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Abstract— False data injection attacks (FDIA) are a main
category of cyber-attacks threatening the security of power
systems. Contrary to the detection of these attacks, less attention
has been paid to identifying the attacked units of the grid. To this
end, this work jointly studies detecting and localizing the stealth
FDIA in power grids. Exploiting the inherent graph topology of
power systems as well as the spatial correlations of measurement
data, this paper proposes an approach based on the graph neural
network (GNN) to identify the presence and location of the FDIA.
The proposed approach leverages the auto-regressive moving
average (ARMA) type graph filters (GFs) which can better adapt
to sharp changes in the spectral domain due to their rational type
filter composition compared to the polynomial type GFs such as
Chebyshev. To the best of our knowledge, this is the first work
based on GNN that automatically detects and localizes FDIA
in power systems. Extensive simulations and visualizations show
that the proposed approach outperforms the available methods
in both detection and localization of FDIA for different IEEE test
systems. Thus, the targeted areas can be identified and preventive
actions can be taken before the attack impacts the grid.

Index Terms—False data injection attacks, graph neural net-
works, machine learning, smart grid, power system security

NOMENCLATURE

Pi + jQi Complex power injection at bus i.
Pij + jQij Complex power flow between bus i and j.
Vi,θi Voltage magnitude and phase angle of bus i.
n, m Number of buses, number of measurements.
X ∈ Rn State space.
Z ∈ Rm Measurement space.
x ∈ X A state vector.
x̂ ∈ X Original state vector without an attack.
x̌ ∈ X False data injected state vector.
z ∈ Z A measurement vector.
zo ∈ Z Original measurement vector.
za ∈ Z Attacked measurement vector.
a ∈ Z Attack vector.
h(x) Nonlinear measurement function at x.
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T Attacker’s target area to perform FDI attack.
W ∈ Rn×n Weighted adjacency matrix.
D ∈ Rn×n Dii =

∑
jWij Diagonal degree matrix.

Λ ∈ Rn×n = diag[λ1, . . . , λn] Graph Fourier frequencies.
U ∈ Rn×n = [u1, . . . ,un] Graph Fourier basis.
L ∈ Rn×n = UΛUT Normalized graph Laplacian.

I. INTRODUCTION

Smart grids integrate Information and Communication Tech-
nologies (ICT) into large-scale power networks to generate,
transmit, and distribute electricity more efficiently [1]. Re-
mote Terminal Units (RTUs) and Phasor Measurement Units
(PMUs) are utilized to acquire the physical measurements and
deliver them to the Supervisory Control and Data Acquisition
Systems (SCADAs). Then, the ICT network transfers these
measurements to the application level where the power system
operators process them and take the necessary actions [2]. As a
direct consequence, power system reliability is determined by
the accuracy of the steps along this cyber-physical pipeline [3].
Power system state estimation (PSSE) modules employ these
measurements to estimate the current operating point of the
grid [4] and thus the integrity and trustworthiness of the mea-
surements are crucial for proper operation of power systems. In
addition, the accuracy of power system analysis tools such as
energy management, contingency and reliability analysis, load
and price forecasting, and economic dispatch depends on these
measurements [5]. Thus, power system operation strongly
depends on the accuracy of the measurements and the integrity
of their flow through the system. Therefore, metering devices
represent highly attractive targets for adversaries that try to
obstruct the grid operation by corrupting the measurements.

By disrupting the integrity of measurement data, false data
injection attacks (FDIAs) constitute a considerable cyber-
physical threat. More specifically, an adversary injects some
false data to the measurements in order to mislead the PSSE
and force it to converge to another operating point. Since
the state of the power system is miscalculated by using
these false data, any action taken by the grid operator based
on the false operating point can lead to serious physical
consequences including systematic problems and failures [6].
In traditional power grids, the largest normalized residual test
(LNRT) is employed within the bad data detection (BDD)
module along with PSSE to detect the “bad” measurement data
[4]. Nevertheless, a designed false data injected measurement
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can bypass the BDD. In particular, [2], [7] show that by
satisfying the power flow equations, an intruder can create an
unobservable (stealth) FDIA and bypass the BDD if s/he has
sufficient information about the grid. Various methods have
been proposed to alert the grid operator about the presence of
the FDIA without providing any information about the attack
location [8], [9]. Localizing the attack is crucial for power
system operators since they can take preventive action such as
isolating the under-attack buses and re-dispatching the system
accordingly. Therefore, this paper focuses jointly on detection
and localization of the FDIA in power systems.

A. Related Works

In general, there are two main approaches to detect and
localize the FDIAs: model-based and data driven approaches
[8]. In the model-based methods [10]–[14], a model for the
system is built and its parameters are estimated to detect the
FDIAs. Since there is no training, these methods do not require
the historical data. However, the detection delays, scalability
issues and threshold tuning steps can limit the performance and
usability of the model-based approaches [9]. Conversely, the
data-driven methods [15] are system independent and require
historical data and a training procedure. However, they provide
scalability and real time compatibility due to the excessive
training. Data driven methods, machine learning (ML) [16],
in particular, offer superior performances to detect FDIAs in
power systems as the historical datasets are growing [8], [9].
Therefore, we employ a data driven approach in this work for
detecting and localizing FDIAs in power systems.

While there has been a great deal of research on detection of
FDIAs, only a few attempts have been made to localize these
attacks [10]–[15]. Since localization of FDIAs is relatively a
newer research subject compared to detection of these attacks,
the current approaches proposed in literature suffer from some
limitations. A multistage localization algorithm based on graph
theory results is proposed in [10] to localize the attack at clus-
ter level. Nevertheless, the low resolution hinders the benefits
of localization in cluster level algorithms. In [11], a model-
driven analytical redundancy approach utilizing Kalman filters
is presented for joint detection and mitigation of FDIA in AGC
systems. In their model, the authors of [11] first determine a
threshold using the Mahalanobis norm of the residuals of the
non-attacked situation. Any residue larger than the threshold
is regarded as an attacked sample. Apart from the manual
threshold optimization steps, detection times are at the range
of seconds in their estimation based models. A generalized
modulation operator that is applied on the states of the system
is presented as an ongoing work in a brief announcement in
[12] to localize the FDIAs in power systems. Yet, the results
are not published as of today. Authors in [13] present an inter-
nal observer-based detection and localization method for FDIA
in power systems. They create and assign an interval observer
to each measurement device and construct a customized logic
localization judgment matrix to detect and localize the FDIA.
Nevertheless, their average detection delay is more than 1.1
seconds, which can highly limit their usability in a real life
scenario. Lack of scalability and the need for a custom solution

requiring manual labor represent additional limitations of this
method. A Graph Signal Processing (GSP) based approach
is developed in [14] to detect and localize FDIAs using the
Graph Fourier Transform (GFT), local smoothness, and vertex-
frequency energy distribution methods. Hovewer, the random
and easily detectable attacks employed to test their models
do not comprehensively assess the actual performance of the
models. Besides, manual threshold tuning of graph filters
(GFs) brings extra effort for their proposed methods. Authors
in [15] propose physics- and learning-based approaches to
detect and localize the FDIAs in automatic generation control
(AGC) of power systems. While the physics-based method
relies on interaction variables, the learning-based approach
exploits the historical Area Control Error (ACE) data, and
utilizes a Long Short Term Memory (LSTM) Neural Network
(NN) to generate a model for learning the data pattern.
Nevertheless, [15] reports results limited to a 5-bus system
and assumes training an LSTM model for each measurement.
Thus, the limited number of components deeply confines the
large scale attributes of the proposed method. Furthermore,
training a separate detector for each bus extremely increases
the overall model complexity for large systems and reduces
its suitability for real world applications.

