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Announcements

• Read Chapter 7

• Exam 1 average was 78

• Homework 5 is assigned today; it will be due on 

Oct 28.

• A classic paper in this area is B. Stott, “Power 

System Dynamic Response Calculations,” Proc. 

IEEE, February 1979, pp. 219-241  
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GGOV1

• GGOV1 is a relatively newer governor model 

introduced in early 2000's by WECC for modeling 

thermal plants

– Existing models greatly under-estimated the frequency drop

– GGOV1 is now the most common WECC governor, used with 

about 40% of the units

• A useful reference is L. Pereira, J. Undrill, D. Kosterev, 

D. Davies, and S. Patterson, "A New Thermal Governor 

Modeling Approach in the WECC," IEEE Transactions 

on Power Systems, May 2003, pp. 819-829
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GGOV1: Selected Figures from 2003 
Paper

Fig. 1. Frequency recordings of the SW 

and NW trips on May 18, 2001. Also 

shown are simulations with existing 

modeling (base case).

Governor model verification—

950-MW Diablo generation trip 

on June 3, 2002.

Diablo Canyon is California’s last nuclear plant, with Unit 1 now scheduled to 

shutdown in 2024 and Unit 2 in 2025 (though there has been recent controversy 

about this) 3



GGOV1 Block Diagram

GGOV1 and 

the related

GGOV3 are

the most 

common 

governors in 

WECC, with 

more than 

40% in 2019 
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Power System Stability Assessment

• As given in [1] the formal definition of power 

system stability is

– “Power system stability is the ability of an electric power 

system, for a given initial operating condition, to regain a 

state of operating equilibrium after being subjected to a 

physical disturbance, with most system variables bounded 

so that practically the entire system remains intact”

• The previously developed models will help in power 

system stability assessment

• Different techniques are used including time-domain 

simulations, eigenvalue analysis and power flow

5
1] IEEE/PES Power System Dynamic Performance Committee,  “Stability definitions and characterization of dynamic behavior in 

systems with high penetration of power electronic interfaced technologies”, PES-TR77, April 2020



Power System Stability Terms

• The below image (from Figure 4 of [1]), and also 

shown lecture 2, helps define the terms

6
1] IEEE/PES Power System Dynamic Performance Committee,  “Stability definitions and characterization of dynamic behavior in 

systems with high penetration of power electronic interfaced technologies”, PES-TR77, April 2020

The two main time scales are the electromagnetic (left two branches) and the 

electromechanical (right three branches). The focus in 667 is mostly on the 

electromechanical time scale with ECEN 616 focusing on the electromagnetic.     



Transient Stability 
Multimachine Simulations

• Next, we'll be putting the models we've covered so far 

together

• Later we'll add in new model types such as stabilizers,  

loads and wind turbines

• By way of history, prior to digital computers, network 

analyzers were used for system stability studies as far 

back as the 1930's (perhaps earlier)

– For example see, J.D. Holm, "Stability Study of A-C Power 

Transmission Systems," AIEE Transactions, vol. 61, 1942, pp. 

893-905

• Digital approaches started appearing in the late 1950's
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A Little History

• A nice early reference is
– Dyrkacz, Young, Maginniss, “A Digital Transient Stability Program 

Including the Effects of Regular, Exciter and Governor Response,” Proc. 

AIEE, Part 3, February 1961, pp. 1245-1254

This 1961 demonstrates results on a 96 bus system, shown below;

note that the simulation is quite short, less than one second
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Power System 
Multimachine Simulations

• The general structure is as a set of differential-

algebraic equations

– Differential equations describe the behavior of the machines 

(and the loads and other dynamic devices)

– Algebraic equations representing the network constraints

In EMTP applications the 

transmission line delays 

decouple the machines; here 

they are assumed to be 

coupled together by the 

algebraic network equations
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General Form

• The general form of the problem is solving

( , , )

( , )

where  is the vector of the state variables (such

as the generator 's),  is the vector of the algebraic

variables (primarily the bus complex voltages), and 

 is the vector of contr



=

=

x f x y u

0 g x y

x

y

u ols (such as the exciter voltage

setpoints)
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Stability Simulations General Solution

