ECEN 667 Power System Stability

Lecture 20: SMIB Eigenvalues, Measurement-Based Modal Analysis

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Read Chapter 8
- Homework 6 is due on November 11
- There is a 2019 NERC document on oscillations at www.nerc.com/comm/PC/SMSResourcesDocuments/I nterconnection_Oscillation_Analysis.pdf

Single Machine Infinite Bus

- A quite useful analysis technique is to consider the small signal stability associated with a single generator connected to the rest of the system through an equivalent transmission line
- Driving point impedance looking into the system is used to calculate the equivalent line's impedance
 - The Z_{ii} value can be calculated quite quickly using sparse vector methods
- Rest of the system is assumed to be an infinite bus with its voltage set to match the generator's real and reactive power injection and voltage

Small SMIB Example

As a small example, consider the 4 bus system shown below, in which bus 2 really is an infinite bus

 $jX'_{d,4}$ (which is

so Z_{th} is j0.22

To get the SMIB for bus 4, first calculate Z_{44}

$$Y_{bus} = j \begin{bmatrix} -25 & 0 & 10 & 10 \\ 0 & 1 & 0 & 0 \\ 10 & 0 & -15 & 0 \\ 10 & 0 & 0 & -13.33 \end{bmatrix} \rightarrow Z_{44} = j0.1269 \quad \begin{aligned} Z_{44} \text{ is } Z_{th} \text{ in parallel} \\ \text{with } jX'_{d,4} \text{ (which is } j0.3) \text{ so } Z_{th} \text{ is } j0.22 \end{aligned}$$

Small SMIB Example

• The infinite bus voltage is then calculated so as to match the bus i terminal voltage and current

$$\overline{V}_{inf} = \overline{V}_i - Z_i \overline{I}_i$$

where $\left(\frac{P_i + jQ_i}{\overline{V}_i}\right)^* = \overline{I}_i$

• In the example we have

While this was demonstrated on an extremely small system for clarity, the approach works the same for any size system

$$\left(\frac{P_4 + jQ_4}{\overline{V_4}}\right)^* = \left(\frac{1 + j0.572}{1.072 + j0.220}\right)^* = 1 - j0.328$$

$$\overline{V_{\text{inf}}} = (1.072 + j0.220) - (j0.22)(1 - j0.328)$$

$$\overline{V_{\text{inf}}} = 1.0$$

Calculating the A Matrix

- The SMIB model **A** matrix can then be calculated either analytically or numerically
 - The equivalent line's impedance can be embedded in the generator model so the infinite bus looks like the "terminal"
- This matrix is calculated in PowerWorld by selecting Transient Stability, SMIB Eigenvalues
 - Select Run SMIB to perform an SMIB analysis for all the generators in a case
 - Right click on a generator on the SMIB form and select Show
 SMIB to see the Generator SMIB Eigenvalue Dialog
 - These two bus equivalent networks can also be saved, which can be quite useful for understanding the behavior of individual generators

Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the General Information tab shows information about the two bus equivalent

C Generator	r SMIB Eigenvalue Info	ormation							23
Bus Number	4	▼ 🗬	Find By Number	Status	O danal				
Bus Name	Bus 4	•	Find By Name	Open	() Closed				
ID	1		Find	Area Name	lome (1)				
Generator Inf	ormation (on Generator	MVA Base)							
General Info	A Matrix Eigenvalue	s							
Generator M	IVA Base 100.000								
Infinite Bus	Voltage Magnitude (pu)	1.0000	Infinite Bus Ar	Infinite Bus Angle (deg) -0.0000					
Terminal Cur	Terminal Current Magnitude (pu) 1.0526		Terminal Curre	-18, 193]				
Terminal Volt	tage Magnitude (pu)	1.0946	Terminal Volta	Terminal Voltage Angle (deg) 11.5942					
Network In	mpedance on Generator	MVA Base	Network Imped	lance on System	MVA Base				
Network R	Network R (Gen Base) 0.00000		Network R (Sy	stem Base)	0.00000				
Network X	Network X (Gen Base) 0.22000 Network X (System Base) 0.22000								
• ок	Save	X Ca	ancel	Help	Print				

PowerWorld case **B4_SMIB**

Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the A Matrix tab shows the A_{sys} matrix for the SMIB generator

C Generator	SMIB Eigenvalue Infor	mation					_		23
Bus Number	4	• 📑 🛛 🖪	ind By Number	Status					
Bus Name	Bus 4	▼ [F	Find By Name	Open 🕐	Olosed				
ID	1		Find	Area Name	Home (1)				
Generator Information (on Generator MVA Base) General Info A Matrix Eigenvalues									
i 🧮 🖽 🕴	i ⊞ 补修 too +00 禍 鷸 器 Records ▼ Set ▼ Columns ▼ 圖▼ 🏙 ▼ 🕮 ▼ 🎼 ▼ iiit f(x) ▼ 田 🛛 ▼								
	Row Name Machine Angle Machine Speed								
1 Mach	ine Angle	0.0000	376.9911						
2 Mach	ine Speed w	-0.3753	0.0000						