B. Motivation

Due to their graph-based topology, graph structural data
such as social networks, traffic networks, and electric grid
networks cannot be modeled efficiently in the Euclidean space
and require graph-type architectures [17]. Processing (filtering)
an image having 30 pixels and a power grid having 30 buses
are demonstrated in Fig. 1. Since nodes are ordered and have

(a) Processing an image having 30
pixels in Euclidean space. Nodes and
and edges represent pixels and their
neighbors in the image, respectively.

(b) Processing a power grid having
30 buses in non-Euclidean space.
Nodes and edges represent buses and
lines of the grid, respectively.

Fig. 1. Demonstration of signal processing in Euclidean (1a) and non-
Euclidean (1b) spaces with an image and a power grid signal [17]. Neighbor
nodes (blue) of a node (red) are ordered and constant in size for the image
having 30 pixels in 2D Euclidean space. In contrast, they are unordered
and variable in size for the IEEE 30-bus system in Non-Euclidean space.
Therefore, in order to efficiently model the spatial correlation of the power
grid, graph type approaches that consider the topology of the underlying
systems such as GSP and GNN are necessary.

the same number of neighbors for image data, it can be
processed in a 2D Euclidean space. For example a sliding
kernel can easily capture the spatial correlations of pixels in
this Euclidean space. Conversely, neighborhood relationships
are unordered and vary from node to node in a graph signal
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[17]. Therefore, graph signals need to be processed in non-
Euclidean spaces determined by the topology of the graph.
In fact, as a highly complex graph structural data, smart grid
signals require graph type architectures such as GSP or GNN
to exploit the spatial correlations of the grid.

GSP has emerged in the past few years to deal with
the data in non-Euclidean spaces [18]. A few researchers
designed GFs to detect and localize the FDIA [12], [14] using
GSP. However, manual tailoring of the filters and detection
thresholds substantially limits the applicability and efficiency
of GSP. Conversely, GNN, as a data-driven counterpart of the
GSP, eliminates the custom design steps and provides an end-
to-end design that exploits the spatial locality dictated by the
historical data. Similar to the classical signal processing, a
graph signal is first converted into the spectral domain by GFT,
then its Fourier coefficients are multiplied with those filter
weights and finally the signal transformed back into the vertex
domain by the inverse GFT [19]. To circumvent this spectral
decomposition and domain transformation, polynomial GFs
are proposed in [20] in which localized filters are learned
directly in the vertex domain [21]. For a polynomial GF,
the output of each vertex v is only dependent on the K-
hop neighborhood of v and its spectral response is a K-order
polynomial. Polynomial GFs, which are also referred to as
finite impulse response (FIR) GFs due to the local information
sharing, perform a weighted moving average (MA) filtering
[22], [23]. However, FIR GFs may require a high degree
polynomial to capture the global structure of the graph. In fact,
interpolation and extrapolation performance of high degree
polynomials are unsatisfactory [22], and they are not “flexible”
enough to adapt to sudden changes in the spectral domain
[21]. To overcome this limitation, infinite impulse response
(IIR) type GFs performing Auto-Regressive Moving Average
(ARMA) are proposed in [22]. Contrary to FIR GFs, IIR
GFs have rational type spectral responses. Therefore, IIR
GFs can implement more complex responses with a low
degree of polynomials both in the numerator and denominator
since rational functions have better performance compared to
polynomial ones in terms of interpolation and extrapolation
capabilities [21], [22].

Detection and localization of FDIA can be a challenging
task if an intruder has ‘enough’ information about the grid
to create a stealth attack [7]. S/he can hide an attack vector
into an honest sample if the topology of the grid is ignored.
Moreover, s/he can design an attack vector so that a malicious
sample can be indistinguishable from an honest one if the
spatial correlations of grid data are not well captured or the de-
signed GFs do not satisfy the required spectral response. Thus,
we design an GNN based model by utilizing ARMA GFs to
be able to fit sharp changes in the spectral domain of the
grid. Filter weights are learned automatically during training
by an end-to-end data-driven approach. To compare our results
with the existing data-driven techniques, we utilized several
models to jointly detect and localize the FDIA. Moreover, for
a fair comparison, the Bayesian hyper-parameter optimization
technique is employed to all models for tuning the models’
hyperparameters such as number of layers, neurons, etc.

C. Contributions and Paper Organization

The contributions of this work are outlined as follows:

• To properly capture the spatial correlations of the smart
grid data in a non-Euclidean space, we utilize IIR type
ARMA GFs which provide more flexible frequency re-
sponses compared to FIR type Chebyshev GFs. It is
demonstrated on IEEE 118- and 300-bus test systems
that ARMA GFs better approximate the desired filter
response compared to CHEB GFs for the same filter order
by comparing their empirical frequency responses when
approximating an ideal band pass filter.

• To precisely test our proposed method, we generate a
dataset for each test system with 1-minute intervals using
several FDIA generation algorithms in the literature as
well as our optimization-based FDIA method developed
in our previous paper [24].

• To automatically determine the unknown filter weights
by an end-to-end data-driven approach, we propose a
scalable, ARMA GF-based GNN model that jointly de-
tects and localizes the FDIAs in a few milliseconds. The
proposed architecture efficiently predicts the presence of
the attack for the whole grid and for each bus separately.

• To fairly compare the proposed method with the cur-
rently available approaches, we implement the other data-
driven models in the literature and compare our detection
and localization results with them. Hyperparameters of
the models are tuned systematically using the Bayesian
hyper-parameter optimization technique.

• To adequately assess the localization performance, we
evaluate the localization results, using both sample wise
and node wise comparisons. For instance, although sam-
ple wise localization could yield fairly high accuracy for
the entire system, the same set of nodes could be missed
or falsely alarmed at each sample. If revealed, these nodes
could be easily targeted by the intruders.

• To better analyze and visualize the multidimensional
data processed by the implemented models, we embed
them into a two dimensional (2D) space using the t-
SNE algorithm [25]. By visually inspecting the output
of models’ intermediate layers in 2D, it is verified that
the ARMA GNN based model preserves the structure of
the data, and hence gives better detection performance.

The rest of this paper is organized as follows. Section II
presents the problem formulation. Section III proposes the
approach for the joint detection and localization of FDIA.
Numerical results are presented in Section IV. Section V
finally concludes the paper.

II. PROBLEM FORMULATION

The system state x (Vi and θi at each bus i) is estimated
using the PSSE module. The PSSE iteratively solves the op-
timization problem in (1) phrased as a weighted least squares
estimation (WLSE) using the complex power measurements z
collected in noisy conditions by RTUs and PMUs:

x̂ = min
x

(z − h(x))TR−1(z − h(x)), (1)
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where R represents measurements’ error covariance matrix
and z includes Pi, Qi, Pij , and Qij .

FDIA aim to deceive the PSSE by deliberately injecting
false data a into some of the original measurements zo in
such a way that the state vector x converges to another point
in the state space of the system. Formally,

zo = h(x̂), za = zo + a = h(x̌) (2)

which means if an adversary can design a = h(x̌) − h(x̂),
s/he can change the system state from x̂ to x̌ without being
detected by the LNRT based traditional BDD systems.

