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Announcements

T

Read Chapter 8
Homework 6 Is due today
Homework 7 will be assigned soon and due on Nov 30




Matrix Pencil Method with Many
Signals T

* However, when dealing with many signals, usually the |
signals are somewhat correlated, so vary few of the
signals are actually need to be included to determine

the desired modes
« Ultimately we are finding

yj(tjia) :ib@i(tpa)

* The a I1s common to all the signals (i.e., the system
modes) while the b vector is signal specific (i.e., how
the modes manifest in that signal)



Quickly Determining the b Vectors
HiY
« A key insight is from an approach known as the
Variable Projection Method (from Borden, 2013) that
for any signal k
Y, =@(a)b,
And then the residual is minimized by selecting b, = ®(a)"y,

where ®(a) is the m by n matrix with values

ot - _ Where m is the
@ (o) =€ If & corresponds to a real eigenvalue,

number of
aitj . aitj .
and @ ; (a) =€ cos(a,qt;) and @, (o) = €™ sin(e;.,t;) measurements
for a complex eigenvalue; t, =( j—1)AT and n is the

Finally, ®(a)" is the pseudoinverse of ®(a) number of modes

A. Borden, B.C. Lesieutre, J. Gronquist, "Power System Modal Analysis Tool Developed for Industry Use," Proc. 2013
North American Power Symposium, Manhattan, KS, Sept. 2013



Aside: Pseudoinverse of a Matrix

Al
* The pseudoinverse of a matrix generalizes concept of a
matrix inverse to an m by n matrix, in which m >=n

— Specifically this is a Moore-Penrose Matrix Inverse
* Notation for the pseudoinverse of A'is A*
« Satisfies AA*A=A
* If Alisasquare matrix, then A* = A

 Quite useful for solving the least squares problem since
the least squares solution of AX =bisx=A*b

« Can be calculated usinganSVD A=UXV'
A =VXIU'



Least Squares Matrix Pseudoinverse
Example

T

Assume we wish to fix a line (mx + b = y) to three
data points: (1,1), (2,4), (6,4)

Two unknowns, m and b; hence x = [m b]"
Setup in form of Ax =D

1 1] _ 1 1 1
m

2 1 b=4 so A=|2 1

_6 1_- - _4_ _6 1_




Least Squares Matrix Pseudoinverse
Example, cont.

Al
* Doing an economy SVD
-0.182 —0.765]
; 6.559 0 ][-0.976 -0.219
A=UxXV' =|-0331 -0.543
0 0.988| 0219 -0.976
| -0.926 0.345 |
e Computing the pseudoinverse
. . [-0.976 0.219}{0.152 0 M—o.lsz -0.331 —0.926}
A =VIU =
-0.219 -0.976| 0 1.012| -0.765 -0.543 0.345

Ay T [-0.143 -0.071 0.214
- 1 0762 0548 -0.310

In an economy SVD the £ matrix has dimensions of
mbymifm<nornbynifn<m



Least Squares Matrix Pseudoinverse
Example, cont.

T

« Computing X = [m b]" gives

A ~0.143 -0.071 0.214 ~[0.429
0.762 0.548 -0.310 171

A

« With the pseudoinverse approach we immediately see
the sensitivity of the elements of x to the elements of b

- New values of m and b can be readily calculated if y changes

« Computationally the SVD is order mn2+n3 (with n <m)

— In this example it means it scales linearly with the number of
points; matrices with m >>n are common



Computational Considerations

HiY

* When there is just one signal, the procedure scales with
the cube of the number of measurements

— This value is usually relatively small, say 20 seconds of data
sampled at 10 Hz for 200 measurements
« If multiple signals are included, it scales linearly with
the number of signals

* However, a key insight is once a has been determined,
each b, can be determined with a matrix multiply of a
matrix with dimensions of the number of modes and

number of measurements  \ne can quickly get how well

Yy =®(a)b, >b, =®(a)’y,  « matches each signal
®(a)" is the pseudoinverse of ®(a) 8



Modal Analysis in PowerWorld

Al
Goal Is to make modal analysis easy to use, and easy to
visualize the results

Provided tool can be used with either transient stability
results or actual system signals (e.g., from PMUs)

