ECEN 667 Power System Stability

Lecture 19: Oscillations, Modal Analysis

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University

overbye@tamu.edu

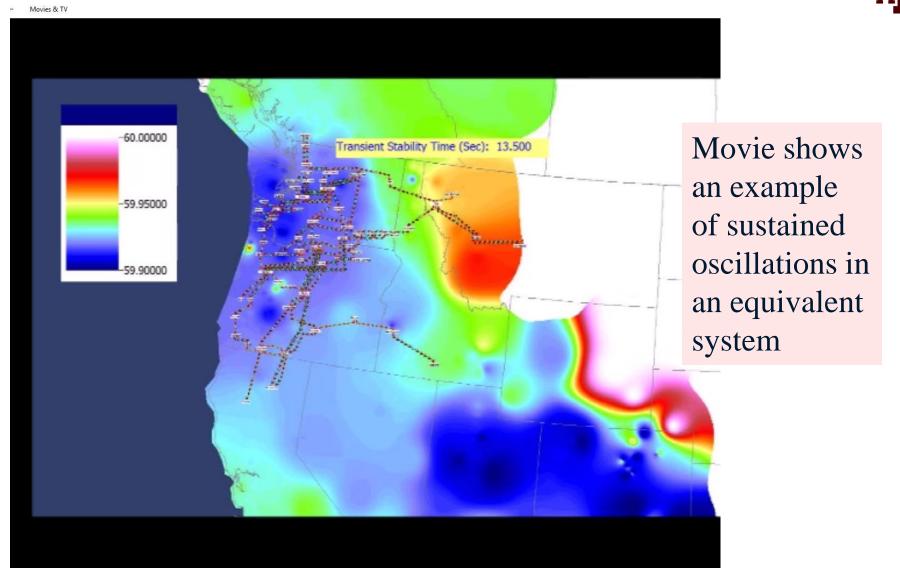
Announcements

- Read Chapter 8
- Homework 6 is due on November 11
- With respect to the 1996 WECC blackout, more information is available at
 - www.nerc.com/pa/rrm/ea/System%20Disturbance%20Report s%20DL/1996SystemDisturbance.pdf
 - The July 2, 1996 event was caused by a tree contact
- There is a 2019 NERC document on oscillations at www.nerc.com/comm/PC/SMSResourcesDocuments/I nterconnection_Oscillation_Analysis.pdf

Modes

- A mode is a concept from linear system analysis
 - Electric grids certainly are not linear, but usually their response to small disturbances is approximated as linear
- A mode corresponds to one of the eigenvalues of the response or, for oscillations, a complex pair of eigenvalues
- A mode has a frequency and damping; all parts of the system oscillate with this pattern
- The mode shape tells how parts of the system participate in the mode
- There can be multiple modes in a system; power systems can have many modes

Fictitious System Oscillation



Causes of Power System Oscillations

- The response of a simple system can be divided into its natural response versus its forced response
 - The natural response tells how the system will response to an initial disturbance without any additional (external) influences; this response shows the system's modes
 - A forced response is associated with an external disturbance; if the external disturbance is periodic then the system will oscillate at least partially at this frequency
 - Often forced oscillations are due to control failures
- Resonance occurs when a forced response is at a similar frequency to one of the system's modes
- An power system can experience both types of oscillations

Forced Oscillations in WECC (from [1])

- Summer 2013 24 hour data: 0.37 Hz oscillations observed for several hours. Confirmed to be forced oscillations at a hydro plant from vortex effect.
- 2014 data: Another 0.5 Hz oscillation also observed. Source points to hydro unit as well. And 0.7 Hz. And 1.12 Hz. And 2 Hz.
- Resonance possible when system modes are poorly damped and close to the forcing function. Resonance can be observed in model simulations.

Observing Modes and Damping

- With the advent of wide-scale PMU deployments, the modes and damping can be observed two ways
 - Event (ringdown) analysis this requires an event
 - Ambient noise analysis always available, but not as distinct

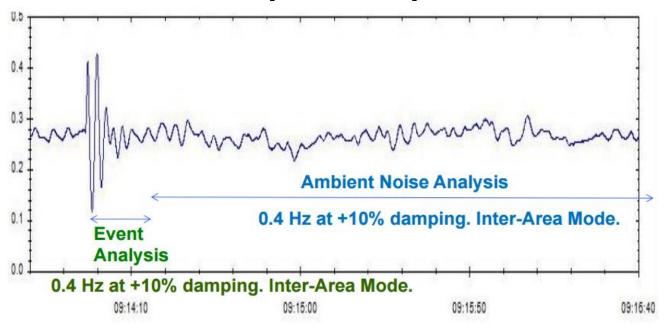
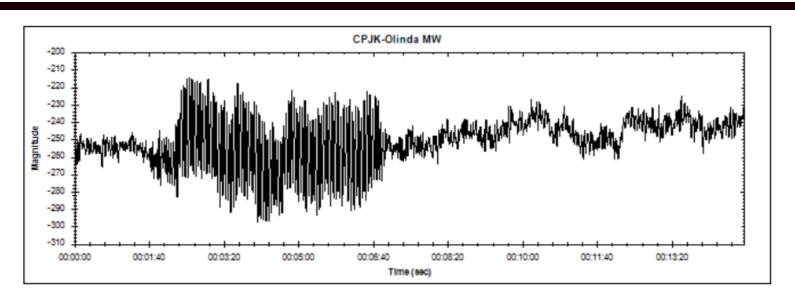