• In this example A_{21} is showing

$$\frac{\partial \Delta \omega_{4,pu}}{\partial \delta_4} = \frac{1}{2H_4} \left(\frac{-\partial P_{E,4}}{\partial \delta_4} \right) = -\left(\frac{1}{6} \right) \left(\left(\frac{-1}{0.3 + 0.22} \right) \left(-1.2812 \cos \left(23.94^\circ \right) \right) \right)$$
$$= -0.3753$$

Example: Bus 4 with GENROU

- The eigenvalues can be calculated for any set of generator models
- This example replaces the bus 4 generator classical machine with a GENROU model
 - There are now six eigenvalues, with the dominate response coming from the electro-mechanical mode with a frequency of 1.84 Hz, and damping of 6.9%

Genera	Seperator Information (on Generator MVA Base)										
ochera											
Genera	General Info A Matrix Eigenvalues										
: #	DPT. 3 k .00	.00 .0	ecords 👻 Set 👻	Columns 👻 📴 👻	8088 - 8088 - 🜱	SORT f(x) T	Options •				
	Real Part	Imag Part	Magnitude	Damping Ratio	Damped Freq (Hz)	Damped Period (Sec)	Undamped Freq (Hz)				
1	-21.2472	0.0000	21.2472	1.0000	0.0000		3.3816				
2	-0.8040	11.5563	11.5842	0.0694	1.8392	0.5437	1.8437				
3	-0.8040	-11.5563	11.5842	0.0694	-1.8392	-0.5437	1.8437				
4	-14.2256	0.0000	14.2256	1.0000	0.0000		2.2641				
5	-3.7087	0.0000	3.7087	1.0000	0.0000		0.5903				
6	-0.4248	0.0000	0.4248	1.0000	0.0000		0.0676				

PowerWorld case **B4_GENROU_Sat_SMIB**

Example: Bus 4 with GENROU Model and Exciter

- Adding an relatively slow EXST1 exciter adds additional states (with $K_A=200$, $T_A=0.2$)
 - As the initial reactive power output of the generator is decreased, the system becomes unstable (below example is with a generator reactive power output of 0 Mvar)

Genera	General Info A Matrix Eigenvalues										
	IPT. k \$.00	.00 🦛 👫 R	ecords 👻 Set 👻	Columns 👻 📴 🕶	auxe - auxe - 🜱	SORT f(x) -	Options				
	Real Part 🔻	Imag Part	Magnitude	Damping Ratio	Damped Freq (Hz)	Damped Period (Sec)	Undamped Freq I (Hz)	Ma			
1	0.2704	-9.5336	9.5374	-0.0283	-1.5173	-0.6591	1.5179				
2	0.2704	9.5336	9.5374	-0.0283	1.5173	0.6591	1.5179				
3	-1.0000	0.0000	1.0000	1.0000	0.0000		0.1592				
4	-3.0137	0.0000	3.0137	1.0000	0.0000		0.4796				
5	-3.6849	-6.4281	7.4094	0.4973	-1.0231	-0.9775	1.1792				
6	-3.6849	6.4281	7.4094	0.4973	1.0231	0.9775	1.1792				
7	-14.4234	0.0000	14.4234	1.0000	0.0000		2.2956				
8	-21.6978	0.0000	21.6978	1.0000	0.0000		3.4533				

PowerWorld case B4_GENROU_Sat_SMIB_QZero

Example: Bus 4 with GENROU Model and Exciter

• The below image shows the system response to a brief bus 4 self-clearing fault

ĀМ

Example: Bus 4 with GENROU Model and Exciter

• The remainder of the Eigenvalues page shows the participation factors for the various states in the modes

