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Announcements

Read Chapter 7
Exam 1 average was 78

Homework 5 is assigned today; it will be due on
Oct 28.

A classic paper 1n this area 1s B. Stott, “Power

System Dynamic Response Calculations,” Proc.
IEEE, February 1979, pp. 219-241
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GGOV1

Al

« GGOV1 is arelatively newer governor model
Introduced in early 2000's by WECC for modeling
thermal plants
— Existing models greatly under-estimated the frequency drop
- GGOVL1 is now the most common WECC governor, used with

about 40% of the units

« A useful reference iIs L. Pereira, J. Undrill, D. Kosterev,
D. Davies, and S. Patterson, "A New Thermal Governor
Modeling Approach in the WECC," IEEE Transactions
on Power Systems, May 2003, pp. 819-829



GGOV1: Selected Figures from 2003
Paper

May 18 2001 Test SW and NW Trips - Malin 500 k¥ Bus Frequency
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May18 NW 1250 MW Trip recording

Note: AGC was switched off in both generation trip tests
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and NW trips on May 18, 2001. Also
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modeling (base case).
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Base case (existing modeling)

Diablo June 3 2002 Recording

New thermal governor
ggov1 simulation
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Governor model verification—
950-MW Diablo generation trip
on June 3, 2002.

Diablo Canyon 1s California’s last nuclear plant, with Unit 1 now scheduled to

shutdown in 2024 and Unit 2 in 2025 (though there has been recent controversy

about this)

T
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GGOV1 Block Diagram
T

IfD =0, (Speed) -'='D_h
IED_ <0, (Speed+1) = :

oy K o : % GGOV1and
15T, the related
GGOV3 are
the most
Low common
select | governors in
/“i“ _ WECC, with
vfm more than
ool : 40% in 2019
govgmor output 1.0 (Speed+1)
valve stroke States
Rselect 1-P,._ Measured 5 - Turbine LL

2 - Govemnor Differential Control 6 - Turbine Load Limiter
3 - Governor Integral Control 7 - Turbine Load Integral Control

Model supporte PSLF 4 - Turbine Actuator 8 - Supervisory Load Control
Model supported by PSSE does not include non-windup limits on K, block 9 - Accel Control
Rz Rpgunes Rerass. and R, inputs not implemented in Simulator 10 - Temp Detection LL



Power System Stability Assessment
Al
* Asgiven in [1] the formal definition of power
system stability Is
- “Power system stability is the ability of an electric power
system, for a given initial operating condition, to regain a
state of operating equilibrium after being subjected to a
physical disturbance, with most system variables bounded
so that practically the entire system remains intact”
* The previously developed models will help in power
system stability assessment

 Different techniques are used including time-domain
simulations, eigenvalue analysis and power flow

1] IEEE/PES Power System Dynamic Performance Committee, “Stability definitions and characterization of dynamic behavior in
systems with high penetration of power electronic interfaced technologies”, PES-TR77, April 2020 5



Power System Stability Terms

« The below image (from Figure 4 of [1]), and also
shown lecture 2, helps define the terms

Power system stability
o Converter- Rotor angle Voltage Frequency
Ragotance tability driven stability stability stability stability
| | |
Electrical Torsional it Slow Transien Small- Large- Saall-
} j interaction interaction disturbance | | disturbance disturbance
l Short term I l Long term I I Short term J l Long term l

Fig. 4. Classification of power system stability

The two main time scales are the electromagnetic (left two branches) and the
electromechanical (right three branches). The focus in 667 is mostly on the
electromechanical time scale with ECEN 616 focusing on the electromagnetic.