Image Source: M. Venkatasubramanian, "Oscillation Monitoring System", June 2015 http://www.energy.gov/sites/prod/files/2015/07/f24/3.%20Mani%20Oscillation%20Monitoring.pdf

Resonance with Interarea Mode [1]

- Resonance effect high when:
 - Forced oscillation frequency near system mode frequency
 - System mode poorly damped
 - Forced oscillation location near the two distant ends of mode
- Resonance effect medium when
 - Some conditions hold
- Resonance effect small when
 - None of the conditions holds

Medium Resonance on 11/29/2005



- 20 MW 0.26 Hz Forced Oscillation in Alberta Canada
- 200 MW Oscillations on California-Oregon Inter-tie
- System mode 0.27 Hz at 8% damping
- Two out of the three conditions were true.

An On-line Oscillation Detection Tool

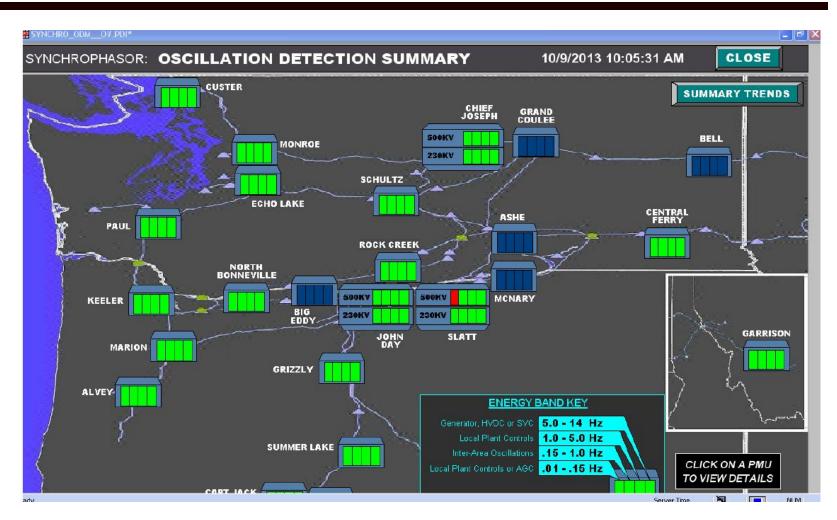


Image source: WECC Joint Synchronized Information Subcommittee Report, October 2013

Small Signal Stability Analysis

- Small signal stability is the ability of the power system to maintain synchronism following a small disturbance
 - System is continually subject to small disturbances, such as changes in the load
- The operating equilibrium point (EP) obviously must be stable
- Small system stability analysis (SSA) is studied to get a feel for how close the system is to losing stability and to get additional insight into the system response
 - There must be positive damping

Model Based SSA

 Assume the power system is modeled in our standard form as

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{y})$$
$$\mathbf{0} = \mathbf{g}(\mathbf{x}, \mathbf{y})$$

The system can be linearized about an equilibrium

point

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{B} \Delta \mathbf{y}$$
$$\mathbf{0} = \mathbf{C} \Delta \mathbf{x} + \mathbf{D} \Delta \mathbf{y}$$

If there are just classical generator models then **D** is the power flow Jacobian; otherwise it also includes the stator algebraic equations

• Eliminating Δy gives

$$\Delta \dot{\mathbf{x}} = \left(\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C}\right) \Delta \mathbf{x} = \mathbf{A}_{\text{sys}} \Delta \mathbf{x}$$

Model Based SSA

- The matrix $\mathbf{A}_{\rm sys}$ can be calculated doing a partial factorization, just like what is done with Kron reduction in creating power system equivalents
- SSA is done by looking at the eigenvalues (and other properties) of \mathbf{A}_{sys}

Modal Analysis - Comments

- Modal analysis (analysis of small signal stability through eigenvalue analysis) is at the core of SSA software
- In Modal Analysis one looks at:
 - Eigenvalues
 - Eigenvectors (left or right)
 - Participation factors
 - Mode shape

Goal is to determine how the various parameters affect the response of the system

 Power System Stabilizer (PSS) design in a multimachine context can be done using modal analysis method.