In general, an adversary tries to change specific measure-
ment(s) in the power system in order to maximize the damage
to the grid and at the same time minimize the probability
of being detected. To this end, s/he alters some other mea-
surement(s) connected to the targeted meter(s) since each x
relates to multiple z through z = h(x). In order to reflect this
constraint and to be realistic, we assume that an adversary
targets a specific area of grid represented by T and crafts the
attack vector a by changing the measurements denoted by Tz
to spoil the state variables represented by Tx in this area.
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Fig. 2. Visualization of an attack and its prediction on the example IEEE
14 bus system where the actual T = {4, 7, 9, 10, 14} and predicted
T̂ = {4, 7, 9, 13, 14} areas are enclosed with the solid red and dashed
green surfaces, respectively. True positives T ∩ T̂ = {4, 7, 9, 14}, false
positives T ′∩T̂ = {13}, false negatives T ∩T̂ ′ = {10}, and true negatives
T ′ ∩ T̂ ′ = {1, 2, 3, 5, 8, 6, 11, 12} are represented by yellow circles, green
triangles, red squares, and black circles, respectively. In this example, the
presence of the attack is correctly predicted. Nevertheless, attack to the bus
10 is missed and bus 13 is falsely alarmed even though it is not under attack.

The grid operator, in contrast, aims to detect those attacks
and localize the attacked buses if there are any. Therefore,
we formulate the FDIA detecting and localization problem as
a multi-label classification task where each bus has a binary
label indicating the presence of attack with true label 1. We
also reserve an extra binary label for the whole grid to denote
the attack presence with true label 1. Fig. 2 clarifies the
proposed multi-label classification approach by depicting the
actual and predicted under attack buses for an exemplary attack
on the IEEE 14-bus test system.

III. JOINT DETECTION AND LOCALIZATION OF FDIA
Connected, undirected and weighted graph G = (V, E ,W )

having a finite set of vertices V with |V| = n, a finite set of

edges E , and a weighted adjacency matrix W ∈ Rn×n can be
used to represent the topology of a smart power grid [18]. In
this representation, buses correspond to vertices V , branches
and transformers corresponds to edges E and line admittances
correspond to W . Similarly, a signal or a function f : V → R
in G is represented by a vector f ∈ Rn, where the element i
of the vector corresponds to a scalar at the vertex i ∈ V .

A. Spectral Graph Filters

In spectral graph theory, the normalized Laplacian operator
L = In − D−1/2WD−1/2 = UΛUT ∈ Rn×n plays an
important role for graph G where D and In ∈ Rn×n represent
the degree and identity matrices, respectively. The columns
ui ∈ Rn×1 of matrix U = [u1, . . . ,un] ∈ Rn×n store the n
orthonormal eigenvector ui and constitute the graph Fourier
basis. Diagonal matrix Λ = diag([λ1, . . . , λn]) ∈ Rn×n
captures the n eigenvalues representing the graph Fourier fre-
quencies [18]. Analogously to the classical Fourier Transform,
Graph Fourier Transform (GFT) transforms a vertex domain
signal into the spectral domain: the forward and inverse GFT
are defined by X̃ = UTX , and X = UX̃ , where X and
X̃ ∈ Rn×f denote the vertex and spectral domain signals with
f features at each node, respectively [18]. In fact, X is filtered
by a GF h:

Y = h ∗X = h(L)X = Uh(Λ)UTX (3)

by first converting the vertex domain signalX into the spectral
domain using the forward GFT, then scaling the Fourier
components by h(Λ) = diag[h(λ1), . . . , h(λn)], and finally
reverting it back to the vertex domain by the inverse GFT [18].
For example, X , h, and Y may correspond to bus injections
values with high frequency noise, a low pass GF and filtered
bus injections values, respectively in eq. (3). Nonetheless, this
spectral filtering is not spatially localized since each λi is
processed for each node. Besides its computational complexity
is high due to eigenvalue decomposition (EVD) of L and the
matrix multiplications with U and UT .

B. Polynomial Graph Filters

To localize spectral filters and reduce their complexity, poly-
nomial spatial filters hPOLY (λ) =

∑K−1
k=0 akλ

k are proposed
to approximate the required filter response [20]. Since only
K-hop neighbors of v are considered to calculate the filter
response at each v ∈ V , they are K-localized. In fact, they
implement the weighted MA filtering in the form of FIR [23].

Chebyshev polynomial approximation [26] is one of the
preferred methods in signal processing due to their fast compu-
tation since they are generated via a recursion and not a convo-
lution [27]. The Chebyshev polynomial of the first kind Tk(x)
can be computed recursively Tk(x) = 2xTk−1(x) − Tk−2(x)
where T0(x) = 1 and T1(x) = x [26]. Thus, a filter h
can be approximated by a truncated expansion of Chebyshev
polynomials Tk, up to order K − 1. So, X can be filtered:

Y = h ∗X = h(L)X =

K−1∑
k=0

akTk(L̃)X (4)
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where Tk(L̃) ∈ Rn×n is the Chebyshev polynomial of order
k evaluated at the scaled Laplacian L̃ = 2L/λmax − In [20]
where a ∈ RK is a vector of Chebyshev coefficients. Full
EVD can be omitted since this operation only requires the
largest eigenvalue λmax which can be efficiently approximated
by the power method [28]. Although the MA type Chebyshev
(CHEB) GFs are fast and localized, they often require high-
degree polynomials to capture the graph’s global structure.
In fact, it restricts their ability to adapt sharp transitions
in the frequency response due to the poor interpolation and
extrapolation capabilities of high degree polynomials [29].

C. Rational Graph Filters
To circumvent these problems, distributed IIR type ARMA

GFs are proposed in [22], [29]. They better approximate the
sudden changes in the frequency response in comparison with
the FIR type MA GFs due to their rational filter composition.
A potential building block of K-order ARMA GFs may start
with a first order recursive ARMA1 filter:

Y t+1 = aL̃Y t + bX, (5)

where Y t is the filter output at iteration t, X is the fil-
ter input, a and b are arbitrary coefficients, and modified
Laplacian L̃ = λmax−λmin

2 In − L is a linear translation
of L with same eigenvectors as L and shifted eigenvalues
λ̃n = λmax−λmin

2 − λn relative to those of L. According
to the Theorem (1) in [30], eq. (5) converges regardless of
Y 0 and L values and its frequency response is given by
hARMA1(λ̃n) = b

1−aλ̃n
. In fact, eq. (5) provides a useful

distributed filter realization [22]. At each iteration t, each node
i revises its output Y t

i ∈ Rn×cout with a linear combination of
its input Xi ∈ Rn×cin and its adjacent nodes’ outputs Y t−1

j ,
where cin and cout denote the number of channels in the input
and the output tensors, respectively. It can be implemented as
a NN layer if we unroll the recursion into T fixed iterations:

Y t+1 = L̃Y tα+Xβ + θ, (6)

where α ∈ Rcout×cout , β ∈ Rcin×cout , and θ ∈ Rcout are
trainable weights. Besides, since 0 ≤ λmin ≤ λmax ≤ 2,
the modified Laplacian can be simplified to L̃ = In − L for
λmin = 0, and λmax = 2 [21]. In Fig. 3, NN implementation
of the ARMA1 block which implements the eq. (6) in T fixed
iterations is depicted. ARMA1’s K-order version ARMAK
filter can be realized by averaging K parallel ARMA1 filters
with Y = 1

K

∑K
k=1 Y

T
K which leads to an ARMAK GF with

a rational frequency response hARMAK
(λ̃n) =

∑K
k=1

bk
1−akλ̃n

with a K − 1 and K order polynomials in its numerator and
denominator, respectively. For detailed analysis and justifica-
tions, please refer to [21], [22], [29]–[31].

D. Frequency Response of Polynomial and Rational GFs
To demonstrate the ARMA GFs better fit sharp changes in

the frequency response compared to that of the CHEB GFs,
we design two ideal GFs in equations (7) and (8) for IEEE
118- and 300-bus test cases, respectively.

h†(λ) =

{
1, λmax

3 < λ < 2λmax

3

0, otherwise
(7)

ARMA1

t = 1

L̃ α

βθ

+

t = 2

L̃ α

βθ

+

t = T

L̃ α

βθ

+

. . .