• General solution approach is

– Solve power flow to determine initial conditions

– Back solve to get initial states, starting with machine models, 

then exciters, governors, stabilizers, loads, etc

– Set t = tstart, time step = Dt, abort = false

– While (t <= tend) and (not abort) Do Begin

• Apply any contingency event

• Solve differential and algebraic equations

• If desired store time step results and check other conditions (that 

might cause the simulation to abort)

• t = t + Dt

– End while
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Algebraic Constraints

• The g vector of algebraic constraints is similar to the 

power flow equations, but usually rather than 

formulating the problem like in the power flow as real 

and reactive power balance equations, it is formulated 

in the current balance form

( , )     or  ( , )

where  is the n  n bus admittance matrix

 ( ),  is the complex vector of 

the bus voltages, and is the complex

vector of the bus current injections

j

= − =



= +

Ι x V YV YV Ι x V 0

Y

Y G B V

I 

Simplest

cases 

can have

I independent

of x and V,

allowing a

direct solution;

otherwise we

need to iterate 
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Why Not Use the 
Power Flow Equations?

• The power flow equations were ultimately derived 

from

I(𝐱, 𝐕) = Y V

• However, the power form was used in the power flow 

primarily because

– For the generators the real power output is known and either 

the voltage setpoint (i.e., if a PV bus) or the reactive power 

output

– In the quasi-steady state power flow time frame the loads can 

often be well approximated as constant power

– The constant frequency assumption requires a slack bus

• These assumptions do not hold for transient stability
13



Algebraic Equations for 
Classical Model

• To introduce the coupling between the machine models 

and the network constraints, consider a system 

modeled with just classical generators and impedance 

loads

Image Source: Fig 11.15, Glover, Sarma, Overbye, Power System Analysis and Design, 5th Edition, Cengage Learning, 2011 

In this example

because we are

using the classical

model all values

are on the network

reference frame

We'll extend the figure slightly to include stator resistances, Rs,i
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Algebraic Equations for 
Classical Model

• Replace the internal voltages and their impedances by 

their Norton Equivalent

• Current injections at the non-generator buses are zero 

since the constant impedance loads are included in Y

– We'll modify this later when we talk about dynamic loads

• The algebraic constraints are then I – Y V = 0

, , , ,

,i i
i i

s i d i s i d i

E 1
I Y

R jX R jX


= =

 + +

15

Review Norton and 

Thevenin equivalents if 

you are rusty on them



Swing Equation

• The first two differential equations for any 

synchronous machine correspond to the swing equation

( )

, ,with 

i
i s i

i i i i
Mi Ei i i

s s

Ei de i qi qe i di

d

dt

2H d 2H d
T T D

dt dt

T i i


  

 


 

 

= − = D

D
= = − − D

= −
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Swing Equation Speed Effects

• There is often confusion about these equations because 

of whether speed effects are included

– Recognizing that often   s (which is one per unit), some 

stability books have neglected speed effects

• For a rotating machine with a radial torque, 

power = torque times speed

• For a subtransient model

( )

( )( )

( ) ,s d q q d

E d q q

E E d q d q d d q q

E V R jX I E jE j

T I I and

P T E jE I jI E I E I

  

 



     = + + + = − +

 = −

   = = + − = +
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Classical Swing Equation

• Often in an introductory coverage of transient stability 

with the classical model the assumption is   s so 

the swing equation for the classical model is given as

• We'll use this simplification for our initial example 

( )

( )( )with P

i
i s i

i i
Mi Ei i i

s

Ei i i i i i i

d

dt

2H d
P P D

dt

E E V Y


  






 

= − = D

D
= − − D

 =   −

As an example of this initial approach see Anderson and Fouad, Power System Control 

and Stability, 2nd Edition,  Chapter 2 (with a newer version third edition of this book now available

adding Vijay Vittal and Jim McCalley as authors).  18



Numerical Solution

• There are two main approaches for solving

– Partitioned-explicit: Solve the differential and algebraic 

equations separately (alternating between the two) using an 

explicit integration approach 

– Simultaneous-implicit: Solve the differential and algebraic 

equations together using an implicit integration approach

( , , )

( , )  

=

=

x f x y u

0 g x y
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Outline of the Solution Process

• The next group of slides will provide basic coverage of 

the solution process, partitioned explicit, then the 

simultaneous-implicit approach

• We'll start out with a classical model supplying an 

infinite bus, which can be solved by embedded the 

algebraic constraint into the differential equations

We'll start out just solving ( )

and then will extend to solving the full problem of 

( , , )

( , )

=

=

=

x f x

x f x y u

0 g x y
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Classical Swing Equation with 
Embedded Power Balance

• With a classical generator at bus i supplying an infinite 

bus with voltage magnitude Vinf,  we can write the 

problem without algebraic constraints as

( )

.