🔘 Gene	erator SMIB Eige	envalue Informa	tion											-	- 0	×
Bus Numb Bus Nar	Jus Number 4 Find By Number Status Bus Name Bus 4 Find By Name Open ID 1 Find Area Name															
Generate	r Information (on 0	Generator MVA Bas	e)													
General	Info A Matrix Ei	genvalues														
: 🚃		.00 00 00 R	ecords 🔹 Set 🝷	Columns 👻 🛅 👻			Doptions -									
	Real Part 🛛 🔻	Imag Part	Magnitude	Damping Ratio	Damped Freq (Hz)	Damped Period (Sec)	Undamped Freq (Hz)	Machine Angle	Machine Speed w	Machine Eqp	Machine PsiDp	Machine PsiQpp	Machine Edp	Exciter EField before limit	Exciter VF	
1	0.2704	-9.5336	9.5374	-0.0283	-1.5173	-0.6591	1.5179	0.6920	0.6810	0.1642	0.0250	0.0137	0.0139	0.1714	0.00	00
2	0.2704	9.5336	9.5374	-0.0283	1.5173	0.6591	1.5179	0.6920	0.6810	0.1642	0.0250	0.0137	0.0139	0.1714	0.00	00
3	-1.0000	0.0000	3.0137	1.0000	0.0000		0.1592	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.000	00
	-3.6849	-6.4281	7,4094	0.4973	-1.0231	-0.9775	1,1792	0.1643	0.1764	0.6494	0.0534	0.0350	0.0964	0.7120	0.00	00
6	-3.6849	6.4281	7.4094	0.4973	1.0231	0.9775	1.1792	0.1643	0.1764	0.6494	0.0534	0.0350	0.0964	0.7120	0.00	00
7	-14.4234	0.0000	14.4234	1.0000	0.0000		2.2956	0.0054	0.0049	0.0219	0.9995	0.0013	0.0028	0.0226	0.00	00
8	-21.6978	0.0000	21.6978	1.0000	0.0000		3.4533	0.0030	0.0037	0.0009	0.0006	0.9971	0.0762	0.0011	0.000	00
	<u>8</u> -21.6978 0.0000 21.6978 1.0000 0.0000 3.4533 0.0030 0.0037 0.0009 0.0006 0.9971 0.0762 0.0011 0.0000															
 Image: A start of the start of	ОК	Save	X Cancel	? Help	Print											

SMIB Eigenvalues for TSGC_2000 Case

• All the SMIB eigenvalues can be calculated quickly even for relatively large grids