Eigenvalues, Right Eigenvectors

• For an n by n matrix **A** the eigenvalues of **A** are the roots of the characteristic equation:

$$\det[\mathbf{A} - \lambda \mathbf{I}] = |\mathbf{A} - \lambda \mathbf{I}| = 0$$

- Assume $\lambda_1 ... \lambda_n$ as distinct (no repeated eigenvalues).
- For each eigenvalue λ_i there exists an eigenvector such that:

$$\mathbf{A}\mathbf{v}_{i}=\lambda_{i}\mathbf{v}_{i}$$

- \mathbf{v}_{i} is called a right eigenvector
- If λ_i is complex, then \mathbf{v}_i has complex entries

Left Eigenvectors

• For each eigenvalue λ_i there exists a left eigenvector \mathbf{w}_i such that:

$$\mathbf{w}_{i}^{t}\mathbf{A}=\mathbf{w}_{i}^{t}\lambda_{i}$$

• Equivalently, the left eigenvector is the right eigenvector of \mathbf{A}^{T} ; that is,

$$\mathbf{A}^t \mathbf{w}_i = \lambda_i \mathbf{w}_i$$

Eigenvector Properties

• The right and left eigenvectors are orthogonal i.e.

$$\mathbf{w}_{i}^{t}\mathbf{v}_{i}\neq0$$
, $\mathbf{w}_{i}^{t}\mathbf{v}_{j}=0$ $(i\neq j)$

• We can normalize the eigenvectors so that:

$$\mathbf{w}_{i}^{t}\mathbf{v}_{i}=1,\ \mathbf{w}_{i}^{t}\mathbf{v}_{j}=0 \quad (i\neq j)$$

Eigenvector Example

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}, \ |\mathbf{A} - \lambda \mathbf{I}| = 0 \implies \begin{vmatrix} 1 - \lambda & 4 \\ 3 & 2 - \lambda \end{vmatrix} = 0$$
$$\lambda^2 - 3\lambda - 10 = 0 \implies \lambda_{1,2} = \frac{3 \pm \sqrt{(3)^2 + 4(10)}}{2} = \frac{3 \pm \sqrt{49}}{2} = 5, -2$$

Right Eigenvectors $\lambda_1 = 5$

$$\mathbf{A}\mathbf{v}_{1} = 5\mathbf{v}_{1} \Rightarrow \mathbf{v}_{1} = \begin{bmatrix} v_{11} \\ v_{21} \end{bmatrix} \Rightarrow \begin{aligned} v_{11} + 4v_{21} &= 5v_{11} \\ 3v_{11} + 2v_{21} &= 5v_{21} \end{aligned} \quad choose \ \mathbf{v}_{21} = 1 \Rightarrow \mathbf{v}_{11} = 1$$

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\lambda_2 = -2 \implies \mathbf{v}_2 = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$$

Eigenvector Example

Left eigenvectors

$$\lambda_{1} = 5 \quad \mathbf{w}_{1}^{t} \mathbf{A} = \mathbf{w}_{1}^{t} 5 \Rightarrow \begin{bmatrix} w_{11} & w_{21} \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} = 5 \begin{bmatrix} w_{11} & w_{21} \end{bmatrix}$$

$$w_{11} + 3w_{21} = 5w_{11}$$

$$4w_{11} + 2w_{21} = 5w_{21} \Rightarrow Let \quad w_{21} = 4, then \quad w_{11} = 3$$

$$\mathbf{w}_{1} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad \lambda_{2} = -2 \Rightarrow \mathbf{w}_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \mathbf{v}_{2} = \begin{bmatrix} 4 \\ -3 \end{bmatrix} \quad \mathbf{w}_{1} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \quad \mathbf{w}_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Verify $\mathbf{w}_1^t \mathbf{v}_1 = 7$, $\mathbf{w}_2^t \mathbf{v}_2 = 7$, $\mathbf{w}_2^t \mathbf{v}_1 = 0$, $\mathbf{w}_1^t \mathbf{v}_2 = 0$ We would like to make $w_i^t v_i = 1$.

This can be done in many ways.

Eigenvector Example

Let
$$\mathbf{W} = \frac{1}{7} \begin{bmatrix} 3 & 1 \\ 4 & -1 \end{bmatrix}$$

Then
$$\mathbf{W}^T\mathbf{V} = \mathbf{I}$$

Verify
$$\frac{1}{7} \begin{bmatrix} 3 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- It can be verified that $W^T=V^{-1}$
- The left and right eigenvectors are used in computing the participation factor matrix.