Fig. 3. NN Implementation of ARMA1 filter as a building block of ARMAK

layer. In T fixed iterations, an ARMA1 block realizes eq. (6)

h‡(λ) =

{
1, λ < λmax

2

0, otherwise
(8)

Then, we investigate the approximating capability of the
ARMA and the CHEB GFs by numerically analyzing their
frequency responses. Note that similar results can be obtained
by any other filters or test cases [22]. Let x,y ∈ Rn×1

denote the input and output of a GF h(λ), respectively. Then,
according to eq. (3), empirical frequency response h̃ can
be calculated by h̃(λi) =

uT
i y

uT
i x

[29]. Namely, each h̃(λi)

represents how ui, corresponding to λi, “scales” x to obtain
y.

In order to obtain h̃(λi) values, we first randomly generated
216 xs for the aforementioned systems from the normal
distribution and filter them by h† and h‡ using eq. (3) to
obtain ys. Then, a layer of CHEB and ARMA models with no
activation function are trained in batches having 26 samples
of x and y values until there is no improvement. Next,
h̃(λi) values are calculated for each x,y tuple, averaged for
smooth transitions, and plotted. As seen from Fig. 4, due to
their rational type frequency responses, ARMA GFs are more
flexible to fit sudden changes for a fixed K when compared to
CHEB GFs having polynomial type frequency responses. This
constitutes the main motivation for selecting ARMA GFs for
jointly detecting and localizing the FDIA in power grids.

E. Architecture of the Proposed Joint Detector & Localizer

The proposed joint detector and localizer consists of one
input layer to represent complex bus power injections, L− 1
hidden ARMAK layers to extract spatial features, one dense
layer to predict the probability of attack at each node, and one
output layer to return an extra bit to indicate the probability
of attack at the graph level. Its architecture is demonstrated in
Fig. 5 for L = 3 with a small graph having n = 5.

In this multi-layer GNN model, the input tensor [Pi,Qi]
is given by X0 ∈ Rn×2, the output tensor of hidden layer l
is denoted by Xl ∈ Rn×cl , and model outputs are denoted
by Y ∈ Rn and S ∈ R to indicate the location and the
presence of the attack, respectively, where cl represents the
number of channels in layer l for 1 ≤ l ≤ L. In particular,
while an ARMAK layer takes X l−1 ∈ Rn×cl−1 as input and
produces X l ∈ Rn×cl as output in layer l, the dense layer
propagates the information to the whole graph and outputs the
probability of the attack at the node level with Y ∈ Rn for
localization. Finally, the output layer detects the attack at the
graph level by S = max(Y ) ∈ R and outputs it with Y . Note
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(a) an ideal bandpass h† for IEEE-118.
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(b) an ideal lowpass h‡ for IEEE-300.

Fig. 4. Empirical frequency responses of CHEB and ARMA GFs when
approximating ideal filters h† and h‡ applied on IEEE 118- and 300-bus
test systems, respectively. Compared to CHEB, ARMA better approximates
the desired filter for the same K (e.g. h̃cheb3 vs h̃arma3 ) and it requires a
lower K for the same level of approximation (e.g. h̃cheb11 vs h̃arma5 ).
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Fig. 5. Architecture of the proposed ARMA GNN based detector and localizer
with three hidden layers where each ARMAK layer consists of K parallel
ARMA1. Each one of the K dashed blocks in an ARMAK layer corresponds
to an ARMA1 block depicted with a dashed block in Fig. 3. While complex
power injections P ,Q and predicted attack probabilities Y , S at the node
and graph level are visualized with thick bars at each node, activation and
mean value functions are represented with σ and µ, respectively.

that the last ARMAK layer’s output channel is selected as
one in order to have one feature for each v ∈ V. In addition,
ReLU activation is used at the end of each ARMAK layer
to increase the model’s nonlinear modeling ability, whereas
sigmoid is employed to transform the outputs to probabilities.

IV. EXPERIMENTAL RESULTS

A. Data Generation

Due to the privacy concerns, there is no preexisting publicly
available dataset to train and evaluate the proposed models
against FDIA. Thus, researches use historical load profiles to
mimic the timely deviations of the grids they simulate [14],
[15], [32]–[35]. We take the same approach based on the
historical load profile of NYISO [36] to generate our dataset.

As a first step, we download 5-minute intervals of the actual
load profile of NYISO for July 2021 and interpolate them
to increase the resolution to 1-minute. Next, we generate a
realistic dataset following the Algorithm 1 in our previous
work [24] for the IEEE 57-, 118-, and 300-bus standard test
cases using 1-minute interval load profile. Namely, for each
timestamp, load values are distributed and scaled to buses
proportional to their initial values, AC power flow algorithms
are executed, and 1% noisy power measurements are saved.

To simulate the FDIA, we implement some of the frequently
used FDIA generation algorithms in the literature such as
data replay attacks (Ar) [32], [33], data scale attacks (As)
[14], [15], and distribution-based (Ad) attacks [37], [38] as
well as our constrained optimization based FDIA (Ao) method
explained thoroughly in [24]. While Ar simply changes a
measurement zio with one of its previous values at τ back
in time, As multiply it with a number sampled from a
uniform distribution (U) between 0.9 and 1.1. In contrast, Ad
mimics the mean (µ) and variance (σ2) of the measurement
by sampling from a normal distribution (N ) and Ao solves a
constrained optimization problem to maximize the changes in
state variables while minimizing the changes in measurements.
Implemented attacks types, their formulations and some works

TABLE I
IMPLEMENTED FDIAS

FDIA type formulation used in

optimization-based (Ao) Eq. (5) in [24] [24]
data replay (Ar) zia(t) = zio(t− τ) [32], [33]

distribution-based (Ad) zia(t) = N (µ(zio), σ
2(zio)) [37], [38]

data scale (As) zia(t) = U(0.9, 1.1)× zio(t) [14], [15]

that have utilized them are given in Table I.
We shuffled the whole data to eliminate the seasonality,

standardized it with a zero mean and a standard deviation
of one to have a faster and smoother learning process, and
split it into three sections: 2/3 for training, 1/6 for validating
and hyper-parameter tuning, and 1/6 for testing the proposed
models. In order to evaluate the performance of our method
under unseen attack types, we arbitrarily selected Ao and
Ad and included them in the training and validation splits.
Test split, in contrast, includes all of the four FDIA methods
given in Table I. The number of honest samples are equalized
with the number of malicious samples in each split to have
a balanced classification problem as can be seen from Table
II. The final dataset assumes 60 samples/hour × 24 hour/day
× 24 day = 34560 samples which consist of complex power
measurements, complex bus voltages, and n+ 1 binary labels
to indicate the true labels for each bus and the whole grid at
each timestamp.

TABLE II
NUMBER OF SAMPLES IN EACH SPLIT

split non-attacked Ao Ar Ad As total

train 11520 5760 0 5760 0 23040
validation 2880 1440 0 1440 0 5760

test 2880 720 720 720 720 5760
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B. Feature Selection, Performance Metrics, and Training

To be able to rapidly detect and localize the attacks instead
of waiting for Vi and θi values at the output of the PSSE
process, we employ power measurements as input features in
our detectors. From the power measurements, only Pi and Qi

values are fed to the models as seen from the input layer of
Fig. 5 since Pi+jQi =

∑
k∈Ωi

Pik+jQik, node features can
represent branch features as summation in their corresponding
set of buses Ωi connected to bus i. Besides, it is experimentally
verified that utilizing Vi and θi values along with Pi and Qi

does not increase the model performance due to tuples’ high
correlation. PSSE and BDD modules, on the contrary, continue
to receive every available measurement to operate. As for the
weighted adjacency matrix we select W = |Ybus| to calculate
L̃ and feed the ARMAK layers where Ybus ∈ Rn×n denotes
nodal admittance matrix.