sient Stability Pause	Abort Re	estore Reference For Con	itingency	Find Torna	do		~										
	MIB Eigenvalue	s															
tion	Due CMID Eine	a Analysia a sur t				11/0/0001 1:55											
S	Kun Shito Lige	Re-Initializ	e B	igenvalue Analy	sis Last Run:	11/0/2021 4:50	CU7 PM										
Storage		** 號 👯 🏘 🧶 🗄	👯 Reco	ords 👻 Set 👻	Columns 👻 📴		💎 🏥 🕶 SORT	f(x) ▼ ⊞ Opti	ons 🔻								
							En the		Charles III.	6.1.1.1			un richten la		e i e i le i	e v le	
Analyzer - Damping	Numbe	rorbus iname orbus	ID.	WIVA base	Gen	Machine	Exciter	Governor	Stabilizer	Calculate	Figenvalues F	idenvalues	Min Eigenvalue	lax Eigenvalue	Freq (Hz)	ng Equation S	Wing Equation
s from RAM	1	1004 O DONNELL 1 1	1	253.2	Far West	WT4G	WT4F			VES	eigennaldes e	0	-0.2258	.49 9323	0.0000	0.0000	0.000
ent Limit Monitors –	2	1006 BIG SPRING 5.1	1	41.2	Far West	WT4G	WT4E			YES	9	0	-0.1842	-49.9543	0.0000	0.0000	0.000
/Manual Control –	3	1009 IBAAN 2.1	1	99.0	Far West	WT4G	WT4F			YES	9	0	-0.2436	-49.9203	0.0000	0.0000	0.000
ion –	4	1011 PRESIDIO 1 1	1	12.0	Far West					YES	0	0	0.0000	0.0000	0.0000	0.0000	0.000
igenvalues -	5	1021 BIG SPRING 1 1	1	239.4	Far West	WT4G	WT4E			YES	9	0	-0.2693	-49.8987	0.0000	0.0000	0.000
Analysis	6	1023 O DONNELL 2 1	1	216.0	Far West	WT4G	WT4E			YES	9	0	-0.2793	-49.8853	0.0000	0.0000	0.000
ic Simulator Options	7	1026 BIG SPRINGS 1	1	149.0	Far West	WT4G	WT4E		6	YES	9	0	-0.2736	-49.8928	0.0000	0.0000	0.000
	8	1033 MCCAMEY 1 1	1	333.6	Far West	WT4G	WT4E			YES	9	0	-0.2110	-49.9407	0.0000	0.0000	0.000
	9	1035 BIG SPRING 4 1	1	108.0	Far West	WT4G	WT4E			YES	9	0	-0.2462	-49.9185	0.0000	0.0000	0.00
	10	1039 FORT STOCKTOI	1	177.0	Far West	WT4G	WT4E			YES	9	0	-0.2692	-49.8992	0.0000	0.0000	0.000
_	11	1042 FORSAN 1		146.3	Far West	WT4G	WT4E			NO							
_	12	1043 FORSAN 2	1	70.6	Far West	WT4G	WT4E			YES	9	0	-0.2235	-49.9335	0.0000	0.0000	0.00
_	13	1048 MONAHANS 1 1			Far West	GENROU	ESST4B	GGOV1	IEEEST	NO	0	0					
	14	1049 MONAHANS 1 2			Far West	GENROU	EXAC2	GGOV1	IEEEST		0	0					
	15	1050 MONAHANS 1 3	1	107.3	Far West	GENROU	ESST4B	GGOV1	IEEEST	YES	20	1	-0.0015	-77.1569	1.8102	0.0643	8.43
	16	1051 MONAHANS 1.4	1	107.3	Far West	GENROU	EXPIC1	GGOV1	IEEEST	YES	21	1	-0.0818	-76.9490	0.9537	0.0733	13.68
	17	1052 MONAHANS 1 5	1	107.3	Far West	GENROU	ESST4B	GGOV1	IEEEST	YES	20	1	-0.0830	-76.9891	1.1103	0.0620	13.83
-	18	1053 MONAHANS 1 6		214.6	Far West	GENROU	ESS14B	GGOV1	IEEEST	NO	0	0					
-	19	1057 LENORAH 1		144.0	Far West	WI4G	W14E	66014	IFFECT	NO	0	0					
	20	1059 IRAAN 3 1		6.7	Far West	GENROU	EXAC2	GGOVI	IEEESI	NO							
-	21	1060 IRAAN 5 2		2.4	Far West	GENROU	E5514B	GGUVI	IEEESI	NO							
	22	1062 DIG SPRING 6 1			Far West					NO							
	24	1065 BIG SPRING 3.1	1	171.0	Far West	MTAG	WTAE			VES	9	0	0 2728	40 8030	0.0000	0.0000	0.00
	25	1070 IRAAN 1.1	1	102.6	Far West	WT4G	WTAE			VES	9	0	0.2670	49.8965	0.0000	0.0000	0.00
	26	1072 ODESSA 1 1	1	230.6	Far West	GENROLL	ESST4R	660V1	IFFEST	VES	20	1	-0.1053	-64 1893	0.6171	0.6281	69.84
	27	1073 ODESSA 1 2	1	230.6	Far West	GENROU	ESST4B	660V1	IFFEST	YES	20	1	-0.1350	-63.4621	8.5123	0.6088	799.24
	28	1074 ODESSA 1 3	1	230.6	Far West	GENROU	ESST4B	GGOV1	IFFEST	YES	20	1	-0.0812	-48.4635	0.5445	0.7105	66.84
	29	1075 ODESSA 1 4	1	230.6	Far West	GENROU	ESST4B	GGOV1	IEEEST	YES	20	1	-0.0479	-73.9551	0.5988	0.7503	83.56
	30	1076 ODESSA 1 5	1	230.6	Far West	GENROU	ESST4B	GGOV1	IEEEST	YES	20	1	-0.0315	-54.6018	13.1315	0.4923	942.29
	31	1077 ODESSA 1 6	1	230.6	Far West	GENROU	ESST4B	GGOV1	IEEEST	YES	20	1	-0.1454	-56.7124	0.9590	0.5193	61.62
	32	1078 ODESSA 1 7	1	114.6	Far West	GENROU	ESST4B	GGOV1	IEEEST	YES	20	1	-0.0932	-53.9516	0.6988	0.6303	99.78
	33	1079 ODESSA 1 8	1	114.6	Far West	GENROU	EXAC2	GGOV1	IEEEST	YES	23	1	-0.0081	-72.9229	1.9024	0.3274	87.756
	34	1080 ODESSA 1 9		114.6	Far West	GENROU	ESST4B	GGOV1	IEEEST	NO							
	35	1081 ODESSA 1 10	1	343.8	Far West	GENROU	ESST4B	GGOV1	IEEEST	YES	20	1	-0.2000	-77.2607	9.2208	0.5061	815.999
	36	1082 FORT STOCKTOI	1	180.0	Far West	WT4G	WT4E			YES	9	0	-0.2453	-49.9189	0.0000	0.0000	0.000
ntingencies -	37	1084 BIG SPRING 2 0	1	138.6	Far West	WT4G	WT4E			YES	9	0	-0.1892	-49.9505	0.0000	0.0000	0.000
ntingency at a time	38	1088 MCCAMEY 2 0	1	90.0	Far West	WT4G	WT4E			YES	9	0	-0.2307	-49.9289	0.0000	0.0000	0.000
Contingoncy at a unic	201	1000 COLDSMITH 0	1	183.0	Far Wert	MITAG	WITHE			VEC	٥	0	0 3363	/0 0700	0 0000	0 0000	0.000
conungencies																	