Modal Matrices

• The deviation away from an equilibrium point can be defined as

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x}$$

- From this equation it is difficult to determine how parameters in **A** affect a particular **x** because of the variable coupling
- To decouple the problem first define the matrices of the right and left eigenvectors (the modal matrices)

$$\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n] \& \mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$$

$$\mathbf{AV} = \mathbf{V}\boldsymbol{\Lambda}$$
 when $\boldsymbol{\Lambda} = Diag(\lambda_i)$

V is for the right eigenvectors

Modal Matrices

It follows that

$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \mathbf{\Lambda}$$

• To decouple the variables define **z** so

$$\Delta \mathbf{x} = \mathbf{V}\mathbf{z} \rightarrow \Delta \dot{\mathbf{x}} = \mathbf{V}\dot{\mathbf{z}} = \mathbf{A}\Delta \mathbf{x} = \mathbf{A}\mathbf{V}\mathbf{z}$$

• Then

$$\dot{\mathbf{z}} = \mathbf{V}^{-1} \mathbf{A} \mathbf{V} \mathbf{z} = \mathbf{W} \mathbf{A} \mathbf{V} \mathbf{z} = \mathbf{\Lambda} \mathbf{z}$$

• Since Λ is diagonal, the equations are now uncoupled with $\dot{z}_i = \lambda_i z_i$

• So
$$\Delta \mathbf{x}(t) = \mathbf{V}\mathbf{z}(t)$$

Example

Assume the previous system with

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} 1 & 4 \\ 1 & -3 \end{bmatrix}$$

$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix}$$

Modal Matrices

• Thus the response can be written in terms of the individual eigenvalues and right eigenvectors as

$$\Delta \mathbf{x}(t) = \sum_{i=1}^{n} \mathbf{v}_{i} z_{i}(0) e^{\lambda_{i} t}$$

Furthermore with

$$\Delta \mathbf{x} = \mathbf{V} \mathbf{Z} \implies \mathbf{z} = \mathbf{V}^{-1} \mathbf{x} = \mathbf{W}^{T} \mathbf{x}$$

Note, we are requiring that the eigenvalues be distinct!

So z(t) can be written as using the left eigenvectors as

$$\mathbf{z}(t) = \mathbf{W}^{t} \mathbf{x}(t) = [\mathbf{w}_{1} \ \mathbf{w}_{2}....\mathbf{w}_{n}]^{t} \begin{bmatrix} x_{1}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix}$$

Modal Matrices

 We can then write the response x(t) in terms of the modes of the system

$$z_{i}(t) = w_{i}^{t} x(t)$$

$$z_{i}(0) = w_{i}^{t} x(0) \underline{\underline{\triangle}} c_{i}$$
so $\mathbf{x}(t) = \sum_{i=1}^{n} \mathbf{v}_{i} c_{i} e^{\lambda_{i} t}$
Expanding $\Delta x_{i}(t) = v_{i1} c_{1} e^{\lambda_{I} t} + v_{i2} c_{2} e^{\lambda_{2} t} + ... v_{in} c_{n} e^{\lambda_{n} t}$

• So c_i is a scalar that represents the magnitude of excitation of the ith mode from the initial conditions

Numerical example

$$\begin{bmatrix} \Delta \dot{x}_1 \\ \Delta \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 8 & -2 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix}, \ \Delta \mathbf{x}(0) = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$$

Eigenvalues are $\lambda_1 = -4$, $\lambda_2 = 2$

Eigenvectors are
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Modal matrix
$$\mathbf{V} = \begin{bmatrix} 1 & 1 \\ -4 & 2 \end{bmatrix}$$

Normalize so
$$\mathbf{V} = \begin{bmatrix} 0.2425 & 0.4472 \\ -0.9701 & 0.8944 \end{bmatrix}$$

Numerical example (contd)

Left eigenvector matrix is:

$$\mathbf{W}^{\mathbf{T}} = \mathbf{V}^{-1} = \begin{bmatrix} 1.3745 & -0.6872 \\ 1.4908 & 0.3727 \end{bmatrix}$$

$$\dot{\mathbf{z}} = \mathbf{W}^{\mathrm{T}} \mathbf{A} \mathbf{V} \mathbf{z}$$

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} -4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

Numerical example (contd)

$$\dot{z}_I = -4z_I \quad , \quad \mathbf{z}(0) = V^{-1}\mathbf{x}(0)$$

$$\dot{z}_2 = 2z_2 , \begin{bmatrix} z_1(0) \\ z_2(0) \end{bmatrix} = \begin{bmatrix} 4.123 \\ 0 \end{bmatrix}$$

$$z_1(t) = z_1(0)e^{-4t}$$
; $z_2(t) = z_2(0)e^{2t}$, $\mathbf{C} = \mathbf{W}^T \mathbf{x}(0) = \begin{bmatrix} 4.123 \\ 0 \end{bmatrix}$

$$x = Vz$$

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix}$$

Because of the initial condition, the 2nd mode does not get excited

$$= c_1 \begin{bmatrix} 0.2425 \\ -0.9701 \end{bmatrix} z_1(t) + c_2 \begin{bmatrix} 0.4472 \\ 0.8944 \end{bmatrix} z_2(t) = \sum_{i=1}^{2} c_i \mathbf{v}_i z_i(0) e^{\lambda_i t}$$

27

Mode Shape, Sensitivity and Participation Factors

So we have

$$\mathbf{x}(t) = \mathbf{V}\mathbf{z}(t), \quad \mathbf{z}(t) = \mathbf{W}^t\mathbf{x}(t)$$

