ECEN 667 Power System Stability

Lecture 21: Measurement-Based Modal Analysis

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Read Chapter 8
- Homework 6 is due today
- Homework 7 will be assigned soon and due on Nov 30

Matrix Pencil Method with Many Signals

- However, when dealing with many signals, usually the signals are somewhat correlated, so vary few of the signals are actually need to be included to determine the desired modes
- Ultimately we are finding n

$$y_j(t_j, \boldsymbol{\alpha}) = \sum_{i=1}^n b_i \phi_i(t_j, \boldsymbol{\alpha})$$

The α is common to all the signals (i.e., the system modes) while the b vector is signal specific (i.e., how the modes manifest in that signal)

Quickly Determining the b Vectors

 A key insight is from an approach known as the Variable Projection Method (from Borden, 2013) that for any signal k
 y_k = Φ(α)b_k

And then the residual is minimized by selecting $\mathbf{b}_{k} = \mathbf{\Phi}(\mathbf{\alpha})^{+} \mathbf{y}_{k}$ where $\mathbf{\Phi}(\mathbf{\alpha})$ is the m by n matrix with values $\Phi_{ji}(\mathbf{\alpha}) = e^{\alpha_{i}t_{j}}$ if α_{i} corresponds to a real eigenvalue, and $\Phi_{ji}(\mathbf{\alpha}) = e^{\alpha_{i}t_{j}} \cos(\alpha_{i+1}t_{j})$ and $\Phi_{ji+1}(\mathbf{\alpha}) = e^{\alpha_{i}t_{j}} \sin(\alpha_{i+1}t_{j})$ for a complex eigenvalue; $t_{j} = (j-1)\Delta T$ Finally, $\mathbf{\Phi}(\mathbf{\alpha})^{+}$ is the pseudoinverse of $\mathbf{\Phi}(\mathbf{\alpha})$

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," *Proc. 2013 North American Power Symposium*, Manhattan, KS, Sept. 2013

Aside: Pseudoinverse of a Matrix

- The pseudoinverse of a matrix generalizes concept of a matrix inverse to an m by n matrix, in which m >= n
 Specifically this is a Moore-Penrose Matrix Inverse
- Notation for the pseudoinverse of **A** is **A**⁺
- Satisfies $AA^+A = A$
- If **A** is a square matrix, then $\mathbf{A}^+ = \mathbf{A}^{-1}$
- Quite useful for solving the least squares problem since the least squares solution of Ax = b is x = A⁺ b
- Can be calculated using an SVD $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T$

 $\mathbf{A}^{+} = \mathbf{V} \, \boldsymbol{\Sigma}^{+} \, \mathbf{U}^{T}$

Least Squares Matrix Pseudoinverse Example

- Assume we wish to fix a line (mx + b = y) to three data points: (1,1), (2,4), (6,4)
- Two unknowns, m and b; hence $\mathbf{x} = [m \ b]^T$
- Setup in form of Ax = b

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 6 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix} \text{ so } \mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 6 & 1 \end{bmatrix}$$

Least Squares Matrix Pseudoinverse Example, cont.

A M

• Doing an economy SVD

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} = \begin{bmatrix} -0.182 & -0.765 \\ -0.331 & -0.543 \\ -0.926 & 0.345 \end{bmatrix} \begin{bmatrix} 6.559 & 0 \\ 0 & 0.988 \end{bmatrix} \begin{bmatrix} -0.976 & -0.219 \\ 0.219 & -0.976 \end{bmatrix}$$

• Computing the pseudoinverse $\mathbf{A}^{+} = \mathbf{V} \boldsymbol{\Sigma}^{+} \mathbf{U}^{T} = \begin{bmatrix} -0.976 & 0.219 \\ -0.219 & -0.976 \end{bmatrix} \begin{bmatrix} 0.152 & 0 \\ 0 & 1.012 \end{bmatrix} \begin{bmatrix} -0.182 & -0.331 & -0.926 \\ -0.765 & -0.543 & 0.345 \end{bmatrix}$ $\mathbf{A}^{+} = \mathbf{V} \boldsymbol{\Sigma}^{+} \mathbf{U}^{T} = \begin{bmatrix} -0.143 & -0.071 & 0.214 \\ 0.762 & 0.548 & -0.310 \end{bmatrix}$

In an economy SVD the Σ matrix has dimensions of m by m if m < n or n by n if n < m

Least Squares Matrix Pseudoinverse Example, cont.