Three ways to access in PowerWorld
~ From the Modal Analysis button (in Add-Ons)

— On the Transient Stability Analysis form left menu, Modal
Analysis (right below SMIB Eigenvalues)

— By right-clicking on a transient stability or plot case
Information display, and selecting Modal Analysis Selected
Columns or Modal Analysis All Columns



Modal Analysis:
Three Generator Example

* A short fault at t=0 gets the below three
generator case oscillating with multiple

modes (mostly clearly visible for the red
and the green curve) - | [\ q

T

1.0070 ]
GENCLS Bus 1 X=0.2 Bus 2 1.0060 1 (\
; >335 GENCLS )

ooooooo

10



Modal Analysis:
Three Generator Example

* Open the case B3 CLS UnDamped

— This system has three classical generators without
damping; the default event is a self clearing fault at bus 1

* Run the transient stability for 5 seconds

« To do modal analysis, on the Transient Stability
page select Results from RAM, view just the
generator speed fields, right-click and select Modal
Analysis All Columns
— This display the Modal Analysis Form

T

11



Modal Analysis Form

First click on Do Modal Analysis to run the modal analysis

Maodal Analysis Form — O X
Results
Modal Analysis Status |Solved at 11/9/2021 10:02:26 AM | ) )
: Mumber of Complex and Real Modes Indude Detrend in Reproduced Signals
DCa)t: Sou'glcetTwe O, Comtrade G C@-;'C‘-"ﬂhon Method [J5ubtract Reproduced from Actual
ST LGS Matrix Pencil {Once) Lowest Percent Damping : )
(O)File, WECC CSV 2 (®) None, Existing Data o Update Reproduced Signals
Orile, 1515 Farmat OFile, CSV (Data Starts Line 7) . - Real and Complex Modes - Editable to Change Initial Guesses
(C)File, Comtrade CFF (O Dynamic Mode Decomposition
Frequency (Hz)| Damping [#2) Largest Mame of Signa Average Ratio Average Largest Mame o
Data Source Inputs from Plots or Files Do Modal Analysis Component in |with Largest |Componentin| tolargest |[Componentin|with Lar
¥ Mode, Component in Mode, Component in | Mode, Scaled |Compor
Gen_Speed i Unscaled  |Mode, Unscaled Mode, Mode, S
— Save in J5IS Format Save to CSV Unscaled UnScaled
| | Sliiss 1 0.001 0.00642 Gen Bus 1#15 0.00314 0.4900 1.404 Gen Bus
. o 2 -0.011 0.00063 GenBus2#15 0.00043 0.6833 0.615 Gen 3 #
Group Disabled for Existing Data
Data Sampling Time (Seconds) and Frequency (Hz)
Start Time End Time
Maximum Hz = Update Sampled Data Store Results in PWB File
[ always Reload Signals from Source < >
Input Data, Actual Sampled Input Data Signals  Options  Reproduced Data  Iterative Matrix Pencil Iteration Details
Type MName Latitude |Longitude | Description [ Units Include Include Exclude from [ Alwi include Dretrend Detrend Post-Detrend | Post-Detrend Solved Averi
Reproduced |lterative Matrix|in lteftive Parameter A Parameter B (Number Zeros Standard Ur
Pencil (IMF} Matri Deviation
(IMF)
YES YES o NO 1.0024 0.0004 0 0.00457 YES
YES YES NO NO 1.0024 0.0003 0 0.00147 YES
YES YES NO NO 1.0025 0.0003 0 0.00082 YES
>
? Help int

Right-click on
signal to view
Its dialog

Signals to
Include

Key results are shown in the upper-right
of the form. There are two main modes,
one at 2.23Hz and one at 1.51; both have
very little damping. ®

A|M

@



Three Generator Example:
Signal Dialog

A|M

@

« The Signal Dialog provides details about each
signal, including its modal components and a
comparison between the original and reproduced
signals (example for gen 3)

Modal Analysis Signal Dialog

MName Data Detrend Parameters
Type Gen Detrend Model = A +B=(t-+0) + C*(t-t0)2 Used Detrend Model