- **x**(t) are the original state variables, **z**(t) are the transformed variables so that each variable is associated with only <u>one</u> mode.
- From the first equation the right eigenvector gives the "mode shape" i.e. relative activity of state variables when a particular mode is excited.
- For example the degree of activity of state variable x_k in \mathbf{v}_i mode is given by the element V_{ki} of the right eigenvector matrix \mathbf{V}

Mode Shape, Sensitivity and Participation Factors

- The magnitude of elements of \mathbf{v}_i give the extent of activities of n state variables in the ith mode and angles of elements (if complex) give phase displacements of the state variables with regard to the mode.
- The left eigenvector \mathbf{w}_i identifies which combination of original state variables display only the i^{th} mode.

Eigenvalue Parameter Sensitivity

• To derive the sensitivity of the eigenvalues to the parameters recall $\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$; take the partial derivative with respect to A_{ki} by using the chain rule

$$\frac{\partial \mathbf{A}}{\partial \mathbf{A}_{kj}} \mathbf{v}_i + \mathbf{A} \frac{\partial \mathbf{v}_i}{\partial A_{kj}} = \frac{\partial \lambda_i}{\partial A_{kj}} \mathbf{v}_i + \lambda_i \frac{\partial \mathbf{v}_i}{\partial A_{kj}}$$

Multiply by \mathbf{w}_{i}^{t}

$$\mathbf{w}_{i}^{t} \frac{\partial \mathbf{A}}{\partial \mathbf{A}_{kj}} \mathbf{v}_{i} + \mathbf{w}_{i}^{t} \mathbf{A} \frac{\partial \mathbf{v}_{i}}{\partial A_{kj}} = \mathbf{w}_{i}^{t} \frac{\partial \lambda_{i}}{\partial A_{kj}} \mathbf{v}_{i} + \mathbf{w}_{i}^{t} \lambda_{i} \frac{\partial \mathbf{v}_{i}}{\partial A_{kj}}$$

$$\mathbf{w}_{i}^{t} \frac{\partial \mathbf{A}}{\partial A_{kj}} \mathbf{v}_{i} + \mathbf{w}_{i}^{t} [\mathbf{A} - \lambda_{i} \mathbf{I}] \frac{\partial \mathbf{v}_{i}}{\partial A_{kj}} = \mathbf{w}_{i}^{t} \frac{\partial \lambda_{i}}{\partial A_{kj}} \mathbf{v}_{i}$$

Eigenvalue Parameter Sensitivity

- This is simplified by noting that $\mathbf{w}_{i}^{t}(\mathbf{A} \lambda_{i}\mathbf{I}) = 0$ by the definition of \mathbf{w}_{i} being a left eigenvector
- Therefore

$$\mathbf{w}_{i}^{t} \frac{\partial \mathbf{A}}{\partial A_{kj}} \mathbf{v}_{i} = \frac{\partial \lambda_{i}}{\partial A_{kj}}$$

- Since all elements of $\frac{\partial \mathbf{A}}{\partial A_{kj}}$ are zero, except the kth row, jth column is 1
- Thus $\frac{\partial \lambda_i}{\partial A_{ki}} = W_{ki} V_{ji}$

Sensitivity Example

In the previous example we had

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}, \quad \lambda_{1,2} = 5, -2, \quad \mathbf{V} = \begin{bmatrix} 1 & 4 \\ 1 & -3 \end{bmatrix}, \quad \mathbf{W} = \frac{1}{7} \begin{bmatrix} 3 & 1 \\ 4 & -1 \end{bmatrix}$$

• Then the sensitivity of λ_1 and λ_2 to changes in **A** are

$$\frac{\partial \lambda_i}{\partial A_{kj}} = W_{ki} V_{ji} \rightarrow \frac{\partial \lambda_1}{\partial \mathbf{A}} = \frac{1}{7} \begin{bmatrix} 3 & 3 \\ 4 & 4 \end{bmatrix}, \quad \frac{\partial \lambda_2}{\partial \mathbf{A}} = \frac{1}{7} \begin{bmatrix} 4 & -3 \\ -4 & 3 \end{bmatrix}$$

• For example with $\hat{\mathbf{A}} = \begin{bmatrix} 1 & 4 \\ 3 & 2.1 \end{bmatrix}$, $\hat{\lambda}_{1,2} = 5.057, -1.957$ $\hat{\mathbf{A}} = \begin{bmatrix} 1 & 4 \\ 3 & 3 \end{bmatrix}, \hat{\lambda}_{1,2} = 5.61, -1.61,$

Participation Factors

• The participation factors, P_{ki} , are used to determine how much the k^{th} state variable participates in the i^{th} mode

$$P_{ki} = V_{ki} W_{ki}$$

- The sum of the participation factors for any mode or any variable sum to 1
- The participation factors are quite useful in relating the eigenvalues to portions of a model