• Computing $\mathbf{x} = [m b]^T$ gives

$$\mathbf{A}^{+}\mathbf{b} = \begin{bmatrix} -0.143 & -0.071 & 0.214 \\ 0.762 & 0.548 & -0.310 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 0.429 \\ 1.71 \end{bmatrix}$$

- With the pseudoinverse approach we immediately see the sensitivity of the elements of x to the elements of b
 New values of m and b can be readily calculated if y changes
- Computationally the SVD is order mn^2+n^3 (with n < m)
 - In this example it means it scales linearly with the number of points; matrices with m >> n are common

Computational Considerations

- When there is just one signal, the procedure scales with the cube of the number of measurements
 - This value is usually relatively small, say 20 seconds of data sampled at 10 Hz for 200 measurements
- If multiple signals are included, it scales linearly with the number of signals
- However, a key insight is once α has been determined, each b_k can be determined with a matrix multiply of a matrix with dimensions of the number of modes and number of measurements
 We can quickly get how well

$$\mathbf{y}_k = \mathbf{\Phi}(\mathbf{\alpha})\mathbf{b}_k \rightarrow \mathbf{b}_k = \mathbf{\Phi}(\mathbf{\alpha})^+ \mathbf{y}_k$$

We can quickly get how well α matches each signal

 $\Phi(\alpha)^+$ is the pseudoinverse of $\Phi(\alpha)$

Modal Analysis in PowerWorld

- Goal is to make modal analysis easy to use, and easy to visualize the results
- Provided tool can be used with either transient stability results or actual system signals (e.g., from PMUs)
- Three ways to access in PowerWorld
 - From the Modal Analysis button (in Add-Ons)
 - On the Transient Stability Analysis form left menu, Modal Analysis (right below SMIB Eigenvalues)
 - By right-clicking on a transient stability or plot case information display, and selecting Modal Analysis Selected Columns or Modal Analysis All Columns

Modal Analysis: Three Generator Example

• A short fault at t=0 gets the below three generator case oscillating with multiple modes (mostly clearly visible for the red and the green curve)

Modal Analysis: Three Generator Example

- Open the case **B3_CLS_UnDamped**
 - This system has three classical generators without damping; the default event is a self clearing fault at bus 1
- Run the transient stability for 5 seconds
- To do modal analysis, on the Transient Stability page select Results from RAM, view just the generator speed fields, right-click and select **Modal Analysis All Columns**
 - This display the Modal Analysis Form