Units l:l Use Case Default Detrend Model Parameter A 0025
Description Signal Spedific Detrend Model Parameter B 0003
@ None O Linear
Indude in Modal Analysis o o Parameter C 0.0000
. . Constant Quadratic
[J Always Exdude Signal During IMP Standard Deviation (30)

[] Always Indude Signal During IMP

Actual Input  Sampled Input  Fast Fourier Transform Results  Modal Results  Original and Reproduced Signal Comparison

Time (Seconds) ‘ Criginal Value Reproduced Value Difference ‘

1 0.050] 1.002 1.002 0.000
2] 0.058 1.002 1.002 0.000
3 0.067 1.002 1.002 0.000
4 0.075 1.002 1.002 0.000
5 0.083 1.002 1.002 0.000
6 0.092 1.002 1.002 0.000
il 0.100 1.002 1.002 0.000
8| 0.108 1.002 1.002 0.000
9| 0.117 1.002 1.003 0.000
10 0125 1.003 1.003 0.000
11 0.133 1.003 1.003 0.000
12| 0.142 1.003 1.003 0.000
13 0.150 1.003 1.003 0.000
14] 0.158 1.003 1.003 0.000
15 0.167 1.003 1.003 0.000
186 0.175 1.003 1.003 0.000
17] 0.183 1.003 1.003 0.000
18 0.192 1.003 1.003 0.000
19| 0.200 1.003 1.003 0.000
20| 0.208 1.003 1.003 0.000
21 n.217 1.003 1.003 0.000

? Help Print

*

Output Summary

Average Error. Scaled by SD 0.0000
Average Error. Unscaled 0.0000
Cost Function Value, Scaled 0.0068

Indude Detrend in Reproduced Signal

Update Reproduced

>

Values

1.0052

1.005
1.0048
1.0046
1.0044
1.0042

1.004}
1.0038
1.0036
1.0034
1.0032

1.003
1.0028
1.0026
1.0024
1.0022

1.002
1.0018
1.0016
1.0014

Plotting the original and
reproduced signals shows
a near exact match

100

T T
200 300 400

== Original Value == Reproduced Value]

13



Caution: Setting Time Range Incorrectly
Can Result in Unexpected Results! T
« Assume the system is run with no disturbance for two |
seconds, and then the fault is applied and the system is
run for a total of seven seconds (five seconds post-fault)

— The incorrect approach would be to try to match the entire
signal; rather just match from after the fault

— Trying to match the full
signal between 0 and
7 seconds required eleven
modes! o &
~ By default the Modal
Analysis Form sets the
default start time to
Immediately after the last event

14



GENROU Example with Damping
T

Open the case B3_ GENROU, which changes the
GENCLS to GENROU models, adding damping
— Also each has an EXST1 exciter and a TGOV1 governor

— The simulation runs for seven seconds, with the fault occurring
at two seconds; modal analysis is done from the time the fault
IS cleared until the end of the simulation.

The image shows the generator
speeds. The initial rise in the speed
Is caused by the load dropping
during the fault, causing a power
mismatch; this is corrected by the
governors. Note the system now
has damping; modal analysis tells
R us how much.
Lp— Speed_Gen Bus 141 o Speed_Gen Bus 2 #1 o Speed_Gen 3 1] 1 5




