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Announcements

• Read Chapter 8

• Homework 6 is due on November 11

• There is a 2019 NERC document on oscillations at 

www.nerc.com/comm/PC/SMSResourcesDocuments/I

nterconnection_Oscillation_Analysis.pdf
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Single Machine Infinite Bus

• A quite useful analysis technique is to consider the 

small signal stability associated with a single generator 

connected to the rest of the system through an 

equivalent transmission line

• Driving point impedance looking into the system is 

used to calculate the equivalent line's impedance

– The Zii value can be calculated quite quickly using sparse 

vector methods 

• Rest of the system is assumed to be an infinite bus with 

its voltage set to match the generator's real and reactive 

power injection and voltage

2



Small SMIB Example

• As a small example, consider the 4 bus system shown 

below, in which bus 2 really is an infinite bus

• To get the SMIB for bus 4, first calculate Z44
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Small SMIB Example

• The infinite bus voltage is then calculated so as to 

match the bus i terminal voltage and current

• In the example we have 
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While this was demonstrated

on an extremely small system

for clarity, the approach works

the same for any size system

4



Calculating the A Matrix

• The SMIB model A matrix can then be calculated either 

analytically or numerically

– The equivalent line's impedance can be embedded in the 

generator model so the infinite bus looks like the "terminal"

• This matrix is calculated in PowerWorld by selecting 

Transient Stability, SMIB Eigenvalues

– Select Run SMIB to perform an SMIB analysis for all the 

generators in a case

– Right click on a generator on the SMIB form and select Show 

SMIB to see the Generator SMIB Eigenvalue Dialog

– These two bus equivalent networks can also be saved, which 

can be quite useful for understanding the behavior of individual 

generators 5



Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the General Information tab 

shows information about the two bus equivalent

PowerWorld case B4_SMIB 6



Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the A Matrix tab shows the Asys

matrix for the SMIB generator

• In this example A21 is showing
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Example: Bus 4 with GENROU

• The eigenvalues can be calculated for any set of 

generator models

• This example replaces the bus 4 generator classical 

machine with a GENROU model

– There are now six eigenvalues, with the dominate response 

coming from the electro-mechanical mode with a frequency of 

1.84 Hz, and damping of 6.9%

8PowerWorld case B4_GENROU_Sat_SMIB



Example: Bus 4 with 
GENROU Model and Exciter

• Adding an relatively slow EXST1 exciter adds 

additional states (with KA=200, TA=0.2)

– As the initial reactive power output of the generator is 

decreased, the system becomes unstable (below example is 

with a generator reactive power output of 0 Mvar)

9PowerWorld case B4_GENROU_Sat_SMIB_QZero



Example: Bus 4 with 
GENROU Model and Exciter

• The below image shows the system response to a brief 

bus 4 self-clearing fault 
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Example: Bus 4 with 
GENROU Model and Exciter

• The remainder of the Eigenvalues page shows the 

participation factors for the various states in the modes
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SMIB Eigenvalues for TSGC_2000 
Case

• All the SMIB eigenvalues can be calculated quickly 

even for relatively large grids 
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Saving a Two Bus Equivalent

• PowerWorld makes it easy to save a two bus 

equivalent from the SMIB Eigenvalues page

– Right-click and select Save Two Bus Equivalent

• As the name implies, the two bus equivalent is the 

generator connected to an infinite bus through its 

driving point impedance

• Two bus equivalents provide a convenient way to track 

down at least some causes of instability issues
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Small Signal Analysis and 
Measurement-Based Modal Analysis

• Small signal analysis has been used for decades to 

determine power system frequency response

– It is a model-based approach that considers the properties of a 

power system, linearized about an operating point

• Measurement-based modal analysis determines the 

observed dynamic properties of a system

– Input can either be measurements from devices (such as 

PMUs) or dynamic simulation results

– The same approach can be used regardless of the 

measurement source

• Focus in this section is on the measurement-based 

approach
14



Ring-down Modal Analysis

• Ring-down analysis seeks to determine the frequency 

and damping of key power system modes following 

some disturbance

• There are several different techniques, with the Prony
approach the oldest (from 1795); introduced into 
power in 1990 by Hauer, Demeure and Scharf

• Regardless of technique, the goal is to represent the 
response of a sampled signal as a set of exponentially 
damped sinusoidals (modes)
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Where We Are Going: 
Extracting the Modes from Signals 

• The goal is to gain information about the electric 

grid by extracting modal information from its signals

– The frequency and damping of the modes is key

• The premise is we’ll be able to reproduce a complex 

signal, over a period of time, as a set a of sinusoidal 

modes

– We’ll also allow for linear 

detrending

0.1𝑡 + cos 2𝜋2𝑡
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Example: The Summation of two 
damped exponentials

• This example

was created by

going from the 

modes to 

a signal

• We’ll be going

in the opposite

direction (i.e., 

from a

measured 

signal to the

modes) 
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Some Reasonable Expectations

• Verifiable to show how well the modes match the 

original signal(s)

– We’ll show this

• Flexible to handle between one and many signals

– We’ll go up to simultaneously considering 40,000 signals

• Fast

– What is presented will be, with a discussion of the 

computational scaling

• Easy to use

– This is software implementation specific; results shown here 

were done using the modal analysis tool integrated into 

PowerWorld Simulator (version 22) 
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Example: One Signal