For performance evaluation we use detection rate DR =
TP

TP+FN , false alarm rate FA = FP
FP+TN , and F1 score F1 =

2∗TP
2TP+FP+FN , where TP , FP , TN , and FN represent true
positives, false positives, true negatives, and false negatives,
respectively [16]. In addition, to overcome the division by zero
problem when there is no attack at all, we assumed DR = 1,
FA = 0, and F1 = 1 if all the labels are correctly predicted
as not attacked. Otherwise, even if there is one mismatch, we
assign DR = 0, FA = 1, and F1 = 0.

All free unknown parameters defined in the model are
computed by a multi-label supervised training using the binary
cross-entropy loss. Training samples are fed into the model
as mini batches of 256 samples with 256 maximum number
of epochs. In addition, we employ early stopping criteria
where 16 epochs are tolerated without any improvement less
than e−4 in the validation set’s cross entropy loss. All the
implementations were carried out in Python 3.8 using the Pan-
dapower [39], Sklearn [40], t-SNE [25], and Tensorflow [41]
libraries on Intel i9-8950 HK CPU 2.90GHz with NVIDIA
GeForce RTX 2070 GPU.

C. Joint Detection and Localization Results

Since we take a data-driven approach in this work, we im-
plement other existing data-driven approaches from the litera-
ture to compare with our method. To the best of our knowledge
[15] is the only data-driven approach in the literature in which
authors employ LSTM architecture to localize the FDIA. Thus,
we trained an LSTM model with our dataset to compare
the performances. In addition, although they are proposed
for detection, we implement other available methods in the
literature suitable for the multi-label classification task such
as Decision Tree (DT) [42], K-Nearest Neighbor (KNN) [43],
Multi Layer Perceptron (MLP) [44], Convolutional Neural
Network (CNN) [43], and Chebyshev GNN (CHEB) [24]. We
train, validate and test these models similarly to the proposed
model using our dataset as we do not have access to the data
set of corresponding works.

Model hyper-parameters are tuned with Sklearn [40] and
Keras-tuner [45] Python libraries by using Bayesian optimiza-
tion techniques. Models are trained on the training set and their
hyper-parameters are optimized on the validation set for each

TABLE III
OPTIMIZED MODEL HYPER-PARAMETERS.

model param options IEEE-57 IEEE-118 IEEE-300

DT

criterion {gini, entropy} gini entropy entropy
min. split {2, 3, . . . , 8} 2 3 2

max. depth {1, 2, . . . , 64} 60 64 64
features {sqrt, log2} log2 log2 sqrt

KNN

algorithm {ball, kd} kd ball kd
neighbors {3, 5, 7, 9} 3 3 3
leaf size {4, 5, . . . , 64} 29 62 58

p {1, 2, 3, 4} 2 1 1

MLP layers {1, 2, 3} 2 3 3
units {16, 32, 64, 128} 32 32 128

LSTM layers {1, 2, 3} 3 3 2
units {16, 32, 64, 128} 16 32 64

CNN
layers {1, 2, 3} 3 2 3
units {16, 32, 64, 128} 32 128 64

K {2, 3, 4} 3 4 3

CHEB
layers {1, 2, 3} 3 4 3
units {16, 32, 64, 128} 64 32 64

K {2, 3, 4} 3 4 4

ARMA

layers {1, 2, 3} 3 2 3
units {16, 32, 64, 128} 16 16 32

K {2, 3, 4} 2 3 3
iteration {2, 3, 4, 5} 4 5 5

IEEE test system for 250 trials. Finally, models with optimal
parameters in terms of the validation set performance are saved
and their results are presented for detection and localization.
Table III shows the hyper-parameter set and the optimal hyper-
parameters for each model and test system.

TABLE IV
DETECTION RESULTS IN DR, FA, AND F1 PERCENTAGES.

System IEEE-57 IEEE-118 IEEE-300

Metric DR FA F1 DR FA F1 DR FA F1

DT 89.55 5.45 91.84 87.40 8.72 89.13 89.69 9.38 90.11
KNN 19.41 0.07 32.49 30.69 0.00 46.97 16.67 0.00 28.57
MLP 95.07 0.31 97.32 89.20 1.01 93.79 82.74 1.63 89.76

LSTM 98.40 0.24 99.07 96.74 0.10 98.29 94.38 0.03 97.09
CNN 99.79 0.28 99.76 98.47 0.45 99.01 95.28 0.00 97.58

CHEB 99.65 0.28 99.69 97.99 0.45 98.76 99.79 0.73 99.53
ARMA 99.90 0.28 99.81 99.13 0.24 99.44 99.97 0.14 99.91

In Table IV, detection performance of the optimized models
for each test system is tabulated as percentages. For all test
systems, although KNN yields the best FA rate, its F1 scores
are not satisfactory since it gives the lowest DR. ARMA, in
contrast, reaches the best F1 scores with 99.81%, 99.44%,
and 99.91%, due to its high DR with 99.90%, 99.13%, and
99.97% and low FA rate with 0.28%, 0.24%, and 0.14%
for 57-, 118-, and 300-bus systems, respectively. Although
detection results are close to each other in terms of F1 scores
for some models such as CHEB and ARMA, CHEB yields
almost two and five times FA rate for IEEE 118- and 300-
bus systems, respectively. Nevertheless, detection considers the
attacks at the grid level and any intrusion to a bus in the grid is
regarded as an attack. Thus, bus level localization is required
to determine the exact place of the attack.

Since localization is a multi-label classification problem,
we evaluate it in both possible ways: (i) sample-wise (SW)
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evaluation yields b metrics where each one of b samples at
a fixed time-step is treated individually along the buses, and
(ii) node-wise (NW) evaluation yields n metrics where each
one of n buses is evaluated separately along the samples.
Therefore, in order to better assess the models, we visualize
and analyze the distributions of SW and NW localization
results in F1 percentages by box plots and ratio of items
satisfying some specified thresholds. Box plots helps us to
visualize the distribution by drawing first (Q1, 25th percentile),
second (Q2, 50th percentile or median), and third (Q3, 75th

percentile) quartiles, lower (LW = Q1 − 1.5 × (Q3 − Q1))
and upper (UW = Q3+1.5×(Q3−Q1)) whiskers and outliers
[46]. In addition, the ratio of the samples or buses satisfying
some thresholds provides quantifiable metrics to assess model
performances. For instance, the percentage of samples (buses)
having F1 ≤ 5% or F1 ≥ 95% in SW (NW) evaluation can be
used to measure the ratio of “unacceptable” and “acceptable”
samples in the distributions, respectively.