, inf
,

inf

sin

with P sin

i
i s i i pu s

i pu i
Mi i i i pu

i th

i
Ei i

th

d

dt

d E V1
P D

dt 2H X

E V

X


    


 



= − = D = D

D  
= − − D 

 


= Note we are using 

the per unit speed

approach
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Explicit Integration Methods

• As covered on the first day of class, there are a wide 

variety of explicit integration methods

– We considered Forward Euler, Runge-Kutta, Adams-

Bashforth

• Here we will just consider Euler's, which is easy to 

explain but not too useful, and a second order Runge-

Kutta, which is commonly used

22



Forward Euler

• Recall the Forward Euler approach is approximate

• Error with Euler's varies with the square of the time 

step

d
( ( ))  as 

dt t

Then

( ) ( ) ( ( ))

t

t t t t t

D
= =

D

+ D  + D

x x
x f x

x x f x
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Infinite Bus GENCLS Example using 
the Forward Euler's Method

• Use the four bus system from before, except now gen 4 

is modeled with a classical model with Xd'=0.3, H=3 

and D=0; also we'll reduce to two buses with 

equivalent

line reactance, moving the gen from bus 4 to 1

Infinite Bus

slack

GENCLS

X=0.22

Bus 1

Bus 2

  0.00 Deg 11.59 Deg

 1.000 pu 1.095 pu

In this example Xth = (0.22 + 0.3), with the internal voltage
ത𝐸′1 = 1.281∠23.95° giving E'1=1.281 and 1= 23.95°
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Infinite Bus GENCLS Example

• The associated differential equations for the bus 1 

generator are

• The value of PM1 = 1 is determined from the initial 

conditions, and would stay constant in this simple 

example without a governor

• The value 1= 23.95° is readily verified as an 

equilibrium point (which is 0.418 radians) 

,

, .
sin

.

1
1 pu s

1 pu

1

d

dt

d 1 1 281
1

dt 2 3 0 52


 




= D

D  
= − 
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Infinite Bus GENCLS Example

• Assume a solid three phase fault is applied at the 

generator terminal, reducing PE1 to zero during the 

fault, and then the fault is self-cleared at time Tclear
, 

resulting in the post-fault system being identical to the 

pre-fault system 

– During the fault-on time the equations reduce to 

( )

,

,

1
1 pu s

1 pu

d

dt

d 1
1 0

dt 2 3


 



= D

D
= −



That is, with a solid fault 

on the terminal of the 

generator, during

the fault PE1 = 0
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Euler's Solution

• The initial value of x is

• Assuming a time step Dt = 0.02 seconds, and a Tclear of 

0.1 seconds, then using Euler's

• Iteration continues until t = Tclear

,

( ) .
( )

( )

1

1 pu

0 0 418
0

0 0





   
= =   D   

x

. .
( . ) .

. .

0 418 0 0 418
0 02 0 02

0 0 1667 0 00333

     
= + =     
     

x

Note Euler's 

assumes

 stays constant 

during the first

time step
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Euler's Solution

• At t = Tclear the fault is self-cleared, with the equations 

changing to 

• The integration continues using the new equations

.
sin

.

pu s

pu

d

dt

d 1 1 281
1

dt 6 0 52


 




= D

D  
= − 
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Euler's Solution Results (Dt=0.02)

• The below table gives the results using Dt = 0.02 for 

the beginning time steps
Time Gen 1  Rotor Angle, Degrees Gen 1 Speed (Hz)

0 23.9462 60

0.02 23.9462 60.2

0.04 25.3862 60.4

0.06 28.2662 60.6

0.08 32.5862 60.8

0.1 38.3462 61

0.1 38.3462 61

0.12 45.5462 60.8943

0.14 51.9851 60.7425

0.16 57.3314 60.5543

0.18 61.3226 60.3395

0.2 63.7672 60.1072

0.22 64.5391 59.8652

0.24 63.5686 59.6203

0.26 60.8348 59.3791

0.28 56.3641 59.1488

This is saved as

PowerWorld case 

B2_CLS_Infinite.