This could be any signal; image shows the result of the 

original signal (blue) and the reproduced signal (red) 
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Verification: 
Linear Trend Line Only
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Verification: 
Linear Trend Line + One Mode
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Verification: 
Linear Trend Line + Two Modes
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Verification: 
Linear Trend Line + Three Modes
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Verification: 
Linear Trend Line + Four Modes
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Verification: 
Linear Trend Line + Five Modes

It is hard to tell a difference

on this one, illustrating that

modes manifest differently in 

different signals
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A Larger Example We’ll Finish With

Applying the developed techniques to the response of all 43,400 

substation frequencies from an 110,000 bus electric grid(20 million 

plus values)
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Spatial Visualization of Frequency
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Measurement-Based Modal Analysis

• There are a number of different approaches

• The idea of all techniques is to approximate a signal, 

yorg(t), by the sum of other, simpler signals (basis 

functions)

– Basis functions are usually exponentials, with linear and 

quadratic functions used to detrend the signal

– Properties of the original signal can be quantified from basis 

function properties 

• Examples are frequency and damping

– Signal is considered over time with t=0 as the start

• Approaches sample the original signal yorg(t)
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Measurement-Based Modal Analysis

• Vector y consists of m uniformly sampled points 

from yorg(t) at a sampling value of T, starting 

with t=0, with values yj for j=1…m

– Times are then tj= (j-1)T

– At each time point j, the approximation of yj is 
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Measurement-Based Modal Analysis

• Error (residual) value at each point j is

• The closeness of the fit can be quantified using the 

Euclidean norm of the residuals

• Hence we need to determine  and b

ˆ( , ) ( , )j j j j jr t y y t= −α α
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Sampling Rate and Aliasing

• The Nyquist-Shannon sampling theory requires 

sampling at twice the highest desired frequency

– For example, to see a 5 Hz frequency we need to sample the 

signal at a rate of at least 10 Hz

• Sampling shifts the frequency spectrum by 1/T (where 

T is the sample time), which causes frequency overlap

• This is known as aliasing, which 

can cause a high frequency 

signal to appear to be a lower 

frequency signal

– Aliasing can be reduced by fast sampling and/or low

pass filters   
Image: upload.wikimedia.org/wikipedia/commons/thumb/2/28/AliasingSines.svg/2000px-AliasingSines.svg.png 31



One Solution Approach: 
The Matrix Pencil Method

• There are several algorithms for finding the modes.  

We’ll use the Matrix Pencil Method

– This is a newer technique for determining modes from noisy 

signals (from about 1990,  introduced to power system 

problems in 2005); it is an alternative to the Prony Method

– The Matrix Pencil Method is useful when there is signal noise 

• Given m samples, with L=m/2, the first step is to form the 

Hankel Matrix, Y such that 

Reference: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction," IEEE Transactions on Power 

Systems, vol. 20, no. 1, pp. 501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005.
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This not a sparse matrix
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Algorithm Details, cont.

• Then calculate Y’s singular values 

using an economy singular value decomposition 

(SVD)

• The ratio of each singular value 

is then compared to the largest

singular value c; retain the ones 

with a ratio > than a threshold

– This determines the modal order, M

– Assuming V is ordered by singular 

values (highest to lowest), let Vp be 

then matrix with the first M columns of V

= T
Y UΣV

The computational

complexity increases

with the cube of the 

number of 

measurements!

This threshold

is a value that

can be changed;

decrease it to 

get more modes.
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Aside: The Matrix Singular Value 
Decomposition (SVD) 

• The SVD is a factorization of a matrix that generalizes the 

eigendecomposition to any m by n matrix to produce

where S is a diagonal matrix of the singular values

• The singular values are non-negative, real numbers that can 

be used to indicate the major components of a matrix (the 

gist is they provide a way to decrease the rank of a matrix)

= T
Y UΣV

The original concept is more than

100 years old, but has found lots of 

recent applications
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Aside: SVD Image Compression 
Example

Image Source: www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf

Images can be

represented with

matrices.  When

an SVD is applied

and only the 

largest singular

values are retained

the image is

compressed.   
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Matrix Pencil Algorithm Details, cont.

• Then form the matrices V1 and V2 such that

– V1 is the matrix consisting of all but the last row of Vp

– V2 is the matrix consisting of all but the first row of Vp

• Discrete-time poles are found as the generalized 

eigenvalues of the pair (V2
TV1, V1

TV1) = (A,B)

• These eigenvalues are the 

discrete-time poles, zi with the 

modal eigenvalues then 

ln( )i
i

z

T
 =



The log of a complex

number z=r is 

ln(r) + j

If B is nonsingular (the 

situation here) then the 

generalized eigenvalues 

are the eigenvalues of

B
-1

A
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Matrix Pencil Method with Many 
Signals

• The Matrix Pencil approach can be used with one 

signal or with multiple signals

• Multiple signals are handled by forming a Yk matrix 

for each signal k using the measurements for that 

signal and then combining the matrices
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The required 

computation

scales linearly 

with the number

of signals
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Matrix Pencil Method with Many 
Signals

• However, when dealing with many signals, usually the 

signals are somewhat correlated, so vary few of the 

signals are actually need to be included to determine 

the desired modes

• Ultimately we are finding

• The  is common to all the signals (i.e., the system 

modes) while the b vector is signal specific (i.e., how 

the modes manifest in that signal)
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Quickly Determining the b Vectors

• A key insight is from an approach known as the 

Variable Projection Method (from Borden, 2013) that 

for any signal k 

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013 

North American Power Symposium, Manhattan, KS, Sept. 2013
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Where m is the 

number of 

measurements

and n is the 

number of modes  
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