AP

11 IEEE/PES Power System Dynamic Performance Committee, “Stability definitions and characterization of dynamic behavior in

systems with high penetration of power electronic interfaced technologies”, PES-TR77, April 2020
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Transient Stability
Multimachine Simulations

Al
* Next, we'll be putting the models we've covered so far
together

« Later we'll add in new model types such as stabilizers,
loads and wind turbines

« By way of history, prior to digital computers, network
analyzers were used for system stability studies as far
back as the 1930's (perhaps earlier)

~ For example see, J.D. Holm, "Stability Study of A-C Power
Transmission Systems," AIEE Transactions, vol. 61, 1942, pp.
893-905

 Digital approaches started appearing in the late 1950's



A Little History

A nice early reference Is
- Dyrkacz, Young, Maginniss, “A Digital Transient Stability Program

AP

Including the Effects of Regular, Exciter and Governor Response,” Proc.

AIEE, Part 3, February 1961, pp. 1245-1254

This 1961 demonstrates results on a 96 bus system, shown below;
note that the simulation is quite short, less than one second
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Power System

Multimachine Simulations
T

* The general structure Is as a set of differential-
algebraic equations

— Differential equations describe the behavior of the machines
(and the loads and other dynamic devices)

— Algebraic equations representing the network constraints
In EMTP applications the

I transmission line delays
R decouple the machines; here
o they are assumed to be

0 e coupled together by the

algebraic network equations

Figure 7.2: Interconnection of synchronous machine dynamic circuit and the
rest of the network



General Form

AP

The general form of the problem is solving
x=f(X,y,u)

0=g(x,y)

where X Is the vector of the state variables (such

as the generator o's), y Is the vector of the algebraic
variables (primarily the bus complex voltages), and

u Is the vector of controls (such as the exciter voltage
setpoints)

10



Stability Simulations General Solution
HiY
* General solution approach is

— Solve power flow to determine initial conditions

- Back solve to get initial states, starting with machine models,
then exciters, governors, stabilizers, loads, etc

- Sett=tg,, time step = At, abort = false
— While (t <= tend) and (not abort) Do Begin
« Apply any contingency event

Solve differential and algebraic equations

If desired store time step results and check other conditions (that
might cause the simulation to abort)

t=t+ At
— End while

11



Algebraic Constraints

HIY

« The g vector of algebraic constraints is similar to the
power flow equations, but usually rather than
formulating the problem like in the power flow as real
and reactive power balance equations, it is formulated
In the current balance form Simplest

I(x,V)=YV or YV-I(x,V)=0 N

where Y Is the n x n bus admittance matrix | independent

(Y =G + jB),V is the complex vector of ~ °fxand V.,

’ _ allowing a
the bus voltages, and | is the complex direct solution:
vector of the bus current injections otherwise we

need to iterate
12



Why Not Use the
Power Flow Equations?

HiY
The power flow equations were ultimately derived

from

Ix,V) =YV

However, the power form was used in the power flow
primarily because

— For the generators the real power output is known and either
the voltage setpoint (i.e., if a PV bus) or the reactive power
output

— In the quasi-steady state power flow time frame the loads can
often be well approximated as constant power

— The constant frequency assumption requires a slack bus

These assumptions do not hold for transient stability .



Algebraic Equations for
Classical Model

AP

« To introduce the coupling between the machine models
and the network constraints, consider a system
modeled with just classical generators and impedance
loads

In this example
because we are
using the classical

N-bus power system

nasge e | model all values
ad loads o remrasented are on the network

by constant admittances.

reference frame

We'll extend the figure slightly to include stator resistances, R;;

Image Source: Fig 11.15, Glover, Sarma, Overbye, Power System Analysis and Design, 5" Edition, Cengage Learning, 2011 14



Algebraic Equations for
Classical Model

Al
* Replace the internal voltages and their impedances by
their Norton Equivalent Review Norton and
, Thevenin equivalents if
| EiZo Y 1 you are rusty on them

TR X TR+ X,

« Current Injections at the non-generator buses are zero
since the constant impedance loads are included in'Y
— We'll modify this later when we talk about dynamic loads

« The algebraic constraints are then 1| - Y V=0

15



Swing Equation

Al
« The first two differential equations for any
synchronous machine correspond to the swing equation