Participation Factors

• For the previous example with $P_{ki} = V_{ki}W_{ik}$ and

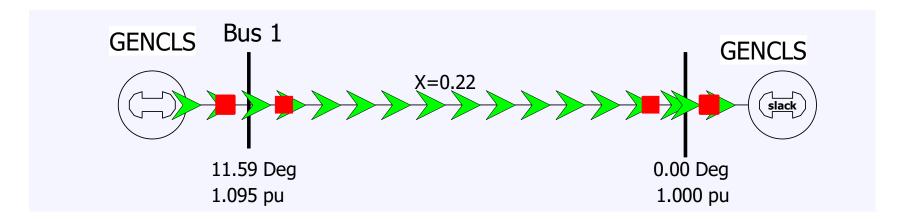
$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}, \quad \mathbf{V} = \begin{bmatrix} 1 & 4 \\ 1 & -3 \end{bmatrix}, \quad \mathbf{W} = \frac{1}{7} \begin{bmatrix} 3 & 1 \\ 4 & -1 \end{bmatrix}$$

• We get

$$\mathbf{P} = \frac{1}{7} \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}$$

SSA Two Generator Example

• Consider the two bus, two classical generator system from lectures 18 and 20 with $X_{d1}'=0.3$, $H_1=3.0$, $X_{d2}'=0.2$, $H_2=6.0$



• Essentially everything needed to calculate the **A**, **B**, **C** and **D** matrices was covered in lecture 15

SSA Two Generator Example

• The **A** matrix is calculated differentiating $\mathbf{f}(\mathbf{x},\mathbf{y})$ with respect to \mathbf{x} (where \mathbf{x} is δ_1 , $\Delta\omega_1$, δ_2 , $\Delta\omega_2$)

$$\begin{split} \frac{d\delta_{l}}{dt} &= \Delta \omega_{l.pu} \omega_{s} \\ \frac{d\Delta \omega_{l.pu}}{dt} &= \frac{1}{2H_{I}} \Big(P_{MI} - P_{EI} - D_{I} \Delta \omega_{l.pu} \Big) \\ \frac{d\delta_{2}}{dt} &= \Delta \omega_{2.pu} \omega_{s} \\ \frac{d\Delta \omega_{2.pu}}{dt} &= \frac{1}{2H_{2}} \Big(P_{M2} - P_{E2} - D_{2} \Delta \omega_{l.pu} \Big) \\ P_{Ei} &= \Big(E_{Di}^{2} - E_{Di} V_{Di} \Big) G_{i} + \Big(E_{Qi}^{2} - E_{Qi} V_{Qi} \Big) G_{i} + \Big(E_{Di} V_{Qi} - E_{Qi} V_{Di} \Big) B_{i} \\ E_{Di} &+ j E_{Qi} &= E_{i}' \Big(\cos \delta_{i} + j \sin \delta_{i} \Big) \end{split}$$

SSA Two Generator Example

Giving

$$\mathbf{A} = \begin{bmatrix} 0 & 376.99 & 0 & 0 \\ -0.761 & 0 & 0 & 0 \\ 0 & 0 & 0 & 376.99 \\ 0 & 0 & -0.389 & 0 \end{bmatrix}$$

• **B**, **C** and **D** are as calculated previously for the implicit integration, except the elements in B are not multiplied

$$\mathbf{B} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -0.2889 & 0.6505 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0.0833 & 0.3893 \end{bmatrix}$$

SSA Two Generator Example

• The C and D matrices are

$$\mathbf{C} = \begin{bmatrix} -3.903 & 0 & 0 & 0 \\ -1.733 & 0 & 0 & 0 \\ 0 & 0 & -4.671 & 0 \\ 0 & 0 & 1.0 & 0 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 0 & 7.88 & 0 & -4.54 \\ -7.88 & 0 & 4.54 & 0 \\ 0 & -4.54 & 0 & 9.54 \\ 4.54 & 0 & -9.54 & 0 \end{bmatrix}$$

Giving

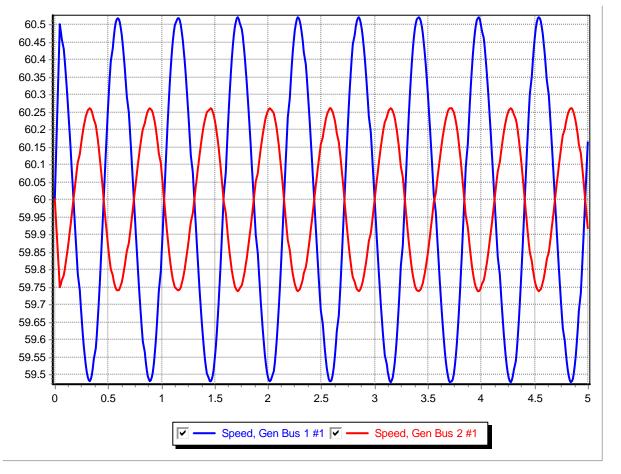
$$\mathbf{A}_{sys} = \mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} = \begin{bmatrix} 0 & 376.99 & 0 & 0 \\ -0.229 & 0 & 0.229 & 0 \\ 0 & 0 & 0 & 376.99 \\ 0.114 & 0 & -0.114 & 0 \end{bmatrix}$$