Modal Analysis Form

First click on **Do Modal Analysis** to run the modal analysis

3 7	orm													- 🗆	×
Modal Analysis Status	Solved at 11/9/2021 10:0	2:26 AM					Results								
Data Source Type From Plot File, WECC CSV 2 File, JSIS Format File, Comtrade CFI	○ File, Comt	rade CFG iting Data Data Starts I	ine 2)	alculation Method) Matrix Pencil (C) Iterative Matrix) Dynamic Mode I	l Ince) Pencil Decompo	osition	Number of Lowest Pe Real and (f Complex and F crcent Damping Complex Modes	Real Modes 2	0.011	ubtract Reproduc Update Reproduc es	Reproduced Sign ed from Actual uced Signals			
Data Source Inputs fr	om Plots or Files	~	Sa	Do Moo	lal Analy	sis Save to CSV	Fi	requency (Hz)	Damping (%)	Largest M Component in V Mode, C Unscaled N	lame of Signal vith Largest Co Component in Node, Inscaled	Average R omponent in Mode, C Unscaled	to Largest (component in 1 Mode, UnScaled	Largest Component in Mode, Scaled	Name of with Lar Compor Mode, S
From File Just Load Signals	Group Disabled for E	Brows	a				1 2	2.232 1.510	0.001 -0.011	0.00642 0	en Bus 1 #1 S Sen Bus 2 #1 S	0.00314 0.00043	0.4900 0.6838	1.404 0.615	Gen Bus Gen 3 #
Data Sampling Time (S Start Time 0.0 Maximum Hz 5.0	econds) and Frequency (H 50 End Time 00 Update Sample	tz) 5.000 ed Data	● ● ■ St	ore Results in PV ways Reload Sigr	/B File	Source	K		ſ						>
Input Data, Actual Sa	mpled Input Data Signal	s Options	Reproduced	Data Iterative	Matrix I	Pencil Iteration D	Details								
Туре	Name	Latitude	Longitude	Description	Units	Include	Include Reproduced	Exclude from Iterative Mat Pencil (IMP)	Alwa s inclu in Iteritive Matrix Penci (IMP)	de Detrend Parameter A I	Detrend Parameter B	Post-Detrend Number Zeros	Post-Detrend Standard Deviation	i Solved	Aver Ur
1 Gen	Gen Bus 1 #1 Speed			Speed		YES	YES	NO	NO	1.002	4 0.0004	1 (0 0.00457	YES	
	Gen Bus 2 #1 Speed			Speed		YES	YES	NO	NO	1.002	4 0.0003	3	0 0.00147	YES	
2 Gen				Speed		IE D	IED.	NO	NU	1.002	5 0.0003		0 0.088/6/	100	

Right-click on signal to view its dialog

Signals to include

Key results are shown in the upper-right of the form. There are two main modes, one at 2.23Hz and one at 1.51; both have very little damping.

Three Generator Example: Signal Dialog

• The **Signal Dialog** provides details about each signal, including its modal components and a comparison between the original and reproduced signals (example for gen 3)

e Gen	3 #1 Speed	Data Detrend Param	neters			Output Summary		
e Gen		Detrend Model = A	+ B*(t-t0) + C*(t-t0)^2	Used Detrend Model	Linear	Average Error. Scaled by SD 0.0000		
s		Use Case Default Detrend Model		Parameter A	1.0025	Average Error. Unscaled	0.0000	
escription Speed		Signal Specific D	etrend Model	Parameter B	0.0003	Cost Function Value, Scaled	0.0068	
nclude in Mod	al Analysis	Constant		Parameter C	0.0000	Include Detrend in Reprodu	iced Signal	
Always Exclud	e Signal During IMP	Constant	Quadratic	Standard Deviation (SD)	0.0008	Update Reproduced		
lways Include	Signal During IMP							
ual Input Sa	mpled Input Fast F	ourier Transform Resu	ults Modal Results Ori	ginal and Reproduced Sign	al Comparison			
Tim	(Seconds)	Original Value	Reproduced Value	Difference				
1	0.050	1.002	1.002	0.000				
2	0.058	1.002	1.002	0.000				
3	0.067	1.002	1.002	0.000				
4	0.075	1.002	1.002	0.000				
5	0.083	1.002	1.002	0.000				
7	0.092	1.002	1.002	0.000				
/	0.100	1.002	1.002	0.000				
0	0.100	1.002	1.002	0.000				
10	0.125	1.002	1.003	0.000				
	0.123	1.003	1.003	0.000				
11	0.142	1.003	1.003	0.000				
11		1.003	1.003	0.000				
11 12 13	0.150			0.000				
11 12 13 14	0.150	1.003	1.003	0.000				
11 12 13 14 15	0.150 0.158 0.167	1.003	1.003	0.000				
11 12 13 14 15 16	0.150 0.158 0.167 0.175	1.003 1.003 1.003	1.003 1.003 1.003	0.000				
11 12 13 14 15 16 17	0.150 0.158 0.167 0.175 0.183	1.003 1.003 1.003 1.003	1.003 1.003 1.003 1.003	0.000 0.000 0.000 0.000				
11 12 13 14 15 16 17 18	0.150 0.158 0.167 0.175 0.183 0.192	1.003 1.003 1.003 1.003 1.003	1.003 1.003 1.003 1.003 1.003	0.000 0.000 0.000 0.000 0.000				
11 12 13 14 15 16 17 18 19	0.150 0.158 0.167 0.175 0.183 0.192 0.200	1.003 1.003 1.003 1.003 1.003 1.003 1.003	1.003 1.003 1.003 1.003 1.003 1.003	0.000 0.000 0.000 0.000 0.000 0.000				
11 12 13 14 15 16 17 18 19 20	0.150 0.158 0.167 0.175 0.183 0.192 0.200 0.208	1.003 1.003 1.003 1.003 1.003 1.003 1.003	1.003 1.003 1.003 1.003 1.003 1.003 1.003	0.000 0.000 0.000 0.000 0.000 0.000				