Saving a Two Bus Equivalent

- PowerWorld makes it easy to save a two bus equivalent from the **SMIB Eigenvalues** page
 - Right-click and select Save Two Bus Equivalent
- As the name implies, the two bus equivalent is the generator connected to an infinite bus through its driving point impedance
- Two bus equivalents provide a convenient way to track down at least some causes of instability issues

Small Signal Analysis and Measurement-Based Modal Analysis

- Small signal analysis has been used for decades to determine power system frequency response
 - It is a model-based approach that considers the properties of a power system, linearized about an operating point
- Measurement-based modal analysis determines the observed dynamic properties of a system
 - Input can either be measurements from devices (such as PMUs) or dynamic simulation results
 - The same approach can be used regardless of the measurement source
- Focus in this section is on the measurement-based approach

Ring-down Modal Analysis

- Ring-down analysis seeks to determine the frequency and damping of key power system modes following some disturbance
- There are several different techniques, with the Prony approach the oldest (from 1795); introduced into power in 1990 by Hauer, Demeure and Scharf
- Regardless of technique, the goal is to represent the response of a sampled signal as a set of exponentially damped sinusoidals (modes)

$$y(t) = \sum_{i=1}^{q} A_i e^{\sigma_i t} \cos\left(\omega_i t + \phi_i\right) \quad \text{Damping (\%)} = \frac{-\alpha_i}{\sqrt{\alpha_i^2 + \omega_i^2}} \times 100$$

Where We Are Going: Extracting the Modes from Signals

- The goal is to gain information about the electric grid by extracting modal information from its signals
 - The frequency and damping of the modes is key
- The premise is we'll be able to reproduce a complex signal, over a period of time, as a set a of sinusoidal modes
 - We'll also allow for linear detrending

 $0.1t + \cos(2\pi 2t)$

Example: The Summation of two damped exponentials

- This example was created by going from the modes to a signal
- We'll be going in the opposite direction (i.e., from a measured signal to the modes)

Some Reasonable Expectations

- Verifiable to show how well the modes match the original signal(s)
 - We'll show this
- Flexible to handle between one and many signals
 - We'll go up to simultaneously considering 40,000 signals
- Fast
 - What is presented will be, with a discussion of the computational scaling

• Easy to use

This is software implementation specific; results shown here were done using the modal analysis tool integrated into PowerWorld Simulator (version 22)

Example: One Signal

This could be any signal; image shows the result of the original signal (blue) and the reproduced signal (red)

Start Time Used End Time Used Time Window Gen Speed 3 - 10							
3.000000 10.000000 Contingency My Transient Contingency							
Object Gen 'Bus1_16.50' '1'							
Field TSSpeed							
Statistics Modes and Damping Object Fields							
Undamped Modes A (constant) B (linear) C (quadratic) 0 Trend 1.00 0.0000617 0.0							
: 🔜 🔃 🏥 州 號 🐝 🎒 🤮 Records * Set * Columns * 📴 * 👹 * 👹 * 🗰 * 第 A 🖽 Options *							
Modes for Selected Signal Update Auto							
Mode Include Reproduce Magnitude Angle Rank Mode Frequency Damping % Lambda							
4 YES 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 1.0004							
5 YES 0.0000223 3000000445 -59.64 0.553 2.017 6.99 -0.888							
OK Cancel							

Verification: Linear Trend Line Only

Result Analysis Signal	– 🗆 X
Start Time Used End Time Used Time Window Gen Speed 3 - 10	
3.000000 10.000000 Contingency My Transient Contingency	
Object Gen Bust 16 50'1'	
Field TSSpeed	
Statistics Modes and Damping Object Fields	
Undamped Modes A (constant) B (linear) C (quadratic) 0 Trend 1.00 0.0000617 0.0	
🗄 🔄 🏥 非 號 👭 🌺 Records ▼ Set ▼ Columns ▼ 📴 ▼ 🏙 ▼ 🧱 ▼ 🇱 f(x) ▼ 🌐 Option	5 •
Modes for Selected Signal Update Auto	
Mode Include Reproduce Magnitude End Angle End Rank Mode Frequency Mode Damping % Mode Lambda Mode Lambda 1.001 1 NO 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465 2 NO 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 1.0004 3 NO 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 5 NO 0.00000223 J000000445 -59.64 0.553 2.017 6.99 -0.888 0.9996 0.9998 0.9998 0.9994 3 3 0.9994 3 3 3 0.9994 3 3 0.9994 3 3 0.9994 3 3 0.9994 3 3 0.9994 3 3 0.9994 3 3 0.9994 3 3 0.9994 3 3 0.9994 3 3 3 0.9994 3 3 <td>A A A A A A A A A A A A A A A A A A A</td>	A A A A A A A A A A A A A A A A A A A
	OK Cancel