GENROU Example with Damping

Madal Analysis Form = m| X
Results
Modal Analysis Status |So|ved at 11/9/2021 10:07:41 AM | ) )
: Number of Complex and Real Modes [Aindude Detrend in Reproduced Signals
Data Source Type . Calculation Method Subtract Reproduced from Actual
OFrom Plat OFie, Comirade CFG (®) Matrix Pencil (Once) Lowest Percent Damping 22 )
(OFile, WECC CSV 2 (®) None, Existing Data O Iterative Matrix Pendi Update Reproduced Signals
OFile, 1515 Format (O File, CSV (Data Starts Line 7) . " Real and Complex Modes - Editable to Change Initial Guesses
(File, Comirade CFF () Dynamic Mode Decomposition
Frequency (Hz}| Damping [3&) Largest Mame of Signa Average Ratio Aver
Data Source Inputs from Plots or Files Do Modal Analysis Component in |with Largest_ Componentin| tolarge
Maode, Component in Maode, Componer
Gen_Speed ~ Unscaled  |Maode, Unscaled Maode,
- Save in J5IS Format Save to CSV Unscaled UnScale
| | SAsS 1 11,353 0.00352 Gen 3 #1 Speet 0.00231 0.6
. L 2 19.638 000452 GenBus 2#15 0.00292 0.t
Group Disabled for Existing Data 3 £5.427 0.00662 Gen Bus 2 %135 0.00640 0.¢
4 -34.022 0.00088 GenBus1#15% 0.00084 0.
Data Sampling Time (Seconds) and Frequency (Hz)
End Time =
Update Sampled Data Store Reslts in PWE File
] Always Reload Sianals from Source < >
Input Data, Acfi® Sampled Input Data  5ignals  Options Reproduced Data  Iterative Matrix Pendl Tteration Details
MName Latitude |Longitude | Description | Units Include Include Exclude from  [Always i de Detrend Detrend Post-Detrend | Post-D
Reproduced |lterative Matrix|in [terative Parameter A Parameter B | Number Zeros Stam
Pencil {IMF) Matrix Penci Deviz
(IMF)
YES YES o - T T R
YES YES -
Mode frequency, damping, and
q y’ p g 1
? Hep Print g

mode In the signals. The slower
Start time mode 1s associated with the
default value governors.

16
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Values

GENROU Example with Damping

Left image show how well the speed for generator
1 1s approximated by the modes

1.008j
1.0075
1.007
1.0065
1.006
1.0055
1.005
1.0045
1.004
1.0035
1.003
1.0025
1.002
1.0015
1.001
1.0005

0.9995
0.999
0.9985

PWDVectorGrid Variables

More signal details

T T T
3 4
Time (Seconds)

== QOriginal Value == Reproduced VaIueI

Modal analysis Signal Dialog

Gen Bus 1 #1 Speed Data Detrend Parameters

Name
Type

Units

Gen Detrend Model = A +B*(t-t0) + C*{t-t0)~2

|:| Use Case Default Detrend Model Parameter A

Signal Spedfic Detrend Model
@ Mone O Linear
Parameter C
Include in Modal Analysis () Constant () Quadratic

Used Detrend Model

Qutput Su

1.0037 Average E
0014 Cost Funct

0.0000 M incude

Standard Deviation (SD) | 0.0013 Upda

Actual Input  Sampled Input  Fast Fourier Transform Results  Modal Results  Original and Reproduced Signal Comparisan

Damping (%) Frequency [Hz) Magnitude Magnitude, Angle [Deg) Lambda Include in
Scaled by 5D Unscaled Reproduced
Signal
1 11.353 2.053 2,300 0.003 13.82 -1.474 YES
2 19.638 1.649 2,038 0.003 10.46 -2.075 YES
3 65.427 0.236 4,757 0.006 -81.36 -1.283 YES
4 -34.022 0.093 0.689 0.001 135.64 0.222 YES

Just the 2.05 Hz mode

0.0028
0.0026
0.0024
0.0022

0.002
0.0018
0.0016
0.0014
0.0012

0.001
0.0008
0.0006
0.0004
0.0002

o
-0.0002
-0.0004
-0.0006
-0.0008

-0.001
-0.0012
-0.0014
-0.0016
-0.0018

-0.002

eproaucea vaue

— Reproduced Value

17
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Dealing with Multiple Signals
T

* When there are many signals, usually they are at least
somewhat correlated, so we do not need to include all

the signals in the calculation of a.

« Based on the previous quick calculation of b,, we can
determine how well the signals match the a.

* A natural algorithm for improving is to include the
signals that do not match a well. That is, have high
residuals.

« This gave rise to what is called the Iterative Matrix
Pencil algorithm.