SSA Two Generator

- Calculating the eigenvalues gives a complex pair and two zero eigenvalues
- The complex pair, with values of +/- j11.39 corresponds to the generators oscillating against each other at 1.81 Hz
- One of the zero eigenvalues corresponds to the lack of an angle reference
 - Could be rectified by redefining angles to be with respect to a reference angle (see book 226) or we just live with the zero
- Other zero is associated with lack of speed dependence in the generator torques

SSA Two Generator Speeds

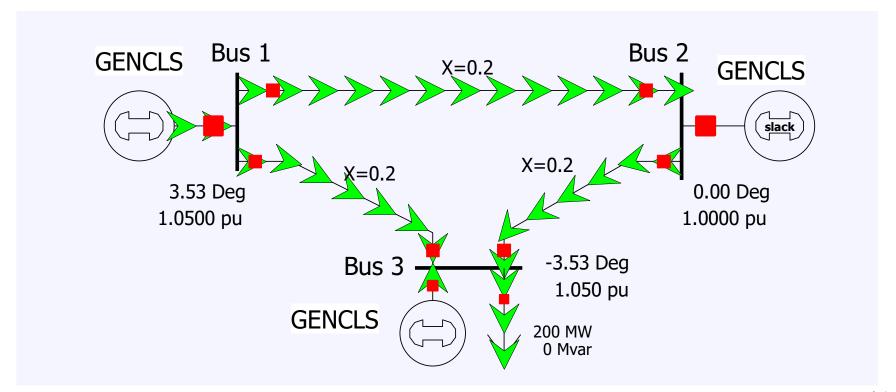
• The two generator system response is shown below for a small disturbance



Notice the actual response closely matches the calculated frequency

SSA Three Generator Example

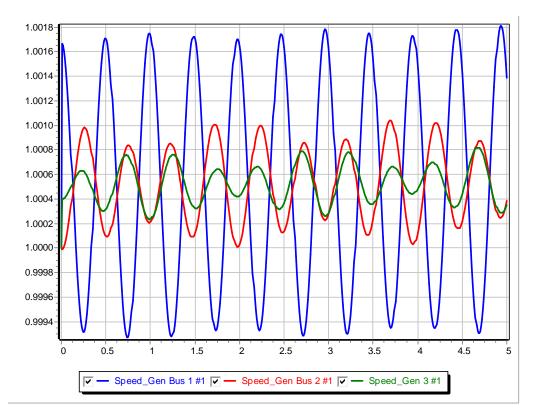
• The two generator system is extended to three generators with the third generator having H_3 of 8 and X_{d3} '=0.3



SSA Three Generator Example

• Using SSA, two frequencies are identified: one at 2.02

Hz and one at 1.51 Hz



The oscillation is started with a short, self-clearing fault

Shortly we'll discuss modal analysis to determine the contribution of each mode to each signal

Large System Studies

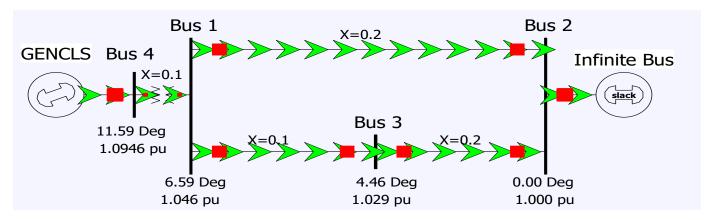
- The challenge with large systems, which could have more than 100,000 states, is the shear size
 - Most eigenvalues are associated with the local plants
 - Computing all the eigenvalues is computationally challenging, order n³
- Specialized approaches can be used to calculate particular eigenvalues of large matrices
 - See Kundur, Section 12.8 and associated references

Single Machine Infinite Bus

- A quite useful analysis technique is to consider the small signal stability associated with a single generator connected to the rest of the system through an equivalent transmission line
- Driving point impedance looking into the system is used to calculate the equivalent line's impedance
 - The Z_{ii} value can be calculated quite quickly using sparse vector methods
- Rest of the system is assumed to be an infinite bus with its voltage set to match the generator's real and reactive power injection and voltage

Small SMIB Example

• As a small example, consider the 4 bus system shown below, in which bus 2 really is an infinite bus



• To get the SMIB for bus 4, first calculate $Z_{\Delta\Delta}$

$$Y_{bus} = j \begin{bmatrix} -25 & 0 & 10 & 10 \\ 0 & 1 & 0 & 0 \\ 10 & 0 & -15 & 0 \\ 10 & 0 & 0 & -13.33 \end{bmatrix} \rightarrow Z_{44} = j0.1269$$
 $Z_{44} \text{ is } Z_{\text{th}} \text{ in parallel with } jX'_{\text{d,4}} \text{ (which is j0.3) so } Z_{\text{th}} \text{ is j0.22}$