ĀM

Verification: Linear Trend Line + One Mode

🔘 Result Analysis Signal			×
Result Analysis Signal Start Time Used End Time Used Time Window 3.000000 10.000000 Contingency Object Field Statistics Modes and Damping Object Fields Undamped Modes A (constant) 0 Trend 1.00 E E E C Statistics Record: Modes for Selected Signal Mode Magnitude Magnitude An	Gen Speed 3 - 10 My Transient Contingency Gen 'Bus1_16.50''1' TSSpeed B (inear) C (quadratic) 0.0000617 0.0 s × Set × Columns × × × × f(x) × ⊞ Options × Update Auto 1.0012 note		
Include Magnitude Magnitude An Include End End Include Include	Index Mode Mode Mode Mode Mode Mode Mode Imode Imode <thimode< th=""> Imode Imode<!--</td--><td>9</td><td>10</td></thimode<>	9	10

Verification: Linear Trend Line + Two Modes

Start Time Used End Time Used Time Window Gen Speed 3 - 10 3.000000 10.000000 Contingency My Transient Contingency Object Gen 'Bus1_16.50' '1'	
Field TSSpeed Statistics Modes and Damping Object Fields	
Undamped Modes A (constant) B (linear) C (quadratic) 0 Trend 1.00 0.0000617 0.0 :<) ▼ Ⅲ Options ▼ 1.0012 1
Mode Include Reproduce Magnitude End Angle End Rank Mode Frequency Mode Damping % Mode Lambda 1 YES 0.00166 0.0000643 111.15 41.13 0.171 39.67 -0.465 2 YES 0.00114 0.0000256 0.00 28.28 0.000 100.00 -0.543 3 NO 0.000097 0.0000488 69.05 24.01 1.364 4.98 -0.427 4 NO 0.0000167 0.000243 -180.00 6.02 0.000 -100.00 0.383 5 NO 0.0000223 J000000445 -59.64 0.553 2.017 6.99 -0.888	1.001 1.0006

Verification: Linear Trend Line + Three Modes

Start Time Used End Time Used Time Window Gen Speed 3 - 10 3.000000 10.000000 Contingency My Transient Contingency Object Gen Bus1_16.50'1' Field TSSpeed Statistic Modes and Damping Object Fields Undamped Modes A (constant) 8 (inear) C (quadratic) 0 Trend 1.00 0.0000617 0.00 Imidude Magintude Magintude Angle Rank Frequency Damping Lindianded 1 TTS 0.00166 0.0000617 0.004 0.004 2 TTS 0.00166 0.0000617 0.004 0.004 2 TTS 0.00166 0.0000613 1.136 4.13 0.171 39.67 0.485 2 TTS 0.000167 0.000043 1.136 4.186 0.022 0.0000 1.004 1.004 4 11.15 4.11.3 0.171 39.67 0.0485 0.0383 0.00000125 0.0000 0.0000145 0.553 2.017 6.99 0.0886 0.99 0.99 0.99	Result Analysis Signal	- 🗆 X
Image: Second	Start Time Used End Time Used Time Window Gen Speed 3 - 10 3.000000 10.000000 Contingency My Transient Contingency Object Gen 'Bus1_16.50' '1' Field TSSpeed Statistics Modes and Damping Object Fields Undamped Modes A (constant) B (linear) C (quadratic)	
	Image: Second secon	Detions *

Verification: Linear Trend Line + Four Modes

Ā	M
	e o

Result Analysis Signal	- 🗆 X
Start Time Used End Time Used Time Window Gen Speed 3 - 10 3.000000 10.000000 My Transient Contingency Object Gen 'Bus1_16.50' '1' Field TSSpeed	
Undamped Modes A (constant) B (linear) C (quadratic) 0 Trend 1.00 0.0000617 0.0 :	• • • • • • • • • • • • • • • • • • •
	0.9994 3 4 5 6 7 8 9 10

Verification: Linear Trend Line + Five Modes

Ā	M
	• •

🔘 Result Analysis Signal						- 0	×
Start Time Used End Time Used Time Window	Gen Speed 3 - 10						
3.000000 10.000000 Contingency	My Transient Contingency						
Object	Gen 'Bus1_16.50' '1'						
Field	TSSpeed						
Statistics Modes and Damping Object Fields							
Undamped Modes A (constant) 0 Trend 1.00	B (linear) C (quadr 0.0000617	atic) 0.0					
: 🧱 💽 🏪 카운 🎲 🎎 🏘 🥵 Record	ds 🔹 Set 👻 Columns 👻 🔤 👻		SORT IZU f(X	x) - 🌐 Option	5 *		
Modes for Selected Signal		Update	Auto	1.0012			1
Mode Magnitude Magnitude A Include End Reproduce	ngle Rank Mode Frequency	Mode Damping %	Mode Lambda	1.001	Δ	$\wedge \wedge \wedge \wedge$	
1 YES 0.00166 0.0000643	111.15 41.13 0.17	39.67	-0.465		Λ		
2 YES 0.00114 0.0000256	0.00 28.28 0.000	100.00	-0.543	1.0006			1
3 YES 0.00097 0.0000488	69.05 24.01 1.364	4.98	-0.427	1.0004	11		
4 YES 0.0000167 0.000243	-180.00 6.02 0.000	-100.00	0.383				
0.0000225 000000445	-55.04 0.555 2.017	6.99	-0.000	1.0002	$ \rangle $		