18



lterative Matrix Pencil Method

Al
* When there are a large number of signals the iterative
matrix pencil method works by

— Selecting an initial signal to calculate the a vector

— Quickly calculating the b vectors for all the signals, and
getting a cost function for how closely the reconstructed
signals match their sampled values

— Selecting a signal that has a high cost function, and repeating
the above adding this signal to the algorithm to get an updated
o

An open access paper describing this is W. Trinh, K.S. Shetye, I. Idehen, T.J.
Overbye, "Iterative Matrix Pencil Method for Power System Modal Analysis,"
Proc. 52nd Hawaii International Conference on System Sciences, Wailea, HI,

January 2019; available at scholarspace.manoa.hawaii.edu/handle/10125/59803
19



Texas 2000 Bus Synthetic Grid
Example
T

* For this example we’ll again use the Texas 2000 bus
grid, saved as TSGC 2000 GenDrop

« We’ll use the Iterative Matrix Pencil Method to
examine Its modes
— The contingency is the loss of two large generators (at bus 7098 and 7099)

The measurements will be the
frequencies at all 2000 buses

Bus Frequency (Hz)

:6 IS 1‘0 ‘1‘2 ‘1‘4 1‘8 18 20
Simulation Time (Seconds) 20



2000 Bus System Example, Initially
Just One Signal

 Initially our goal is to understand the modal frequencies
and their damping

* First we’ll consider just one of the 2000 signals;
arbitrarily | selected bus 8126 (Mount Pleasant)

60

AP

59.98
< 59.96 |
59.94

a1
©
©
N

59.9
59.88 ]
59.86
59.84 ]

Bus Frequency (H

59.82 ]

59.8

59.78 - - - - - - - - - -

0 2 4 6 8 10 12 14 16 18 20
Simulation Time (Seconds)

— Frequency, B 127 (MIAMI 0) — Frequency, Bus 1079 (ODESSA1 8)
v — requency, Bus 7042 (VICTORIA2 0) v — Frequency, Bus 5260 (GLEN ROSE 1 0)
v — requency, Bus 8082 ( NKLIN 0) v — Frequency, Bus 7159 (HOUSTON 5 0)
v IV — Frequency, Bus 4192 (BROWNSVILLE 1 0)
IV — Frequency, Bus 4195 (OILTON 0) IV amm Frequency, Bus 8126 (MOUNT PLEASANT 1 0)

’ ’ 21



Some Initial Considerations

Al
The Input Is a dynamics study running using a %z cycle
time step; data was saved every 3 steps, so at 40 Hz

— The contingency was applied at time = 2 seconds

We need to pick the portion of the signal to consider
and the sampling frequency

— Because of the underlying SVD, the algorithm scales with the
cube of the number of time points (in a single signal)

| selected between 2 and 17 seconds

| sampled at ten times per second (so a total of 150
samples)

22



2000 Bus System Example,

One Signal T

 The results from the Matrix Pencil Method are

Number of Complex and Real Modes IZI Indude Detrend in Reproduced Signals
[ ] subtract Reproduced from Actual

W i 10.137
Lowest Percent Damping IUpdate Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses

Calculated
mode

Frequency (Hz)| Damping (*z) |Largest ¥ |Mame of Signa Largest Mame of Signa Lambda Include in 3 =
! o7 Ping 4 Cur?'lpnnent with Largegc Cnmpngnent in [with Largegc Reproduced |nf0 rmatl On
Mode, Component in | Mode, Scaled |Component in Signal
Unscaled hMode, Mode, Scaled
Unscaled
1 0,38 32.011 0.44275 Bus 1073 [ODE® 12,224 Bus 7310 (WHA -
2 O&70 24,191 0,38466 Bus 2120 [PARI: 11.54% Bus 8078 [MT. E -1
3 0,665 10,705 0,23093 Bus 2115 [PARI® 6801 Bus 2115 [PARI® -(
4 0312 14,397 0.16911 Bus 1073 [ODE® 4,954 Bus 7310 (WHA -
5 0.971 10,137 0,08179 Bus 1051 [MOMN 2.551 Bus 6147 [SAM . -
b 0,052 41,828 0,04603 Bus 1074 (ODE® 1063 Bus 3035 [CHEF -

PWDVectorGrid Variables

Verification of
results

Values
o
©
@
©
Il

T T T T T T T T
2 4 6 8 10 12 14 16
Time (Seconds)

== Original Value == Reproduced Value. 23




Values

Some Observations

A|M

« These results are based on the consideration of just one |
signal

The start time should be at or after the event!