Small SMIB Example

 The infinite bus voltage is then calculated so as to match the bus i terminal voltage and current

$$egin{aligned} \overline{V}_{ ext{inf}} &= \overline{V}_i - Z_i \overline{I}_i \ \end{aligned}$$
 where $\left(\frac{P_i + j Q_i}{\overline{V}_i} \right)^* = \overline{I}_i$

In the example we have

While this was demonstrated on an extremely small system for clarity, the approach works the same for any size system

$$\left(\frac{P_4 + jQ_4}{\bar{V}_4} \right)^* = \left(\frac{1 + j0.572}{1.072 + j0.220} \right)^* = 1 - j0.328$$

$$\bar{V}_{\text{inf}} = \left(1.072 + j0.220 \right) - (j0.22) \left(1 - j0.328 \right)$$

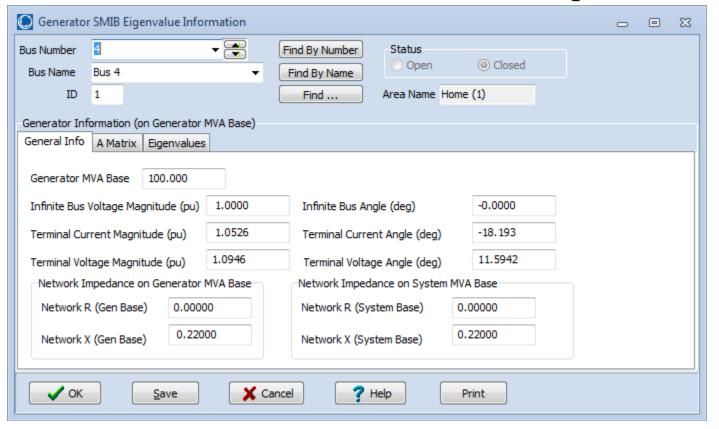
$$\bar{V}_{\text{inf}} = 1.0$$

Calculating the A Matrix

- The SMIB model **A** matrix can then be calculated either analytically or numerically
 - The equivalent line's impedance can be embedded in the generator model so the infinite bus looks like the "terminal"
- This matrix is calculated in PowerWorld by selecting Transient Stability, SMIB Eigenvalues
 - Select Run SMIB to perform an SMIB analysis for all the generators in a case
 - Right click on a generator on the SMIB form and select Show
 SMIB to see the Generator SMIB Eigenvalue Dialog
 - These two bus equivalent networks can also be saved, which can be quite useful for understanding the behavior of individual generators

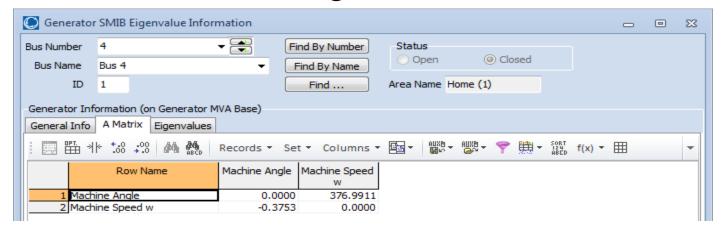
Example: Bus 4 SMIB Dialog

 On the SMIB dialog, the General Information tab shows information about the two bus equivalent



Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the **A** Matrix tab shows the $\mathbf{A}_{\rm sys}$ matrix for the SMIB generator

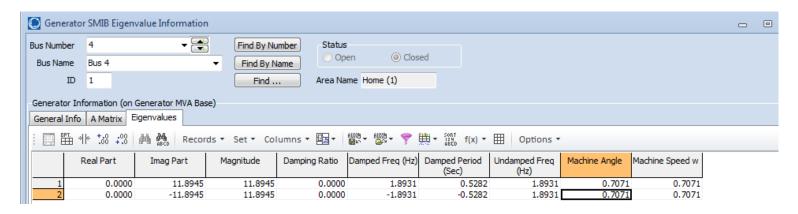


• In this example A_{21} is showing

$$\frac{\partial \Delta \omega_{4,pu}}{\partial \delta_4} = \frac{1}{2H_4} \left(\frac{-\partial P_{E,4}}{\partial \delta_4} \right) = -\left(\frac{1}{6} \right) \left(\left(\frac{-1}{0.3 + 0.22} \right) \left(-1.2812 \cos \left(23.94^{\circ} \right) \right) \right)$$
$$= -0.3753$$

Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the Eigenvalues tab shows the A_{sys} matrix eigenvalues and participation factors (which we'll cover shortly)



 Saving the two bus SMIB equivalent, and putting a short, self-cleared fault at the terminal shows the 1.89 Hz, undamped response