It is hard to tell a difference on this one, illustrating that modes manifest differently in different signals

A Larger Example We'll Finish With

Applying the developed techniques to the response of all 43,400 substation frequencies from an 110,000 bus electric grid(20 million plus values)

Spatial Visualization of Frequency

Measurement-Based Modal Analysis

- There are a number of different approaches
- The idea of all techniques is to approximate a signal, y_{org}(t), by the sum of other, simpler signals (basis functions)
 - Basis functions are usually exponentials, with linear and quadratic functions used to detrend the signal
 - Properties of the original signal can be quantified from basis function properties
 - Examples are frequency and damping
 - Signal is considered over time with t=0 as the start
- Approaches sample the original signal $y_{org}(t)$

Measurement-Based Modal Analysis

• Vector y consists of m uniformly sampled points from $y_{org}(t)$ at a sampling value of ΔT , starting with t=0, with values y_j for j=1...m

– Times are then
$$t_j = (j-1)\Delta T$$

- At each time point j, the approximation of y_i is

$$\hat{y}_j(\mathbf{t}_j, \boldsymbol{\alpha}) = \sum_{i=1}^n b_i \phi_i(t_j, \boldsymbol{\alpha})$$

where $\boldsymbol{\alpha}$ is a vector with the real and imaginary eigenvalue components, with $\phi_i(t_j, \boldsymbol{\alpha}) = e^{\alpha_i t_j}$ for α_i corresponding to a real eigenvalue, and $\phi_i(t_j, \boldsymbol{\alpha}) = e^{\alpha_i t_j} \cos(\alpha_{i+1} t_j)$ and $\phi_{i+1}(\boldsymbol{\alpha}) = e^{\alpha_i t_j} \sin(\alpha_{i+1} t_j)$ for a complex eigenvector value

Measurement-Based Modal Analysis

A M

• Error (residual) value at each point j is

$$r_j(t_j, \boldsymbol{\alpha}) = y_j - \hat{y}_j(t_j, \boldsymbol{\alpha})$$

• The closeness of the fit can be quantified using the Euclidean norm of the residuals

$$\frac{1}{2}\sum_{j=1}^{m}(y_j-\hat{y}_j(t_j,\boldsymbol{\alpha}))^2 = \frac{1}{2}\left\|\mathbf{r}(\boldsymbol{\alpha})\right\|_2^2$$

• Hence we need to determine $\boldsymbol{\alpha}$ and \boldsymbol{b}

$$\hat{y}_j(t_j, \boldsymbol{\alpha}) = \sum_{i=1}^n b_i \phi_i(t_j, \boldsymbol{\alpha})$$

Sampling Rate and Aliasing

- The Nyquist-Shannon sampling theory requires sampling at twice the highest desired frequency
 - For example, to see a 5 Hz frequency we need to sample the signal at a rate of at least 10 Hz
- Sampling shifts the frequency spectrum by 1/T (where T is the sample time), which causes frequency overlap
- This is known as aliasing, which can cause a high frequency signal to appear to be a lower frequency signal

Aliasing can be reduced by fast sampling and/or low pass filters

Image: upload.wikimedia.org/wikipedia/commons/thumb/2/28/AliasingSines.svg/2000px-AliasingSines.svg.png

One Solution Approach: The Matrix Pencil Method

- There are several algorithms for finding the modes. We'll use the Matrix Pencil Method
 - This is a newer technique for determining modes from noisy signals (from about 1990, introduced to power system problems in 2005); it is an alternative to the Prony Method
 - The Matrix Pencil Method is useful when there is signal noise
- Given m samples, with L=m/2, the first step is to form the Hankel Matrix, **Y** such that

This not a sparse matrix

$$\mathbf{Y} = \begin{bmatrix} y_1 & y_2 & \dots & y_{L+1} \\ y_2 & y_3 & \dots & y_{L+2} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m-L} & y_{m-L+1} & \dots & y_m \end{bmatrix}$$

Reference: A. Singh and M. Crow, "The Matrix Pencil for Power System Modal Extraction," IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 501-502, Institute of Electrical and Electronics Engineers (IEEE), Feb 2005.