%:a)i_a)s :Aa)i

dt

2Hi da)i = 2H' dAC()| :TMi _TEi _Di(Awi)
o, dt o dt

S

with T, = l//de,ii qi_qu,ii di

16



Swing Equation Speed Effects
T

« There Is often confusion about these equations because |
of whether speed effects are included

- Recognizing that often =~ o, (which is one per unit), some
stability books have neglected speed effects

« For arotating machine with a radial torque,
power = torque times speed

* For a subtransient model

E"=V +(R,+ jX")I, Ej+]E = (—Wé’+ jwé’)a)
Te =yql,—w,l and
P. =T.o=(Ey + JEJ)(1, - jl,) = Efl, + E/I,
17



Classical Swing Equation
HiY
« Often In an introductory coverage of transient stability

with the classical model the assumption Is ® = ®, SO
the swing equation for the classical model is given as

dt
2H. dAw.
o dt =Puw—Fs — D, (Awi)

with P, = (E/£6,)(E/£6,-V,)Y,
« We'll use this simplification for our initial example

As an example of this initial approach see Anderson and Fouad, Power System Control
and Stability, 2"d Edition, Chapter 2 (with a newer version third edition of this book now available
adding Vijay Vittal and Jim McCalley as authors). 18



Numerical Solution

There are two main approaches for solving
x=f(x,y,u)
0=g(x,y)

— Partitioned-explicit: Solve the differential and algebraic
equations separately (alternating between the two) using an
explicit integration approach

— Simultaneous-implicit: Solve the differential and algebraic
equations together using an implicit integration approach

T

19



Outline of the Solution Process

Al
* The next group of slides will provide basic coverage of
the solution process, partitioned explicit, then the

simultaneous-implicit approach

« We'll start out with a classical model supplying an
Infinite bus, which can be solved by embedded the
algebraic constraint into the differential equations

We'll start out just solving x =f(x)

and then will extend to solving the full problem of
X=f(X,y,u)

0=g(x,y)

20



Classical Swing Equation with
Embedded Power Balance

Al
« With a classical generator at bus I supplying an infinite
bus with voltage magnitude V., we can write the

problem without algebraic constraints as

%:a)i —a)s :Aa)l :Aa)l pua)s

dt |

dAw. "\

I, pu — 1 PMi—EI V|nf S|n5|_D| (AC()I pu)
dt 2H. Xy ’

with P, = E{ Vi sin g Note we are using

X the per unit speed
approach

21



Explicit Integration Methods
T

« As covered on the first day of class, there are a wide
variety of explicit integration methods

~ We considered Forward Euler, Runge-Kutta, Adams-
Bashforth

* Here we will just consider Euler's, which iIs easy to
explain but not too useful, and a second order Runge-
Kutta, which is commonly used

22



Forward Euler

T

* Recall the Forward Euler approach Is approximate

X = F(x(t) = df i’t‘

Then
X(t+At) =~ X(t)+Atf(x(t))

* Error with Euler's varies with the square of the time
step

23



Infinite Bus GENCLS Example using
the Forward Euler's Method T

Use the four bus system from before, except now gen 4 |
Is modeled with a classical model with X'=0.3, H=3
and D=0; also we'll reduce to two buses with

equivalent

Bus 2
Bus 1
GENCLS ©bu Infinite Bus
X=0.22 ‘
SR - R (G
11.59 Deg 0.00 Deg
1.095 pu 1.000 pu

In this example X, = (0.22 + 0.3), with the internal voltage

E', = 1.281223.95° giving E',=1.281 and §,= 23.95°
24



Infinite Bus GENCLS Example
T

* The associated differential equations for the bus 1
generator are

do

d—tlea)l,pua)s

dA
O 1 (1_1.2818"151)
dt 2x3 0.52

* The value of P,,, = 1 is determined from the initial
conditions, and would stay constant in this simple
example without a governor