SW localization results are given in Fig. 6. Since the
distributions are highly left skewed, the median (Q2) values
can overlap with Q3. In specific, Q2 = Q3 = UW = 100%
except the MLP for IEEE-300 and DT for all systems. This
is not surprising because 50% of the samples are not attacked
and it is relatively easy to predict them as not attacked for each
bus. Q1 and LW , in contrast, vary for each model and test
system. For example, LW = Q1 = 0 in all test systems for
KNN model which shows that F1 = 0% for more than 1/4 of
the samples for that model. Although DT yields better results
compared to KNN, its results are unsatisfactory: its Q1 values
are 69.39%, 63.16%, and 63.33%, for 57-, 118-and 300-bus
test systems, respectively. Models from the NN family better
localize the attacks compared to the classical ML approaches.
For example, their Q1 values are greater than 79.74% for
all test systems. Namely, in at least 3/4 of the samples,
attacked buses are correctly labeled with F1 score deviating
between 79.74% and 100%. To better compare the model
performances, the percentages of the samples having F1 ≤ 5%
and F1 ≥ 95% are given in Fig. 6d for each model and test
system. ARMA gives the best results in all test cases: while
the sample percentages for F1 ≤ 5% are calculated as 0.21%,
0.56%, and 0.10%, sample percentages with F1 ≥ 95% are
measured as 79.53%, 83.00%, and 79.03% for IEEE 57-,
118-, and 300-bus test systems, respectively. Its “acceptable”
(F1 ≥ 95%) percentages are 5.64%, 8.56%, and 10.07%
greater than the second best model CHEB in SW localization,
for IEEE 57-, 118-, and 300-bus test cases, respectively.

In Fig. 7, the distribution of F1 scores for NW evaluation
is depicted. Due to the largely left skewed distributions,
the median (Q2) values may overlap with Q3. Specifally,
Q3 = 100% for all the models and systems, and Q2 = 100%
for all the models in IEEE-118. Similar to the SW evaluation,
performance of DT and KNN is poor: their Q1 values deviate
between 24.19% and 64.86%. MLP, LSTM, and CNN provide
better results compared to DT and KNN. Nevertheless, they
are subject to some outliers at 0% which means there are
some buses that are always mislabeled at each timestamp.
The only model that can localize the FDIA for each bus
with at least 80% F1 score is ARMA. Namely, for all the
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(a) IEEE-57. Q2 = 100% except DT, Q3 = 100% for all.
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(b) IEEE-118. Q2 = 100% except DT, Q3 = 100% for all.
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DT

(c) IEEE-300. Q2 = 100% except DT and MLP, Q3 = 100% for all.

System IEEE-57 IEEE-118 IEEE-300

F1 Q x ≤ 5 ≥ 95 ≤ 5 ≥ 95 ≤ 5 ≥ 95

DT 8.00 50.43 11.18 50.05 10.28 49.18
KNN 40.35 51.41 34.65 57.74 41.68 53.07
MLP 2.64 62.88 6.22 59.79 10.43 54.29
LSTM 0.94 66.82 1.72 69.57 3.00 60.59
CNN 0.24 64.95 0.99 60.82 2.57 60.38
CHEB 0.31 73.89 1.23 74.44 0.47 68.96
ARMA 0.21 79.53 0.56 83.00 0.10 79.03

(d) Sample percentages having F1 ≤ 5% and F1 ≥ 95%.

Fig. 6. Distribution of F1 scores for sample wise evaluation of localization.

test systems, the ARMA model can determine the location
of an FDIA attack for all buses with F1 score greater than
80%. Fig. 7d presents the percentages of buses satisfying
F1 ≤ 5% and F1 ≥ 95% levels. For all test systems, only
ARMA model has 0% with F1 ≤ 5% success level which
means only ARMA model doesn’t yield any “unacceptable”
bus localization performance. In comparison, one bus in IEEE
118- and 5 buses in IEEE 300-bus systems always have F1
score less than 5% in all timestamps for the second best CHEB
model. For the F1 ≥ 95% threshold, only ARMA model can
surpass the 70% level for each test systems and it outperforms
the second best model CHEB by 8.78%, 11.87%, and 14.67%
for the 95% F1 threshold level in NW localization for IEEE
57-, 118-, and 300-bus systems, respectively.
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(a) IEEE-57. Q3 = 100% for all.
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(b) IEEE-118. Q2 = Q3 = 100% for all.
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(c) IEEE-300. Q3 = 100% for all.

System IEEE-57 IEEE-118 IEEE-300

F1 Q x ≤ 5 ≥ 95 ≤ 5 ≥ 95 ≤ 5 ≥ 95

DT 0.00 38.60 1.69 52.54 0.67 44.00
KNN 0.00 38.60 1.69 52.54 0.67 44.00
MLP 0.00 40.35 0.85 53.39 0.67 44.00
LSTM 0.00 50.88 0.85 55.08 73.33 44.00
CNN 0.00 50.88 0.00 66.10 0.67 44.33
CHEB 0.00 61.40 0.85 69.49 1.67 57.00
ARMA 0.00 70.18 0.00 81.36 0.00 71.67

(d) Bus percentages having F1 ≤ 5% and F1 ≥ 95%.

Fig. 7. Distribution of F1 scores for node wise evaluation of localization.

D. Joint Detection and Localization Times

We measure the elapsed time during model’s joint detection
and localization process for each sample in the test set,
calculate the mean values, and tabulate them in Table V.
Clearly, detection times of KNN are not satisfactory: it can

TABLE V
JOINT DETECTION AND LOCALIZATION TIMES IN MILLISECONDS.

model DT KNN MLP LSTM CNN CHEB ARMA

IEEE-57 0.18 147.78 1.42 16.85 2.64 2.24 2.76
IEEE-118 0.29 327.62 1.44 35.19 2.67 2.54 2.81
IEEE-300 0.69 836.52 1.50 99.78 2.73 2.71 2.94

take more than 0.8 second to respond. It is due to the fact
that in KNN each new sample has to be compared with
others for proximity calculation. LSTM, in contrast, provides

better results compared to the KNN. Nevertheless, its highly
complex recurrent architecture can delay its output almost 0.1
second for IEEE-300, which may limit its application in a
real time scenario. All the other models including DT, MLP,
CNN, CHEB, and ARMA provide reasonable detection times
for a real time application: for all test system their response
time is less than 3 milliseconds. Among them DT provides
the best detection times with values under 0.7 milliseconds;
yet, its poor detection and localization performance hinders its
suitability as a reliable method.

E. Visualization of intermediate layers with t-SNE

To compare the proposed model with the existing ap-
proaches, we analyze and visualize the multidimensional data
processed by the intermediate layers of the proposed models.
Nevertheless, the high dimensionality of the data severely lim-
its examining them. Besides, examining a specific feature of a
bus does not provide enough information to fully comprehend
how the model processes the grid. Thus, we transform the layer
outputs by using the t-distributed stochastic neighbor embed-
ding (t-SNE), which is a nonlinear dimensionality reduction
technique to visualize the high dimensional data in two or
three dimensional spaces [25]. By iteratively minimizing the
Kullback-Leibler divergence between the probability distribu-
tions representing the sample similarities in the original and
mapped spaces, it projects samples into the low dimensional
space. Thus, it preserves the structure of the data and enables
visualization of the data in a lower dimension [25].

Due to space limitations, only models trained for the IEEE-
300 bus system are analyzed in two dimensions (2D) with
test data having 5, 760 samples. Embedding of input data
[P,Q] = X ∈ R300×2 is plotted in Fig. 8a, where a dominat-
ing daily profile can be seen from the smooth transition from
the lower left to the upper right samples depicted with green
stars (attacked) and black circles (non-attacked). Moreover, the
close proximity between attacked and non-attacked samples
indicates that the attacked samples preserve similarity to their
non-attacked samples. Fig. 8b shows the embedding of true
output Y ∈ R300 where non-attacked samples clustered in the
middle and attacked samples are scattered around them. This
is not surprising since non-attacked samples are all formed
from 0s and attacked samples include 1s in their corresponding
labels to indicate the attacked bus.

