt = Vr +jVi
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A Steady-State Example

• Assume a generator is supplying 1.0 pu real power at 

0.95 pf lagging into an infinite bus at 1.0 pu voltage 

through the below network.  Generator pu values are 

Rs=0, Xd=2.1, Xq=2.0, X'd=0.3, X'q=0.5   

Infinite Bus

slack

X12 = 0.20

X13 = 0.10 X23 = 0.20

XTR = 0.10

Transient Stability Data Not Transferred

Bus 1 Bus 2

Bus 3

Angle =   0.00 DegAngle =   6.59 Deg

Bus 4

Delta (Deg): 52.08

P: 100.00 MW

Speed (Hz):  60.00

Eqp: 1.130

 1.095 pu

Edp: 0.533



A Steady-State Example, cont.

• First determine the current out of the generator from 

the initial conditions, then the terminal voltage

1.0526 18.20 1 0.3288I j= −  = −

( )( )1.0 0 0.22 1.0526 18.20

1.0946 11.59 1.0723 0.220

sV j

j

=  + − 

=   = +



A Steady-State Example, cont. 

• We can then get the initial angle and initial dq values

( )( )1.0946 11.59 2.0 1.052 18.2 2.814 52.1

52.1

E j
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=  + −  =  
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A Steady-State Example, cont

• The initial state variable are determined by solving 

with the differential equations equal to zero.

( )( )'

'

'

0.8326 0.3 0.9909 1.1299

0.7107 (0.5)(0.3553) 0.5330

( ) 1.1299 (2.1 0.3)(0.9909) 2.9135

q q s q d d

d d s d q q

fd q d d d

E V R I X I

E V R I X I

E E X X I

= + + = + =

= − − = − =

= + − = + − =



Single Machine, Infinite Bus System 
(SMIB)

Usually infinite bus

angle, qvs, is zero

etc

de d ed

de d ep

se s e

X X X

R R R

  = +

= +

= +

This example can be simplified by combining machine

values with line values 



Introduce New Constants

( )

s

s
s
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H
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T

w
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w
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1

2

=
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−= “Transient Speed”

Mechanical time 
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A small parameter

We are ignoring the exciter and governor for now; 

they will be covered in detail later



Stator Flux Differential Equations
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Elimination of Stator Transients

• If we assume the stator flux equations are much faster 

than the remaining equations, then letting  go to zero 

allows us to replace the differential equations with 

algebraic equations

( )

( )

0 sin

0 cos

0

se d qe s vs

se q de s vs

se o

R I V

R I V

R I

  q

  q
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=

This assumption 

might not be valid if 

we are considering

faster dynamics on 

other devices (such as 

converter dynamics)



Impact on Studies

Image Source: P. Kundur, Power System Stability and Control, EPRI, McGraw-Hill, 1994

Stator transients are not usually considered 

in transient stability studies



Machine Variable Summary

• Three fast dynamic states, now eliminated

• Seven not so fast dynamic states

• Eight algebraic states

, ,de qe oe  

1 2, , , , ,q d d q t fdE E E   w 

, , , , , , ,d q o d q t ed eqI I I V V V  

We'll get

to the 

exciter

and 

governor

shortly
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2 2
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Network Expressions
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equation.
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Machine Variable Summary

Three fast dynamic states, now eliminated

, ,de qe oe  

Seven not so fast dynamic states

1 2, , , , ,q d d q t fdE E E   w 

Eight algebraic states

, , , , , , ,d q o d q t ed eqI I I V V V  

We'll get

to the 

exciter

and 

governor

shortly



Stator Flux Expressions
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Subtransient Algebraic Circuit
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Network Reference Frame

• In transient stability the initial generator values are set 

from a power flow solution, which has the terminal 

voltage and power injection

– Current injection is just conjugate of Power/Voltage

• These values are on the network reference frame, with 

the angle given by the slack bus angle

• Voltages at bus j converted to d-q reference by

, ,   or   j r j i j j Dj QjV V jV V V jV= + = +

, ,

, ,

sin cos

cos sin

d j r j

q j i j

V V

V V

 