Plotting the original and reproduced signals shows a near exact match

Caution: Setting Time Range Incorrectly Can Result in Unexpected Results!

- Assume the system is run with no disturbance for two seconds, and then the fault is applied and the system is run for a total of seven seconds (five seconds post-fault)
 - The incorrect approach would be to try to match the entire signal; rather just match from after the fault
 - Trying to match the full signal between 0 and
 7 seconds required eleven modes!
 - By default the Modal
 Analysis Form sets the
 default start time to
 immediately after the last event

GENROU Example with Damping

- Open the case **B3_GENROU**, which changes the GENCLS to GENROU models, adding damping
 - Also each has an EXST1 exciter and a TGOV1 governor
 - The simulation runs for seven seconds, with the fault occurring at two seconds; modal analysis is done from the time the fault is cleared until the end of the simulation.

The image shows the generator speeds. The initial rise in the speed is caused by the load dropping during the fault, causing a power mismatch; this is corrected by the governors. Note the system now has damping; modal analysis tells us how much.

GENROU Example with Damping

GENROU Example with Damping

• Left image show how well the speed for generator 1 is approximated by the modes

More signal details

Data Detrend Parameters Output Sur Gen Bus 1 #1 Speed Detrend Model = A + B*(t-t0) + C*(t-t0)^2 Used Detrend Model Linear Average E Gen Use Case Default Detrend Model Average E Parameter A 1.0037 Signal Specific Detrend Model Cost Funct -0.0014 Parameter B Description Speed None OLinear 0.0000 Parameter C ✓ Include Include in Modal Analysis Constant Ouadratic Standard Deviation (SD) 0.0013 Upda

Actual Input Sampled Input Fast Fourier Transform Results Modal Results Original and Reproduced Signal Comparison

	Damping (%)	Frequency (Hz)	Magnitude Scaled by SD	Magnitude, Unscaled	Angle (Deg)	Lambda	Include in Reproduced Signal
1	11.353	2.053	2.300	0.003	13.82	-1.474	YES
2	19.638	1.649	2.038	0.003	10.46	-2.075	YES
3	65.427	0.236	4.757	0.006	-91.36	-1.283	YES
4	-34.022	0.098	0.689	0.001	135.64	0.222	YES

Just the 2.05 Hz mode

Dealing with Multiple Signals

- When there are many signals, usually they are at least somewhat correlated, so we do not need to include all the signals in the calculation of α .
- Based on the previous quick calculation of \mathbf{b}_k , we can determine how well the signals match the $\boldsymbol{\alpha}$.
- A natural algorithm for improving is to include the signals that do not match α well. That is, have high residuals.
- This gave rise to what is called the Iterative Matrix Pencil algorithm.