(a) Embedded X in 2D (b) Embedded Y in 2D

Fig. 8. Embedded input and output data for IEEE-300 bus system where
attacked and non-attacked samples are depicted with green stars and black
circles, respectively.
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Fig. 9 demonstrates the embedding of layer l’s output where
each model takes X (Fig. 8a) as input, transforms it in the
hidden layers, and tries to predict Y (Fig. 8b) as output.
The number of TP (green stars), FP (blue diamonds), FN
(red squares), and TN (black circles) samples are given under
the model name for easy reference. MLP clearly falls behind
the other approaches due to the FNs scattered all around.
For instance, unlike other approaches, MLP misses easily
detectable attacked samples in l2 very close to the TP cluster
and it maps many FNs nearby to the TNs placed at the lower
part of its last layer. LSTM, in contrast to the MLP, reduces
FN and FP samples. However, in l2, it falsely maps many
attacked samples adjacent to the non-attacked samples which
yields a high number of FNs. In addition, like the MLP, it
falsely predicts multiple non-attacked clusters in its final layer.

Contrarily, CNN is one of the best models in terms of
FP number. Yet, it “destroys” the structure of data in l1
which brings a significant number of FNs. We believe it is
due to the fact that CNN tries to capture the correlations of
non-Euclidean data in an Euclidean space and samples from
different classes may look the same in that space. Due to
their inherent graph architecture, CHEB and ARMA yield
better results since they both consider the “structure” of the
data within X in their graph convolutional layers. However,
CHEB misses 5 more attacks and yields more than 5 times
FP samples compared to the ARMA. For instance, many
non-attacked samples in l4 are falsely regarded as an attack
due to close mapping to an attacked cluster. Conversely, our
proposed model gives only 4 FP and 1 FN due to its rational
graph convolutional filters that provide more flexible frequency
responses. Note that no sample is mapped in the vicinity
of attacked samples unlike the other models. Besides, only
ARMA outputs a highly similar pattern to Y : a non-attacked
sample cluster in the center and attacked samples distributed
around it.

F. Discussions & Theoretical Comparisons

As indicated earlier, two main approaches have been pro-
posed for detecting and localizing the FDIAs: model-based and
data driven approaches [8]. Model-based approaches such as
those in [10]–[14] do not require any historical datasets. Nev-
ertheless, scalability, manual threshold optimization process,
detection lags, model complexity, and localization resolution
could hinder the usability of them for real applications. For
instance, results are not published in [12] and localization
could only be done at the cluster level in [10]. Detection
times are larger than a second in [11] and [13] for small
test systems having 12 and 36 buses, respectively. In their
model-based detectors, authors of [14] utilize GSP techniques
such as Local Smoothness (LS) and Vertex-Frequency Energy
Distribution (VFED). Nonetheless, they evaluate their method
with an easily detectable attack by the classical LNRT based
BDD methods which can conceal the actual performance of
the the model. Specifically, they simulate the FDIAs using
zia(t) = zio(t) + (−1)d.a.u.range where d ∼ {0, 1} is a
binary random variable (r.v.), u ∼ U [0, 1] is an uniform

r.v., range = max(zio) − min(zio) and a is scaler for the
attack. For instance, if zio ∼ N (µo, σ

2
o), expected values

of the attacked data distribution become E[µa] = µo, and
E[σa] = 6aσo due to the product properties of uniform and
normal distributions, where µo, σo and µa, σa tuples represent
the mean and standard deviation of original and attacked data,
respectively. The accuracy of localization for IEEE 118-bus
test system when a = 4, which makes E[σa] = 24σo, are
85% and 91% for the LS and VFED techniques, respectively.
These high accuries are not realistic since the scaler a plays
a significant role in simulation process.

The data-driven methods, in contrast, present a better perfor-
mance since historical datasets are growing and the modeling
capability of these algorithms is being increased [8], [9].
For example, in their data-driven method in [15] researchers
employ an LSTM model for each measurement in a 5-bus test
system in which only one bus is under attack at a time to
detect and localize the point-wise FDIAs. They report greater
than 90% accuracy for detection and localization of random,
ramp, and scale attacks for low, medium, and high attack
levels. However, the capability of this method for detection
and localization of different FDIAs in large test cases has not
been investigated. Besides, assigning an independent model to
each measurement has two major drawbacks: (i) overall model
complexity increases severely, and (ii) spatial correlations of
the measurements are ignored totally.

In data-driven approaches, compatibility between the struc-
ture of collected data and architecture of the data-driven model
is the primary factor on the performance of the model. For
instance, DT, KNN, or MLP architectures could be better
suited for a dataset having uncorrelated features from different
spaces. Similarly, an RNN architecture might be more applica-
ble to model the recurrent relations in a natural language data.
A CNN architecture, in contrast, could be more favorable than
GNN for an image data where pixel locality is well modeled in
2D Euclidean space. However, as demonstrated with Fig. 1a,
spatial correlations in power measurements data can only be
captured in a non-Euclidean space dictated by the topology
of the grid. For instance, if we had a hypothetical power grid
like in Fig. 1a, a CNN architecture could have comparable
performances with ARMA. Nonetheless, for a power grid
data collected from graph type structure, a GNN is more
advantageous than other architectures as can be seen from the
detection results in Table IV and the localization distributions
in Figs. 6 and 7. As for the GNN family, ARMA outperforms
CHEB due to the fact that rational GFs implemented using the
ARMA architecture provide more flexible frequency responses
compared to the polynomial filters such as CHEB [29].

It is observed from our extensive experiments that the
proposed ARMA based model performs better compared to
other models for larger test cases. As an illustration, for the
95% F1 threshold level, it outperforms the second best model
CHEB by 5.64%, 8.56%, and 10.07% in SW localization and
by 8.78%, 11.87%, and 14.67% in NW localization for IEEE
57-, 118-, and 300-bus systems, respectively. This difference
is due to the fact that in larger and denser graphs, (i) the
spatial correlation between adjacent measurements becomes
more dominant compared to the global correlations and (ii)
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l
MLP

2383, 47, 497, 2833
LSTM

2718, 1, 162, 2879
CNN

2744, 0, 136, 2880
CHEB

2874, 21, 6, 2859
ARMA

2879, 4, 1, 2876

l1

l2

l3

l4

Fig. 9. t-SNE embedding of model’s layers to visualize the attack detection where true input and output data are given in Fig. 8. For each model and each
layer l, output of the model is embedded in 2D using t-SNE. Since t-SNE preserves the structure of the high dimensional data, models’ transformation can be
visualized and compared in a lower dimension, such as 2D. Note that due to its topology aware ARMA graph filtering, the proposed model better classifies
samples by converging to the true output depicted in Fig. 8b. As a consequence, it yields the minimum number of FP and FN compared to other models.

ARMA GFs better adapt to abrupt changes in the spectral
domain compared to the polynomial ones.

As stated before, the output of each vertex v only depends
on its K-hop neighbors for a K-order polynomial GF. In
other words, the output of v is independent of the vertices
beyond the K-hop neighbors for a K-order FIR GF [22].
Thus, to capture the global characteristics of the graph, an
FIR GF requires “high” order spectral response as can be
seen from Fig. 4. Nevertheless, due to the poor interpolation
and extrapolation capabilities of the high order polynomials,
it becomes sensitive to variations and may overfit to the
training data [21]. To verify this characteristic, we fix the other
parameters of CHEB GF at their optimal values tabulated in
Table III and train a CHEB model for the IEEE 300-bus test
system for each K ∈ {5, 7, 9, 11}. FDIA detection results in
terms of F1% are depicted in Fig. 10. Clearly, increasing
K beyond a certain point makes the model susceptible to
variations such as noise, and thus, it can degrade the test
set performance. Note that similar conclusion can also be
corroborated for the localization results.