* The value 6,= 23.95°1s readily verified as an

equilibrium point (which is 0.418 radians)
25



Infinite Bus GENCLS Example

HiY

« Assume a solid three phase fault is applied at the
generator terminal, reducing Pg, to zero during the
fault, and then the fault is self-cleared at time Telear
resulting in the post-fault system being identical to the
pre-fault system

— During the fault-on time the equations reduce to

9 _ ro, 0, That is, with a solid fault
dt on the terminal of the
dAw, 1 (1-0) generator, during
dt 2 % 3 the fault PEl =0

26



Euler's Solution

T

 The initial value of x IS
0,(0) 0.418
X(O):Lml,pu(oj{ 0 }

Assuming a time step At = 0.02 seconds, and a Tclear of
0.1 seconds, then using Euler's

Note Euler's

0.418 0 - 0.418 | assumes
x(0.02)= { 0 }0.02 {0.1667} B 0.00333} o stays constant
_ during the first

time step

 Iteration continues until t = Tclear

27



Euler's Solution

Al
« Att=Teclear the fault is self-cleared, with the equations
changing to

do =Aw,, 0,

dt

dA
w,, :1£ - 1.28lsm5j
dt 6 0.52

* The Integration continues using the new equations

28



Euler's Solution Results (At=0.02)

T

« The below table gives the results using At = 0.02 for

the beginning time steps

Gen 1 Rotor Angle, Degrees Gen 1 Speed (Hz)

Time

0
0.02
0.04
0.06
0.08
0.1
0.1
0.12
0.14
0.16
0.18
0.2
0.22
0.24
0.26
0.28

23.9462
23.9462
25.3862
28.2662
32.5862
38.3462
38.3462
45.5462
51.9851
57.3314
61.3226
63.7672
64.5391
63.5686
60.8348
56.3641

60

60.2
60.4
60.6
60.8

61

61
60.8943
60.7425
60.5543
60.3395
60.1072
59.8652
59.6203
SIS
59.1488

This Is saved as
PowerWorld case
B2 CLS_Infinite.
The integration
method Is set to
Euler's on the
Transient Stability,
Options, Power
System Model page

29



Generator 1 Delta: Euler's

* The below graph shows the generator angle for varying
values of At; numerical instability Is clearly seen

700
600 Deltat=0.02
Delta t=0.01
500 —
Delta t=0.05
-~ 400
o
ED Delta t=0.10
= 300
QU
ED 200
<L
L]
E 100 =" T
E _/‘& ‘\\
1]
w 0 T T T I\ T T T T \-I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100 \
-200
-300

Simulation Time (Seconds)
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Second Order Runge-Kutta
T

* Runge-Kutta methods improve on Euler's method by
evaluating f(x) at selected points over the time step

* One approach is a second order method (RK2) in which
1
X(t+At)= X(t)+§( k,+K,) This is also known

where as Heun's method

or as the Improved
k, = Atf(x(t)) Euler's or Modified

k, = At f(x(t)+k,) Euler's Method
* Thatis, k; Is what we get from Euler's; k, improves on
this by reevaluating at the estimated end of the time step
* Error varies with the cubic of the time step

31



Second Order Runge-Kutta (RK2)
T

« Again assuming a time step At = 0.02 seconds, and a
Tclear of 0.1 seconds, then using Heun's approach

0(0) 0.418 |
x(0) = {Aa) (O)} { 0

0.418
=0.02 X(0)+k, =
0.1667 | |0.00333 | 0.00333

1.257 ] [ 0.0251
k, =0.02
{o 1667 } {o 00333}

1 0.431
x(0.020) = =(k, +k,)
+ ~10.00333

32



RK?2 Solution Results (At=0.02)

T

« The below table gives the results using At = 0.02 for

the beginning time steps

Gen 1 Rotor Angle, Degrees Gen 1 Speed (Hz)

Time

0
0.02
0.04
0.06
0.08
0.1
0.1
0.12
0.14
0.16
0.18
0.2
0.22
0.24
0.26
0.28

23.9462
24.6662
26.8262
30.4262
35.4662
41.9462
41.9462
48.6805
54.1807

58.233
60.6974
61.4961

60.605
58.0502
53.9116
48.3318

60

60.2
60.4
60.6
60.8

61

61
60.849
60.6626
60.4517
60.2258
59.9927
59.7598
59.5343
59.3241
59.139

This 1s saved as

PowerWorld case

B2 CLS Infinite.