 

   − 
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    

, ,

, ,

sin cos

cos sin

r j d j

i j q j

V V

V V

 

 
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Network Reference Frame

• Issue of calculating , which is key, will be considered 

for each model

• Starting point is the per unit stator voltages 

• Sometimes the scaling of the flux by the speed is 

neglected, but this can have a major solution impact

• In per unit the initial speed is unity

( ) ( ) ( )d q d qEquivalently, V +jV +jI

d q s d

q d s q

s q d

V R I

V R I

R I j

 w

 w

w  

= − −

= −

+ = − +



Simplified Machine Models

• Often more simplified models were used to represent 

synchronous machines

• These simplifications are becoming much less common 

but they are still used in some situations and can be 

helpful for understanding generator behavior

• Next several slides go through how these models can 

be simplified, then we'll cover the standard industrial 

models



Two-Axis Model

• If we assume the damper winding dynamics are 

sufficiently fast, then T"do and T"qo go to zero, so there 

is an integral manifold for their dynamic states

( )

( )
1

2

d q d s d

q d q s q

E X X I

E X X I





 = − −

 = − − −



Two-Axis Model

( )

( )

( )
( )( )

( )

1
1

12

0

            

Which can be simplified to 

d
do d q d s d

q
do q d d

d d
d d d s d q fd

d s

q
do q d d d fd

d
T E X X I

dt

dE
T E X X

dt

X X
I X X I E E

X X

dE
T E X X I E

dt






  = − + − − =


  = − − − 

  −
  − + − − +

 −  


  = − − − +

Note this entire 

term becomes zero



Two-Axis Model

( )

( )

( )
( )( )

( )

2
2

22

0

                

Which can simplified to 

q
qo q d q s q

d
qo d q q

q q
q q q s q d

q s

d
qo d q q q

d
T E X X I

dt

dE
T E X X

dt

X X
I X X I E

X X

dE
T E I X X

dt






  = − − − − =


  = − + − 

 
 −

  − + − +
  −
 


  = − + −

Likewise this entire 

term becomes zero



Two-Axis Model

( ) ( ) ( )vssdqepqdes VEIXXIRR q −+−+−+= sin0

( ) ( ) ( )vssqdepdqes VEIXXIRR q −+−+++= cos0



Two-Axis Model

( ) ( ) ( )

( ) ( ) ( )

( )

( )

2 2

0 sin

0 cos \

sin

cos

s e d q ep q d s vs

s e q d ep d q s vs

d e d ep q s vs

q e q ep d s vs

t d q

R R I X X I E V

R R I X X I E V

V R I X I V

V R I X I V

V V V

 q

 q

 q

 q

 = + − + − + −

 = + + + − + −

= − + −

= + + −

= +

No saturation

effects are

included with 

this model

( )

( )

( )
2

q
do q d d d fd

d
qo d q q q

s

M d d q q q d d q FW
s

dE
T E X X I E

dt

dE
T E X X I

dt

d

dt

H d
T E I E I X X I I T

dt


w w

w

w


  = − − − +


  = − + −

= −

   = − − − − −



Example (Used for All Models)

• Below example will be used with all models.  Assume 

a 100 MVA base, with gen supplying 1.0+j0.3286 

power into infinite bus with unity voltage through 

network impedance of j0.22

– Gives current of 1.0 - j0.3286 =  1.0526-18.19 

– Generator terminal voltage of 1.072+j0.22 = 1.0946 11.59 

Infinite Bus

slack

X12 = 0.20

X13 = 0.10 X23 = 0.20

XTR = 0.10

Bus 1 Bus 2

Bus 3

  0.00 Deg  6.59 Deg

Bus 4

1.0463 pu

 11.59 Deg

1.0000 pu

1.0946 pu -100.00 MW

-32.86 Mvar

100.00 MW

57.24 Mvar

Sign convention 

on current is out 

of the generator is 

positive



Two-Axis Example

• For the two-axis model assume H = 3.0 per unit-

seconds,  Rs=0, Xd = 2.1, Xq = 2.0, X'd= 0.3, X'q = 0.5, 

T'do = 7.0, T'qo = 0.75 per unit using the 100 MVA base. 