60
59.99
59.98
59.97
59.96
59.95
59.94
59.93
59.92
59.91

59.9
59.89
59.88
59.87
59.86
59.85
59.84
59.83
59.82
59.81

59.8
59.79

If it 1sn’t then...

b%%‘\

PWDVectorGrid Variables

The results show the algorithm trying
to match the first two flat seconds:
this should not be done!!

Results

Number of Complex and Reeal Modes Indude Detrend in Reproduced Signals

[]subtract Reproduced from Actual

W i -100.000
LonesEbercenEamang Update Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses
Frequency (Hz}| Damping (%) |Largest ¥ |Name of Signa Largest MName of Signa Lambda |

T T
5 10
Time (Seconds)

== QOriginal Value == Reproduced Valuel

Component  |with Largest |Component in |with Largest R

Mode, Component in | Mode, S5caled |Component in

Unscaled Mode, Mode, Scaled

Unscaled

1 0. 100,000 0.93636 Bus 1073 (ODES 14,030 Bus 1077 (ODE!
2 0. 44,396 0.82180 Bus 1073 [ODE® 12,073 Bus 1077 [ODE®
3 0. 34.809 0.43068 Bus 4026 (CHRI 8.463 Bus 4026 (CHRI
4 0. 4,729 0.10932 Bus 1073 [ODE® 1.587 Bus 1073 (ODE®
5 0. 6111 0.09142 Bus 2115 [PARIS 1.684 Bus 2115 (PARIE
& 0. 6110 0.05556 Bus 4192 (BROW 1.042 Bus 4192 (BROV
7 0. 3484 0.02405 Bus 1051 (MON 0.397 Bus 6147 (SAN.,
8 0.000 -100.000 0.01406 Bus 4026 (CHRI 0,276 Bus 4026 (CHRI




2000 Bus System Example,

One Signal Included, Cost for All T
Using the previously discussed pseudoinverse |
approach, for a given set of modes (a) the b, vectors

for all the signals can be quickly calculated

_|_
b, =®(a)"y,
— The dimensions of the pseudoinverse are the number of
modes by the number of sample points for one signal
This allows each cost function to be calculated

The Iterative Matrix Pencil approach sequentially adds
the signals with the worst match (i.e., the highest cost
function)

25



Values

2000 Bus System Example,
Worst Match (Bus 7061)

60-
59.99
59.98
59.97
59.96
59.95 1
59.94
59.93 ]
59.92
59.91 ]

59.9
59.89
59.88 ]
59.87 ]
59.86
59.85 1
59.84
59.83
59.82
59.81 ]

59.81.

PWDVectorGrid Variables

|
4 6 8 10
Time (Seconds)