Bus level localization is a multi-label classification task
and should be evaluated accordingly. Besides, performance
metrics can cause inaccurate or misleading outcomes when

1197543
97

98

99

100

97.48
97.88

98.34

99.07
99.53

99.11

K

F
1%

Fig. 10. Detection performance vs. filter order of CHEB models for IEEE
300-bus system. Optimal results are obtained at K = 4 as given in Table III.

they are not interpreted correctly. Namely, missing an attack
(FN) could be much more severe than a false alarm (FP) when
dealing with FDIAs due to their consequences. An example
of localization results for a hypothetical model is given in
Table VI with 4 samples in rows and 5 buses in columns
where TP, FP, FN, and TN samples are highlighted with green,
blue, red, and black colors, respectively. In addition, SW and
NW localization results are given at the end of each row and
columns in terms of accuracy ACC = TP+TN

TP+TN+FP+FN and
F1 percentages. The ACCsw is not a reliable metric since it
can not properly take into account the distribution of errors.
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TABLE VI
SW AND NW LOCALIZATION EXAMPLE IN ACC% AND F1%

n1 n2 n3 n4 n5 ACCsw F1sw

s1 tn fn tn tn tn 80 0
s2 tn fn tn tn tn 80 0
s3 tn fn fp tn tp 60 50
s4 tp fn tp fp tp 60 75

ACCnw 100 0 75 75 100

F1nw 100 0 66 0 100

For instance, although ACCsw shows high accuracy for all
the samples, it does not have any mechanism to mirror the
faults at n2 which can have serious consequences for the
power system. Comparing F1 with ACC reveals that F1 has
a better mechanism to evaluate the accuracy of the model. For
instance, the ACCsw = 60% for s3 and s4 since they have
the same number of falsely predicted samples. F1sw metric, in
contrast, yields 50% for s3 and 75% for s4 since s4 includes 1
more TP compared to the s3. Since our focus is to determine
the localization of FDIAs, then F1 is the proper candidate to
evaluate the accuracy of the model. The result and discussion
reveals the supremacy of our model compared to DT, MLP,
RNN, CNN, and CHEB models in terms of detection and
localization of FDIAs.

V. CONCLUSION

This work proposed a GNN based model by integrat-
ing the underlying graph topology of the grid and spatial
correlations of its measurement data to jointly detect and
localize the FDIAs in power systems while the full AC power
flow equations are employed to address the physics of the
network. Adopting IIR type ARMA GFs in its hidden layers,
the proposed model is more flexible in frequency response
compared to FIR type polynomial GFs, e.g., CHEB thanks to
their rational type filter composition. Although our algorithm
has better detection and localization performance compared
to the state of the art CHEB model [24] in the literature,
the improvement rate for localization is much higher than
detection. Simulations performed on various standard test
systems confirm that the performance of the proposed model
in detecting FDIA exceeds the performance of CHEB model
by 0.12%, 0.68%, and 0.38% for IEEE 57-, 118-, and 300-
bus, respectively. The proposed model also outperforms the
CHEB model in localizing the attacks (i.e., 95% F1 threshold
level) by 5.64%, 8.56%, and 10.07% in SW localization and
by 8.78%, 11.87%, and 14.67% in NW localization for the
same above-mentioned test systems, respectively. Furthermore,
visualizing the intermediate layers for different approaches
including those in literature corroborates the supremacy of the
proposed model in detecting FDIA.

REFERENCES

[1] X. Yu and Y. Xue, “Smart grids: A cyber–physical systems perspective,”
Proceedings of the IEEE, vol. 104, no. 5, pp. 1058–1070, 2016.

[2] K. R. Davis, K. L. Morrow, R. Bobba, and E. Heine, “Power flow cyber
attacks and perturbation-based defense,” in 2012 IEEE Third Interna-
tional Conference on Smart Grid Communications (SmartGridComm).
IEEE, 2012, pp. 342–347.

[3] S. Sridhar, A. Hahn, and M. Govindarasu, “Cyber–physical system
security for the electric power grid,” Proceedings of the IEEE, vol. 100,
no. 1, pp. 210–224, 2011.

[4] A. Abur and A. Expósito, Power System State Estimation: The-
ory and Implementation, ser. Power Engineering (Willis). CRC
Press, 2004. [Online]. Available: https://books.google.com/books?id=
NQhbtFC6 40C

[5] G. B. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and B. F.
Wollenberg, “Monitoring and optimization for power grids: A signal
processing perspective,” IEEE Signal Processing Magazine, vol. 30,
no. 5, pp. 107–128, 2013.

[6] G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, “A review
of false data injection attacks against modern power systems,” IEEE
Transactions on Smart Grid, vol. 8, no. 4, pp. 1630–1638, 2016.

[7] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM Transactions on Informa-
tion and System Security (TISSEC), vol. 14, no. 1, pp. 1–33, 2011.

[8] A. S. Musleh, G. Chen, and Z. Y. Dong, “A survey on the detection algo-
rithms for false data injection attacks in smart grids,” IEEE Transactions
on Smart Grid, vol. 11, no. 3, pp. 2218–2234, 2019.

[9] A. Sayghe, Y. Hu, I. Zografopoulos, X. Liu, R. G. Dutta, Y. Jin, and
C. Konstantinou, “Survey of machine learning methods for detecting
false data injection attacks in power systems,” IET Smart Grid, 2020.

[10] T. R. Nudell, S. Nabavi, and A. Chakrabortty, “A real-time attack
localization algorithm for large power system networks using graph-
theoretic techniques,” IEEE Transactions on Smart Grid, vol. 6, no. 5,
pp. 2551–2559, 2015.

[11] M. Khalaf, A. Youssef, and E. El-Saadany, “Joint detection and mitiga-
tion of false data injection attacks in agc systems,” IEEE Transactions
on Smart Grid, vol. 10, no. 5, pp. 4985–4995, 2018.

[12] E. Drayer and T. Routtenberg, “Cyber attack localization in smart grids
by graph modulation (brief announcement),” in International Symposium
on Cyber Security Cryptography and Machine Learning. Springer,
2019, pp. 97–100.

[13] X. Luo, Y. Li, X. Wang, and X. Guan, “Interval observer-based detection
and localization against false data injection attack in smart grids,” IEEE
Internet of Things Journal, vol. 8, no. 2, pp. 657–671, 2020.

[14] M. A. Hasnat and M. Rahnamay-Naeini, “Detection and locating cyber
and physical stresses in smart grids using graph signal processing,” arXiv
preprint arXiv:2006.06095, 2020.

[15] A. Jevtic, F. Zhang, Q. Li, and M. Ilic, “Physics-and learning-based
detection and localization of false data injections in automatic generation
control,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 702–707, 2018.

[16] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[17] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[18] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
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[23] N. Tremblay, P. Gonçalves, and P. Borgnat, “Design of graph filters and
filterbanks,” in Cooperative and Graph Signal Processing. Elsevier,
2018, pp. 299–324.

[24] O. Boyaci, A. Umunnakwe, A. Sahu, M. R. Narimani, M. Ismail,
K. Davis, and E. Serpedin, “Graph neural networks based detection
of stealth false data injection attacks in smart grids,” arXiv preprint
arXiv:2104.02012, 2021.

[25] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[26] J. C. Mason and D. C. Handscomb, Chebyshev polynomials. CRC
press, 2002.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3117977

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

https://books.google.com/books?id=NQhbtFC6_40C
https://books.google.com/books?id=NQhbtFC6_40C


13

[27] S. W. Smith et al., The scientist and engineer’s guide to digital signal
processing. California Technical Pub. San Diego, 1997, vol. 14.
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