Algorithm Details, cont.

- Then calculate **Y**'s singular values using an economy singular value decomposition (SVD) $\mathbf{Y} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T}$ The compute complexity in
- The ratio of each singular value is then compared to the largest singular value σ_c ; retain the ones with a ratio > than a threshold
 - This determines the modal order, M
 - Assuming V is ordered by singular values (highest to lowest), let V_p be then matrix with the first M columns of V

The computational complexity increases with the cube of the number of measurements!

> This threshold is a value that can be changed; decrease it to get more modes.

Aside: The Matrix Singular Value Decomposition (SVD)

 $\mathbf{Y} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathrm{T}}$ The original concept is more than 100 years old, but has found lots of recent applications

where Σ is a diagonal matrix of the singular values

• The singular values are non-negative, real numbers that can be used to indicate the major components of a matrix (the gist is they provide a way to decrease the rank of a matrix)

Aside: SVD Image Compression Example

Images can be represented with matrices. When an SVD is applied and only the largest singular values are retained the image is compressed.

Figure 3.1: Image size 250x236 - modes used {{1,2,4,6},{8,10,12,14},{16,18,20,25},{50,75,100,original image}}

Image Source: www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf

Matrix Pencil Algorithm Details, cont.

- Then form the matrices \mathbf{V}_1 and \mathbf{V}_2 such that
 - \mathbf{V}_1 is the matrix consisting of all but the last row of \mathbf{V}_p
 - \mathbf{V}_2 is the matrix consisting of all but the first row of \mathbf{V}_p
- Discrete-time poles are found as the generalized eigenvalues of the pair $(\mathbf{V}_2^T \mathbf{V}_1, \mathbf{V}_1^T \mathbf{V}_1) = (\mathbf{A}, \mathbf{B})$
- These eigenvalues are the discrete-time poles, z_i with the modal eigenvalues then

If **B** is nonsingular (the situation here) then the generalized eigenvalues are the eigenvalues of $B^{-1}A$

$$\lambda_i = \frac{\ln(z_i)}{\Delta T}$$

The log of a complex number $z=r \angle \theta$ is $ln(r) + j\theta$

Matrix Pencil Method with Many Signals

- The Matrix Pencil approach can be used with one signal or with multiple signals
- Multiple signals are handled by forming a \mathbf{Y}_k matrix for each signal k using the measurements for that signal and then combining the matrices

$$\mathbf{Y}_{k} = \begin{bmatrix} y_{1,k} & y_{2,k} & \cdots & y_{L+1,k} \\ y_{2,k} & y_{3,k} & \cdots & y_{L+2,k} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m-L,k} & y_{m-L+1,k} & \cdots & y_{m,k} \end{bmatrix}$$
$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_{1} \\ \vdots \\ \mathbf{Y}_{N} \end{bmatrix}$$

The required computation scales linearly with the number of signals

Matrix Pencil Method with Many Signals

- However, when dealing with many signals, usually the signals are somewhat correlated, so vary few of the signals are actually need to be included to determine the desired modes
- Ultimately we are finding $n = \frac{n}{2}$

$$y_j(\mathbf{t}_j, \boldsymbol{\alpha}) = \sum_{i=1}^n b_i \phi_i(t_j, \boldsymbol{\alpha})$$

The α is common to all the signals (i.e., the system modes) while the b vector is signal specific (i.e., how the modes manifest in that signal)

Quickly Determining the b Vectors

 A key insight is from an approach known as the Variable Projection Method (from Borden, 2013) that for any signal k
 y_k = Φ(α)b_k

And then the residual is minimized by selecting $\mathbf{b}_{k} = \mathbf{\Phi}(\mathbf{\alpha})^{+} \mathbf{y}_{k}$ where $\mathbf{\Phi}(\mathbf{\alpha})$ is the m by n matrix with values $\Phi_{ji}(\mathbf{\alpha}) = e^{\alpha_{i}t_{j}}$ if α_{i} corresponds to a real eigenvalue, and $\Phi_{ji}(\mathbf{\alpha}) = e^{\alpha_{i}t_{j}} \cos(\alpha_{i+1}t_{j})$ and $\Phi_{ji+1}(\mathbf{\alpha}) = e^{\alpha_{i}t_{j}} \sin(\alpha_{i+1}t_{j})$ for a complex eigenvalue; $t_{j} = (j-1)\Delta T$ Finally, $\mathbf{\Phi}(\mathbf{\alpha})^{+}$ is the pseudoinverse of $\mathbf{\Phi}(\mathbf{\alpha})$

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," *Proc. 2013 North American Power Symposium*, Manhattan, KS, Sept. 2013