The integration

method is set to 

Euler's on the 

Transient Stability,

Options, Power 

System Model page
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Generator 1 Delta: Euler's

• The below graph shows the generator angle for varying 

values of Dt; numerical instability is clearly seen
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Second Order Runge-Kutta

• Runge-Kutta methods improve on Euler's method by 

evaluating f(x) at selected points over the time step

• One approach is a second order method (RK2) in which

• That is, k1 is what we get from Euler's; k2 improves on 

this by reevaluating at the estimated end of the time step

• Error varies with the cubic of the time step

( ) ( ) ( )

( )( )
( )( )

1 2

1

2 1

1
                

2

where   

    

       

t t t

t t

t t +

+ D = + +

= D

= D

x x k k

k f x

k f x k

This is also known 

as Heun's method 

or as the Improved

Euler's or Modified

Euler's Method 
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Second Order Runge-Kutta (RK2)

• Again assuming a time step Dt = 0.02 seconds, and a 

Tclear of 0.1 seconds, then using Heun's approach

( )

( ) .
( )

( )

.
. , ( )

. . .

. .
.

. .

. .
( . )

.

pu

1 1

2

1 2

0 0 418
0

0 0

0 0 0 418
0 02 0

0 1667 0 00333 0 00333

1 257 0 0251
0 02

0 1667 0 00333

0 418 0 4311
0 020

0 0 003332





   
= =   D   

     
= = + =     

     

   
= =   

   

   
= + + =   
   

x

k x k

k

x k k
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RK2 Solution Results (Dt=0.02)

• The below table gives the results using Dt = 0.02 for 

the beginning time steps
Time Gen 1  Rotor Angle, Degrees Gen 1 Speed (Hz)

0 23.9462 60

0.02 24.6662 60.2

0.04 26.8262 60.4

0.06 30.4262 60.6

0.08 35.4662 60.8

0.1 41.9462 61

0.1 41.9462 61

0.12 48.6805 60.849

0.14 54.1807 60.6626

0.16 58.233 60.4517

0.18 60.6974 60.2258

0.2 61.4961 59.9927

0.22 60.605 59.7598

0.24 58.0502 59.5343

0.26 53.9116 59.3241

0.28 48.3318 59.139

This is saved as

PowerWorld case 

B2_CLS_Infinite.

The integration

method should be

changed to Second

Order Runge-Kutta on 

the Transient Stability, 

Options, Power System 

Model page
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Generator 1 Delta: RK2

• The below graph shows the generator angle for varying 

values of Dt; much better than Euler's but still the 

beginning of numerical instability with larger values of 

Dt
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Adding Network Equations

• Previous slides with the network equations embedded in 

the differential equations were a special case

• In general with the explicit approach we'll be alternating 

between solving the differential equations and solving 

the algebraic equations

• Voltages and currents in the network reference frame 

can be expressed using either polar or rectangular 

coordinates

• In rectangular with the book's notation we have

,i Di Qi i Di QiV V jV I I jI= + = +
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Adding Network Equations

• Network equations will be written as Y V- I(x,V) = 0

– Here Y is as from the power flow, except augmented to 

include the impact of the generator's internal impedance

– Constant impedance loads are also embedded in Y; non-

constant impedance loads are included in I(x,V)

• If I is independent of V then this can be solved directly: 

V = Y
-1

I(x)

• In general an iterative solution is required, which we'll 

cover shortly, but initially we'll go with just the direct 

solution
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Two Bus Example, Except with No 
Infinite Bus

• To introduce the inclusion of the network equations, 

the previous example is extended by replacing the 

infinite bus at bus 2 with a classical model with 

Xd2'=0.2, H2=6.0 

GENCLS

slack

GENCLS

X=0.22

Bus 1

Bus 2

  0.00 Deg 11.59 Deg

 1.000 pu 1.095 pu

PowerWorld Case is B2_CLS_2Gen 
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Bus Admittance Matrix

• The network admittance matrix is

• This is augmented to represent the Norton admittances 

associated with the generator models (Xd1'=0.3, 

Xd2'=0.2)

. .

. .
N

j4 545 j4 545

j4 545 j4 545

− 
=  

− 
Y

. ..

. .

.