Iterative Matrix Pencil Method

- When there are a large number of signals the iterative matrix pencil method works by
 - Selecting an initial signal to calculate the α vector
 - Quickly calculating the b vectors for all the signals, and getting a cost function for how closely the reconstructed signals match their sampled values
 - Selecting a signal that has a high cost function, and repeating the above adding this signal to the algorithm to get an updated α

An open access paper describing this is W. Trinh, K.S. Shetye, I. Idehen, T.J. Overbye, "Iterative Matrix Pencil Method for Power System Modal Analysis," *Proc. 52nd Hawaii International Conference on System Sciences*, Wailea, HI, January 2019; available at scholarspace.manoa.hawaii.edu/handle/10125/59803

Texas 2000 Bus Synthetic Grid Example

- For this example we'll again use the Texas 2000 bus grid, saved as **TSGC_2000_GenDrop**
- We'll use the Iterative Matrix Pencil Method to examine its modes
 - The contingency is the loss of two large generators (at bus 7098 and 7099)

2000 Bus System Example, Initially Just One Signal

- Initially our goal is to understand the modal frequencies and their damping
- First we'll consider just one of the 2000 signals; arbitrarily I selected bus 8126 (Mount Pleasant)

Some Initial Considerations

- The contingency was applied at time = 2 seconds
- We need to pick the portion of the signal to consider and the sampling frequency
 - Because of the underlying SVD, the algorithm scales with the cube of the number of time points (in a single signal)
- I selected between 2 and 17 seconds
- I sampled at ten times per second (so a total of 150 samples)

2000 Bus System Example, One Signal

• The results from the Matrix Pencil Method are

Some Observations

• These results are based on the consideration of just one signal

The results show the algorithm trying

• The start time **should** be at or after the event!

If it isn't then...

2000 Bus System Example, One Signal Included, Cost for All

Using the previously discussed pseudoinverse approach, for a given set of modes (α) the b_k vectors for all the signals can be quickly calculated

$$\mathbf{b}_k = \mathbf{\Phi}(\mathbf{\alpha})^+ \mathbf{y}_k$$

- The dimensions of the pseudoinverse are the number of modes by the number of sample points for one signal
- This allows each cost function to be calculated
- The Iterative Matrix Pencil approach sequentially adds the signals with the worst match (i.e., the highest cost function)

2000 Bus System Example, Worst Match (Bus 7061)

26

2000 Bus System Example, Two Signals

With two signals

Number Lowest	of Complex and Percent Damping	Real Modes 9	7.359	Include Detrend Subtract Reprod Update Repro	in Reproduced Si uced from Actual oduced Signals	ignals	
Real an	d Complex Mode	s - Editable to Ch	ange Initial Gues	ses			
	Frequency (Hz)	Damping (%)	Largest Component in Mode, Unscaled	Name of Signal with Largest Component in Mode, Unscaled	Largest Component in Mode, Scaled	Name of Signal with Largest Component in Mode, Scaled	Lambo
1	2.266	17.168	0.04028	Bus 7329 (NEW	1.730	Bus 7307 (WHA	-2
2	1.413	21.844	0.10763	Bus 4030 (FANN	4.475	Bus 4030 (FANN	
3	0.958	7.359	0.04666	Bus 6147 (SAN /	1.801	Bus 6147 (SAN /	
4	0.701	11.705	0.21220	Bus 1051 (MON	5.762	Bus 8077 (MT. E	
5	0.630	13.361	0.20903	Bus 2120 (PARIS	6.350	Bus 4192 (BROV	
6	0.352	36.405	0.44679	Bus 1051 (MON	13.024	Bus 7311 (WHA	
7	0.322	14.403	0.19570	Bus 1073 (ODES	5.372	Bus 7311 (WHA	
8	0.000	100.000	0.09305	Bus 1051 (MON	1.767	Bus 1051 (MON	
9	0.064	36.756	0.02993	Bus 1073 (ODE:	1.182	Bus 7307 (WHA	

The new match on the bus that was previously worst (Bus 7061) is now quite good!