The integration

method should be
changed to Second
Order Runge-Kutta on
the Transient Stability,
Options, Power System
Model page

33



Generator 1 Delta: RK2
T

* The below graph shows the generator angle for varying |
values of At; much better than Euler's but still the
beginning of numerical instability with larger values of

Al

T=0.02

80 A
——T=0.01 \
/L\ T=0.05 /Q\\
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o
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Adding Network Equations

HiY

* Previous slides with the network equations embedded in
the differential equations were a special case

 In general with the explicit approach we'll be alternating
between solving the differential equations and solving
the algebraic equations

« Voltages and currents in the network reference frame
can be expressed using either polar or rectangular
coordinates

* Inrectangular with the book's notation we have

Vi =V, + jVQi’ =1+ jIQi

35



Adding Network Equations
HiY
* Network equations will be writtenas 'Y V- I(x,V) =0

- Here Y is as from the power flow, except augmented to
Include the impact of the generator's internal impedance

— Constant impedance loads are also embedded in Y; non-
constant impedance loads are included in 1(x,V)

« |If I iIsindependent of V then this can be solved directly:
V =Y I(x)

* In general an iterative solution is required, which we'll
cover shortly, but initially we'll go with just the direct
solution

36



Two Bus Example, Except with No
Infinite Bus

Al
« To introduce the inclusion of the network equations,
the previous example is extended by replacing the

Infinite bus at bus 2 with a classical model with

X 4,'=0.2, H,=6.0
GENCLs Busl GENCLS
. X=0,22 .
) @ -
11.59 Deg 0.00 Deg
1.095 pu 1.000 pu

PowerWorld Case is B2 CLS 2Gen

37



Bus Admittance Matrix

A
The network admittance matrix Is
v _ —j4.545  j4.545

" | j4545 —j4545

This 1s augmented to represent the Norton admittances
assoclated with the generator models (X4,'=0.3,
X42=0.2) 1
j0.3 —j7.879  j4.545
1 { ja.545 - j9.545}
jo2_

Y=Y+
0

In PowerWorld you can see this matrix by selecting Transient
Stability, States/Manual Control, Transient Stability Ybus



Current Vector

Al
* For the classical model the Norton currents are given
by Ti—>

R/ VA N
Rei + Xy, Rei + X4, Tﬂr jzg

« The initial values of the currents come from the power
flow solution

* As the states change (9; for the classical model), the
Norton current injections also change

39



B2 CLS Gen Initial Values
Al

* The internal voltage for generator 1 is as before
| =1-j0.3286 0.4179 radians

E =1.0+(j0.22+ j0.3)T =1.1709+ j0.52 =1.281./23.95°

« We likewise solve for the generator 2 internal voltage
E,=1.0+j0.2)| =0.9343— j0.2=0.9554/-12.08
« The Norton current injections are then 0.2108 radians

T 1.1709 + j0.52 Keep in mind the

~1.733- j3.903

. J0.3 Norton current
. 09343-i02 _ Injections are not
Iy, = n 2] =-1-]4.6714 the current out of the
U generator

40



To check the values, solve for the voltages, with
the values matching the power flow values

V =

B2 CLS Gen Initial Values

—j7.879 j4.545
| j4.545 —j9.545 |
1.072+ j0.22 ]

1.0

-1

[1.733— j3.903"

~1-j4671

T

41



Swing Equations

Al
« With the network constraints modeled, the swing
equations are modified to represent the electrical power
In terms of the generator's state and current values