N

1
0

j7 879 j4 545j0 3

1 j4 545 j9 545
0

j0 2

 
  − 
 = + =  

−   
 
 

Y Y

In PowerWorld you can see this matrix by selecting Transient 

Stability, States/Manual Control, Transient Stability Ybus
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Current Vector

• For the classical model the Norton currents are given 

by

• The initial values of the currents come from the power 

flow solution

• As the states change (i for the classical model), the 

Norton current injections also change

, , , ,

,i i
Ni i

s i d i s i d i

E 1
I Y

R jX R jX


= =

 + +
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B2_CLS_Gen Initial Values

• The internal voltage for generator 1 is as before

• We likewise solve for the generator 2 internal voltage

• The Norton current injections are then

1

1 0.3286

1.0 ( 0.22 0.3) 1.1709 0.52 1.281 23.95

I j

E j j I j

= −

= + + = + =  

2 1.0 ( 0.2) 0.9343 0.2 0.9554 12.08E j I j= − = − = −

. .
. .

.

. .
.

.

N 1

N 2

1 1709 j0 52
I 1 733 j3 903

j0 3

0 9343 j0 2
I 1 j4 6714

j0 2

+
= = −

−
= = − −

Keep in mind the

Norton current

injections are not

the current out of the 

generator

0.4179 radians

0.2108 radians

40



B2_CLS_Gen Initial Values

• To check the values, solve for the voltages, with 

the values matching the power flow values 

. . . .

. . .

. .

.

1
j7 879 j4 545 1 733 j3 903

j4 545 j9 545 1 j4 671

1 072 j0 22

1 0

−
− −   

=    
− − −   

+ 
=  
 

V
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Swing Equations

• With the network constraints modeled, the swing 

equations are modified to represent the electrical power 

in terms of the generator's state and current values

• Then swing equation is then

PEi Di Di Qi QiE I E I= +

( ) ( )( )

.

,

,

i
i pu s

i pu

Mi Di Di Qi Qi i i pu

i

d

dt

d 1
P E I E I D

dt 2H


 




= D

D
= − + − D

IDi+jlQi is the current

being injected into

the network by 

the generator 
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Two Bus, Two Generator Differential 
Equations

• The differential equations for the two generators are

( )( )

( )( )

.

,

.

,

1
1 pu s

1 pu

M 1 D1 D1 Q1 Q1

1

2
2 pu s

2 pu

M 2 D2 D2 Q2 Q2

2

d

dt

d 1
P E I E I

dt 2H

d

dt

d 1
P E I E I

dt 2H


 




 



= D

D
= − +

= D

D
= − +

In this example

PM1 = 1 and

PM2 = -1
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PowerWorld GENCLS Initial States
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Solution at t=0.02

• Usually a time step begins by solving the differential 

equations.  However, in the case of an event, such as 

the solid fault at the terminal of bus 1, the network 

equations need to be first solved

• Solid faults can be simulated by adding a large shunt at 

the fault location

– Amount is somewhat arbitrary, it just needs to be large enough 

to drive the faulted bus voltage to zero

• With Euler's the solution after the first time step is 

found by first solving the differential equations, then 

resolving the network equations
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Solution at t=0.02

• Using Yfault = -j1000, the fault-on conditions become

( )

( )

. . . .

. . .

. .

. .

Solving for the currents into the network

. .
. .

.

. . . .

1

1

1

2

j1007 879 j4 545 1 733 j3 903

j4 545 j9 545 1 j4 671

0 006 j0 001

0 486 j0 1053

1 1702 j0 52 V
I 1 733 j3 900

j0 3

0 9343 j0 2 0 486 j0 1
I

−
− −   

=    
− − −   

− − 
=  

− 

+ −
= = −

− − −
=

V

( )
. .

.