With one signal

Number of Complex and Real Modes 6
Lowest Percent Damping 10.137

Include Detrend in Reproduced Signals						
Subtract Reproduced from Actual						
Update Reproduced Signals						

Real and Complex Modes - Editable to Change Initial Guesses

	Frequency (Hz)	Damping (%)	Largest Component Mode, Unscaled	Name of Signal with Largest Component in Mode, Unscaled	Largest Component in Mode, Scaled	Name of Signal with Largest Component in Mode, Scaled	Lambo
1	0.383	32.011	0.44275	Bus 1073 (ODES	12.224	Bus 7310 (WHA	-0
2	0.670	24.191	0.38466	Bus 2120 (PARIS	11.549	Bus 8078 (MT. E	-1
3	0.665	10.705	0.23093	Bus 2115 (PARIS	6.801	Bus 2115 (PARIS	-0
4	0.312	14.397	0.16911	Bus 1073 (ODES	4.954	Bus 7310 (WHA	-0
5	0.971	10.137	0.08179	Bus 1051 (MON	2.551	Bus 6147 (SAN /	-0
6	0.052	41.828	0.04603	Bus 1074 (ODES	1.063	Bus 3035 (CHER	-0

2000 Bus System Example, Iterative Matrix Pencil

- The Iterative Matrix Pencil intelligently adds signals until a specified number is met
 - Doing ten iterations takes about four seconds

Number of	f Complex and	Real Modes 11		Include Detrend Subtract Reprod	in Reproduced S uced from Actua	ignals I			
Lowest Pe	ercent Damping		.082	Update Repro	duced Signals				
Real and (Complex Mode	s - Editable to Ch	ange Initial Gues	sses					
Fr	requency (Hz)	Damping (% 📥	Largest Component in Mode, Unscaled	Name of Signal with Largest Component in Mode, Unscaled	Largest Component in Mode, Scaled	Name of Signal with Largest Component in Mode, Scaled	Lambda	Include in Reproduced Signal	
1	0.631	6.082	0.10313	Bus BROWNSVI	3.292	Bus BROWNSVI	-0.2415	YES	
2	0.959	7.068	0.04897	Bus SAN ANTO	1.890	Bus SAN ANTO	-0.4269	YES	
3	1.364	7.246	0.03780	Bus ODESSA 1	1.420	Bus CHRISTINE	-0.6228	YES	
4	0.593	7.897	0.07205	Bus BROWNSVI	2.300	Bus BROWNSVI	-0.2949	YES	
5	1.602	8.562	0.04887	Bus FANNIN 2 F	2.032	Bus FANNIN 2 F	-0.8650	YES	
6	0.732	11.936	0.21348	Bus MONAHAN	4.054	Bus MONAHAN	-0.5529	YES	
7	0.324	14.207	0.19906	Bus ODESSA 1	5.268	Bus WHARTON	-0.2917	YES	
8	0.324	39.346	0.55936	Bus MONAHAN	12.994	Bus WHARTON	-0.8722	YES	
9	0.060	39.972	0.03815	Bus ODESSA 1	1.196	Bus POINT CON	-0.1645	YES	
10	0.964	57.683	0.61264	Bus ODESSA 1	18.504	Bus POINT CON	-4.2760	YES	
11	0.000	100.000	0.59650	Bus ODESSA 10	14.434	Bus WHARTON	-2.5257	YES	

Takeaways So Far

- Modal analysis can be quickly done on a large number of signals
 - Computationally is an O(N³) process for one signal, where N is the number of sample points; it varies linearly with the number of included signals
 - The number of sample points can be automatically determined from the highest desired frequency (the Nyquist-Shannon sampling theory requires sampling at twice the highest desired frequency)
 - Determining how all the signals are manifested in the modes is quite fast!!