Pei = Epil i + Egilg Ipi*ilg; is the current
being Injected into
the network by

* Then swing equation is then  ya generator

dt I.pu——s
dAw, ., 1
" - =2H_(PMi_(EDiIDi+EQiIQi)_Di (Aw"p“))

42



Two Bus, Two Generator Differential

Equations
: i
« The differential equations for the two generators are
do, A
dt D1 pu s In this example
Py, =1 and

dAw, 1 ML~

dtl’p = 2H, (PMl _(EDllDl T EQllQl)) Pmz = -1
do,
dt =Aow, ou @y
dAw, 1

- pu_ _ o, (sz _(Eolez + quloz))

43



PowerWorld GENCLS Initial States
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Solution at t=0.02

HiY

« Usually a time step begins by solving the differential
equations. However, In the case of an event, such as
the solid fault at the terminal of bus 1, the network
equations need to be first solved

 Solid faults can be simulated by adding a large shunt at
the fault location
- Amount is somewhat arbitrary, it just needs to be large enough
to drive the faulted bus voltage to zero
« With Euler's the solution after the first time step is
found by first solving the differential equations, then
resolving the network equations

45



USing Yfault = 'leOO, t

V =

Solution at t=0.02

—j1007.879  j4.545 "
4545 —j9.545

"—0.006 — j0.001
0.486 — j0.1053

ne fault-on cono

1.733 - j3.903"
~1- j4.671 |

Solving for the currents into the network

1

2

(1.1702 + j0.52) -V

j0.3

L =1.733-j3.900

_ (0.9343- j0.2)—(0.486 — j0.1053)

j0.2

Iitions become

= —0.473— j2.240

AP
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- 5,(0.02) |
Aw,(0.02)
0,(0.02)

| Aw,(0.02)

Solution at t=0.02

[ 0.418

0.0
—0.211
0

+0.02

0
1
—(1-0
(1-0)
0

110

112

0418

0.00333
—0.211

| —0.00167 |

T

Then the differential equations are evaluated, using the
new voltages and currents
— These impact the calculation of Pg; with P¢,=0, P,=0

If solving with Euler's this is the final state value; using
these state values the network equations are resolved,
with the solution the same here since the &'s didn't vary

47



PowerWorld GENCLS at t=0.02
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Simulation Status |Paused at 0.020000

Run Transient Stability | |Continue Abort Restore Reference | For Contingency: | Find | My Transient Contingency e
Select Step States/Manual Control
- Simulation
- Options Reset to Start Time Transfer Present State to Power Flow Save Case in PWX F
-Result Storage : : = .
Flots Run Until Spedified Time 0.000000 | Run Until Time Restore Reference Power Flow Model
‘Resuilts from RAM Do Specified Mumber of Timestep(s) I:l = Number of Timesteps to Do Save Time Snapshot
- Transient Limit Menitors
W Statesﬂv‘lanual Control All states  State Limit Violations  Generators  Buses  Transient Stability YBus  GIC GMatrix  Two Bus Equivalents  Detailed Performance Results
i All States — OPT. .0 .00 e HI.IHE “u}m SORT :
State Limit Violations m [==z] "i ] ﬂ 44, | Records~ Set~ Columns - ' T H}'I_El' [HE (Vi @ Options =
- Generators Model Class | Model Type | Object Name |  AtLimit | state ignored | State Name Value Derivative | Delta X K1
-Buses 1]Gen Synch. Ma| TXGENCLS 1 (Bus 1) #1 MO Angle 0.4179 1.2566370 00000000
- Transient Stability YBus 2|Gen Synch. Ma TXGEMCLS 1 [Bus 1) #1 MO Speed w 0.0033 0.1666667 0.0033333
- GIC GMatrix 3|Gen Synch, Ma TXGENCLS 2 [Bus 2) #1 NO Angle 0.2109 -0.6283187 0.0000000
i Two Bus Equivalents 4]|Gen Synch, Ma TXGENCLS 2 [Bus 2) #1 MO Speed w -0.0017 -0,0833334 -0.0016667
‘... Detailed Performance Rest
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Solution Values Using Euler's