053
0 473 j2 240

j0 2
= − −
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Solution at t=0.02

• Then the differential equations are evaluated, using the 

new voltages and currents

– These impact the calculation of PEi with PE1=0, PE2=0

• If solving with Euler's this is the final state value; using 

these state values the network equations are resolved, 

with the solution the same here since the 's didn't vary

( )

( )

1

1

2

1

0

(0.02) 0.418 0.4181
1 0

(0.02) 0.0 0.003336
0.02

(0.02) 0.211 0.2110

(0.02) 0 0.001671
1 0

12









 
      
 −     

D       = + =
      − −
      

D −      − −
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PowerWorld GENCLS at t=0.02
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Solution Values Using Euler's

• The below table gives the results using Dt = 0.02 for 

the beginning time steps
Time (Sec) Gen 1 Rotor Angle Gen 1 Speed (Hz)Gen 2 Rotor Angle Gen2 Speed (Hz)

0 23.9462 60 -12.0829 60

0.02 23.9462 60.2 -12.0829 59.9

0.04 25.3862 60.4 -12.8029 59.8

0.06 28.2662 60.6 -14.2429 59.7

0.08 32.5862 60.8 -16.4029 59.6

0.1 38.3462 61 -19.2829 59.5

0.1 38.3462 61 -19.2829 59.5

0.12 45.5462 60.9128 -22.8829 59.5436

0.14 52.1185 60.7966 -26.169 59.6017

0.16 57.8541 60.6637 -29.0368 59.6682

0.18 62.6325 60.5241 -31.426 59.7379

0.2 66.4064 60.385 -33.3129 59.8075

0.22 69.1782 60.2498 -34.6988 59.8751

0.24 70.9771 60.1197 -35.5982 59.9401

0.26 71.8392 59.9938 -36.0292 60.0031

0.28 71.7949 59.8702 -36.0071 60.0649
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Solution at t=0.02 with RK2

• With RK2 the first part of the time step is the same as 

Euler's, that is solving the network equations with

• Then calculate k2 and get a final value for x(t+Dt)

• Finally solve the network equations using the final 

value for x(t+Dt)

( ) ( ) ( ) ( )1

1(t t) t  t  T ( t )+D = + = +Dx x k x f x

( )( )

( ) ( ) ( )

2 1

1 2

     

1
              

2

t t

t t t

= D

+ D + +

+

=

k f x k

x x k k
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Solution at t=0.02 with RK2

• From the first half of the time step

• Then

( )
(1)

0.418

0.00333
0.02

0.211

0.00167

x

 
 
 =
 −
 
− 

( )( )
( )

( )

2 1

1.256

0.02511
1 0

0.003336
0.02

0.01260
     

.628

0.001671
1 0

12

t t

 
   
 −  
   + = =
   −−
   

−   − −


=



D



k f x k
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Solution at t=0.02 with RK2

• The new values for the Norton currents are

. .
. .

.

. .
. .

.

N 1

N 2

1 281 24 69
I 1 851 j3 880

j0 3

0 9554 12 43
I 1 028 j4 665

j0 2

 
= = −

− 
= = − −

. . . .
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0 02
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−
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− − 
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− 
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Solution Values Using RK2

• The below table gives the results using Dt = 0.02 for the 

beginning time steps
Time (Sec) Gen 1 Rotor Angle Gen 1 Speed (Hz)Gen 2 Rotor Angle Gen2 Speed (Hz)

0 23.9462 60 -12.0829 60

0.02 24.6662 60.2 -12.4429 59.9

0.04 26.8262 60.4 -13.5229 59.8

0.06 30.4262 60.6 -15.3175 59.7008

0.08 35.4662 60.8 -17.8321 59.6008

0.1 41.9462 61 -21.0667 59.5008

0.1 41.9462 61 -21.0667 59.5008

0.12 48.7754 60.8852 -24.4759 59.5581

0.14 54.697 60.7538 -27.4312 59.6239

0.16 59.6315 60.6153 -29.8931 59.6931

0.18 63.558 60.4763 -31.8509 59.7626

0.2 66.4888 60.3399 -33.3109 59.8308

0.22 68.4501 60.2071 -34.286 59.8972

0.24 69.4669 60.077 -34.789 59.9623

0.26 69.5548 59.9481 -34.8275 60.0267

0.28 68.7151 59.8183 -34.4022 60.0916
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Angle Reference

• The initial angles are given by the angles from the 

power flow, which are based on the slack bus's angle

• As presented the transient stability angles are with 

respect to a synchronous reference frame

– Sometimes this is fine, such as for either shorter studies, or 

ones in which there is little speed variation

– Oftentimes this is not best since the when the frequencies are 

not nominal, the angles shift from the reference frame

• Other reference frames can be used, such as with 

respect to a particular generator's value, which mimics 

the power flow approach; the selected reference has no 

impact on the solution
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