• Solving we get

( )( )1.0946 11.59 2.0 1.0526 18.19 2.81 52.1

52.1

E j



=  + −  =  

→ = 

0.7889 0.6146 1.0723 0.7107

0.6146 0.7889 0.220 0.8326

d

q

V

V

  −     
= =       
      

0.7889 0.6146 1.000 0.9909

0.6146 0.7889 0.3287 0.3553

d

q

I

I

  −     
= =       

−      



Two-Axis Example

• And

• Assume a fault at bus 3 at time t=1.0, cleared by 

opening both lines into bus 3 at time t=1.1 seconds

( )( )0.8326 0.3 0.9909 1.130

0.7107 (0.5)(0.3553) 0.533

1.1299 (2.1 0.3)(0.9909) 2.913

q

d

fd

E

E

E

 = + =

 = − =

= + − =

Saved as case B4_TwoAxis
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Two-Axis Example

• PowerWorld allows the gen states to be easily stored

Gen Bus 4 #1 Machine State\Edp

Time

543210

G
en

 B
us

 4
 #

1 
M

ac
hi

ne
 S

ta
te

\E
dp 0.56

0.54

0.52

0.5

0.48

0.46

0.44

0.42

Gen Bus 4 #1 Machine State\Edp

Graph shows

variation in

Ed’



Flux Decay Model

• If we assume T'qo is sufficiently fast that its 

equation becomes an algebraic constraint

( )

( )

( )

( ) ( )

( )

d
qo d q q q

q

do q d d d fd

s

M d d q q q d d q FW

s

M q q q d q q q d d q FW

M q q q d d q FW

dE
T E X X I 0

dt

dE
T E X X I E

dt

d

dt

2H d
T E I E I X X I I T

dt

T X X I I E I X X I I T

T E I X X I I T


w w

w

w


  = − + − =


  = − − − +

= −

   = − − − − −

   = − − − − − −

 = − − − −

This model  

assumes that

Ed’ stays constant. 

In previous example

Tq0’=0.75



Rotor Angle Sensitivity to Tqop

• Graph shows variation in the rotor angle as Tqop is 

varied, showing the flux decay is the same as Tqop = 0



Classical Model

dt
s

d
w w= −

( )
0

0

0

2
sins

M vs FW
d ep

H d E V
T T

dt X X

w
 q

w


= − − −

 +

This is a pendulum model

The classical

model had 

been widely

used because

it is simple.

At best it 

can only

approximate

a very short

term response.

It is no longer

common.



Classical Model Justification

• It is difficult to justify.  One approach would be to 

go from the flux decay model and assume

• Or go back to the two-axis model and assume

0 0

q d do

q

X X T

E E 

 = = 

  = =

( const const)

q d do qo

q d

X X T T

E E

   = =  = 

 = =
2 20 0

0
0 1

0tan 2

q d

q

d

E E E

E

E
 −

  = +

 
 = − 


 



Classical Model Response

• Rotor angle variation for same fault as before

Gen Bus 4 #1 Rotor Angle

Time

543210

G
e
n
 B

u
s
 4

 #
1
 R

o
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r 
A

n
g
le

48

46

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

Gen Bus 4 #1 Rotor Angle

Notice that 

even though

the rotor

angle is 

quite different, 

its initial increase

(of about 24

degrees) is 

similar.  However

there is no

damping. 

Saved as case B4_GENCLS