== QOriginal Value == Reproduced Value

T

26



2000 Bus System Example,

Two Signals

With two signals
Number of Complex and Real Modes [3 |

Indude Detrend in Reproduced Signals

(] 5ubtract Reproduced from Actual

Real and Complex Modes - Editable to Change Initial Guesses

Lowest Percent Damping

Update Reproduced Signals

Frequency (Hz}| Damping (3% Largest Name of Signa Largest Name of Signa Lambi
Component in |with Largest |Component in|with Largest
Mode, Component in| Mode, Scaled |Component in
Unscaled Mode, Mode, Scaled
Unscaled
1 56 17.168 0.04028 Bus 7329 (NEW 1.730 Bus 7307 (WHA 2
2 3 21.844 0.10763 Bus 4030 (FANMK 4,475 Bus 4030 [FANM
3 3 7.359 0.04666 Bus 6147 (SAN . 1.801 Bus 6147 [SAN .
4 1 11.705 0.21220 Bus 1051 (MON 5.762 Bus 8077 [MT. E
5 0 13.361 0.20903 Bus 2120 (PARI! £.350 Bus 4192 (BROV
B 2 36.405 0.44679 Bus 1051 (MON 13.024 Bus 7311 (WHA
7 2 14.403 0,19570 Bus 1073 (ODE! 5.372 Bus 7311 (WHA
8 } 100.000 0.09305 Bus 1051 (MON 1.767 Bus 1051 [MON
9 0.064 36.756 0.02993 [Bus 1073 [ODE 1.182 Bus 7307 (WHA
g
Number of Complex and Real Modes l:l Indude Detrend in Reproduced Signals
[ subtract Reproduced from Actual
STEES A EERISAT AT Update Reproduced Signals
Real and Complex Modes - Editable to Change Initial Guesses
Frequency (Hz}| Damping (%z) |Largest ¥ |Name of Signa Largest MName of Signa Lambc
Component  |[with Largest |Component in|with Largest
Mode, Component in | Mode, Scaled |Component in
Unscaled Mode, Mode, Scaled
Unscaled
1 32.01 0.44275 Bus 1073 (ODE® 12.224 Bus 7310 (WHA -0
2 2419 0.38466 Bus 2120 [PARI® 11.545 Bus 8078 (MT. E -1
3 10.705 0.23093 Bus 2115 [PARI® £.801 Bus 2115 [PARI! -0
4 14.397 0.16911 Bus 1073 (ODE® 4,954 Bus 7310 (WHA -0
5 10137 0.0817% Bus 1051 (MON 2.551 Bus 6147 [SAN . -0
] 41.323 0.04503 Bus 1074 [(ODE! 1.063 Bus 3035 (CHEF -0

60
59.99
59.98
59.97
59.96
59.95
59.94
59.93
59.92
59.91

59.9
59.89
59.88
59.87
59.86
59.85
59.84
59.83
59.82

59.81

AlM
The new match on

the bus that was
previously worst
(Bus 7061) Is now
quite good!

4 6 8 10 12 14 16

Time (Seconds)

== Original Value == Reproduced Valuel




2000 Bus System Example,
lterative Matrix Pencil

Al
The Iterative Matrix Pencil intelligently adds signals
until a specified number is met

— Doing ten iterations takes about four seconds

Indude Detrend in Reproduced Signals
[ ]subtract Reproduced from Actual

Mumber of Complex and Real Modes |11

Lowest Percent Damping 6.082

Update Reproduced Signals

Real and Complex Modes - Editable to Change Initial Guesses

Frequency [Hz})| Damping % & Largest Mame of Signa Largest Mame of Signa Lambda Include in
Component in (with Largest |Component in [with Largest Reproduced
Mode, Component in | Mode, Scaled |Component in Signal
Unscaled Mode, Mode, Scaled
Unscaled
1 0.631 6.082 0.10313 Bus BROWMSYI 3.2592 Bus BROWMNSVI 0.2415 YES
2 0.959 7.063 0.04357 Bus SAN ANTCOHI 1.890 Bus SAN ANTOI -0.4269 YES
3 1.364 7.246 0.03780 Bus ODESSA1. 1.420 Bus CHRISTINE -0.6228 YES
4 0.593 7.897 0.07205 Bus BROWMSVI 2,300 Bus BROWNSVI 0.2545 YES
5 1.602 3.562 0.04387 Bus FANMNIM 2 F 2,032 Bus FANMIN 2 F -0.8650 YES
& 0,732 11.936 0,.21348 Bus MOMAHAN 4,054 Bus MOMNAHAM -0.5529 YES
7 0,224 14,207 019906 Bus ODESSA 1. 5.268 Bus WHARTOM - 7 YES
3 0.324 39.346 0.55936 Bus MOMNAHAN 12,994 Bus WHARTOMN -0.8722 YES
9 0,060 39.972 0,03815 Bus ODESSA1. 11596 Bus POINT COM 01645 YES
10 0,964 57.683 061264 Bus ODESSA 1. 18,504 Bus POIMT COR -4.2760 YES
11 (1. 100 (W M.59R5M Bus CHOFRS4 10 14.434 Rus WHARTOIM -A 25T YFS
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Takeaways So Far

Al
« Modal analysis can be quickly done on a large number
of signals

— Computationally is an O(N3) process for one signal, where N
IS the number of sample points; it varies linearly with the
number of included signals

— The number of sample points can be automatically determined
from the highest desired frequency (the Nyquist-Shannon
sampling theory requires sampling at twice the highest desired

frequency)

— Determining how all the signals are manifested in the modes
IS quite fast!!

29