The below table gives the results using At = 0.02 for

the beginning time steps

Time (Sec) Gen 1 Rotor Angle Gen 1 Speed (Hz) Gen 2 Rotor Angle Gen2 Speed (Hz)

0
0.02
0.04
0.06
0.08

0.1

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24
0.26
0.28

23.9462
23.9462
25.3862
28.2662
32.5862
38.3462
38.3462
45.5462
52.1185
57.8541
62.6325
66.4064
69.1/82
70.9771
71.8392
71.7949

60

60.2
60.4
60.6
60.8

61

61
60.9128
60.7966
60.6637
60.5241
60.385
60.2498
60.1197
59.9938
59.8702

-12.0829
-12.0829
-12.8029
-14.2429
-16.4029
-19.2829
-19.2829
-22.8829

-26.169
-29.0368

-31.426
o002
-34.6988
-35.5982
-36.0292
-36.0071

60

59.9
59.8
59.7
59.6
59.5
993
59.5436
59.6017
59.6682
59.7379
59.8075
59.8751
59.9401
60.0031
60.0649

T
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Solution at t=0.02 with RK2
T

« With RK2 the first part of the time step Is the same as
Euler's, that is solving the network equations with

X(t+ADY =x(t) +k, =x(t) +ATF(x(t))

« Then calculate k2 and get a final value for x(t+At)
k, = At f(x(t)+k, )

X(t+At)= x(t)+%( K, + K, )

* Finally solve the network equations using the final
value for x(t+At)
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Solution at t=0.02 with RK2

Al
* From the first half of the time step
© 0418
«(0.02)" - 0.00333
-0.211
|—0.00167 L 256 _ _
1 0.0251
* Then 5(1=0) |1 000333
k, = At f(x(t)+k, )=0.02 =
—0.628 —0.0126
1 (-1-0) | -0.00167 |
(12

ol



Solution at t=0.02 with RK2
T

 The new values for the Norton currents are

- _1.281/24.69°
N1 j0.3
r_09554/-1243°
N2 j0.2
—j1007.879  j4.545 ][ 1.851— j3.880
| j4.545 49.545} {—1.028— j4.665}
"—0.006 — j0.001
| 0.486 - j0.108 }

~1.851— j3.880

—-1.028 - j4.665

V(0.02) =
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Solution Values Using RK?2

T

« The below table gives the results using At = 0.02 for the

beginning time steps

Time (Sec) Gen 1 Rotor Angle Gen 1 Speed (Hz) Gen 2 Rotor Angle Gen2 Speed (Hz)

0
0.02
0.04
0.06
0.08

0.1

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24
0.26
0.28

23.9462
24.6662
26.8262
30.4262
35.4662
41.9462
41.9462
48.7754

54.697
59.6315

63.558
66.4888
68.4501
69.4669
69.5548
68.7151

60

60.2
60.4
60.6
60.8

61

61
60.8852
60.7538
60.6153
60.4763
60.3399
60.2071
60.077
59.9481
59.8183

-12.0829
-12.4429
=13.5229
-15.3175
-17.8321
-21.0667
-21.0667
-24.4759
-27.4312
-29.8931
-31.8509
sooieliY

-34.286

-34.789
-34.8275
-34.4022

60

59.9
59.8
59.7008
59.6008
59.5008
59.5008
59.5581
59.6239
59.6931
59.7626
59.8308
59.8972
59.9623
60.0267
60.0916
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Angle Reference

HiY

* The initial angles are given by the angles from the
power flow, which are based on the slack bus's angle

« As presented the transient stability angles are with
respect to a synchronous reference frame

— Sometimes this is fine, such as for either shorter studies, or
ones in which there is little speed variation

— Oftentimes this is not best since the when the frequencies are
not nominal, the angles shift from the reference frame
» Other reference frames can be used, such as with
respect to a particular generator's value, which mimics
the power flow approach; the selected reference has no

Impact on the solution y



