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Abstract—As electric vehicles are being increasingly integrated
into the transportation system, it is important to model their
impact on the electric grid. This paper analyzes the impacts of
the electrification of vehicles in the greater Houston area within
the context of the synthetic 7,000-bus Texas grid on locational
marginal pricing and line loading. The case study models vehicle
electrification levels of up to 15%. The results show an increase in
the number of highly loaded lines after modeling electric vehicle
charging load to the grid but surprisingly, a decrease in line
loading of the most heavily loaded lines in the system during
peak load hours. The inclusion of electric vehicle charging load
resulted in marginal changes to LMPs overnight, a slight decrease
to most LMPs during the morning and early afternoon, and a
significant decrease in system LMPs during the peak load hour.

Index Terms—Electric vehicles, locational marginal price, line
loading, transmission system

I. INTRODUCTION

Due to maturing technology, declining costs, and increased
support for clean transportation, electric vehicles (EVs) are
on the rise. As of 2020, the transportation sector represented
only around 2% of global electricity demand. However, re-
cent studies show that by 2050, transportation is expected
to account for 10% of total global electricity demand [1].
This trend toward increased electrification of the transportation
sector requires extensive planning to prepare the electric grid
for a variety of possible adoption scenarios. The impacts of
transportation electrification varies depending on aspects of the
adoption scenarios such as the penetration of EV integration
and the charging models used. Therefore, there exists a need to
model EV integration scenarios so that researchers can identify
possible problems to various aspects of power grid planning
and operations.

One area of particular interest pertains to identifying the
infrastructure changes that are necessary to support an in-
creased EV integration. Particularly, one identified impact
of EV charging is a change to the peak demand under
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certain charging models [2]. These sudden changes in peak
demand can lead to the line overloading as current increases to
maintain power supplies. The line overloading and congestion
results in huge changes in the locational marginal price (LMP)
of electricity [3] and can lead to an accelerated component
aging, increased resistive losses, and fire safety issues from
overheating lines or transformers that impact the reliability of
the components of the electric grid. However, if EV charging
load schedule is encouraged during off-peak hours, LMPs may
even decrease as a result of congestion prevention in peak
hours [4].

Because many factors must be considered with the in-
creasing integration of EV charging into the power grid, it
is imperative that studies integrate realistic models of both
the transportation and electric systems. This work relies on
an established coupled infrastructure approach using detailed
models of both a realistic electric grid and actual transportation
network to analyze the impact of EV integration on line
loading and LMPs of the transmission system for multiple
levels of EV penetration. Publicly available data of trans-
portation system is used for estimating EV charging patterns
based on their type, location and schedules and the charging
demand is integrated to a realistic but not real synthetic
power grid that is created over the footprint of Texas, United
States. This research provides a fundamental insight into the
impact of incorporating electric vehicles into a realistic large-
scale electric system with more than 7,000 buses considering
reliability and system costs.

II. MODELING

A. Transmission System Modeling

In North America, electric grid models are considered
critical energy infrastructure information (CEII) and access
to those are restricted and detailed results often cannot be
published. As such, this study leverages a synthetic grid that
is created over the Texas footprint that is realistic enough
to mimic actual grids. Synthetic grid models are publicly
available at [5] and have been validated to be functionally



similar to the built grids in North America [6] without com-
promising CEII. The development methodology of these grids
is documented in [7]-[10], and [11] details the inclusion of
generator cost curve information, a feature of the synthetic
grids which is essential for the performance of economic
studies in this paper. The associated load time series are based
on an estimated composition ratio of residential, commercial,
and industrial customer load. Publicly available prototypical
residential/commercial building, and industrial facility load
time series are then aggregated to the buses through a heuristic
optimization process [12], [13].

Fig. 1: TX7k transmission system

The transmission system used in this study is the TX7k
network, a system comprised of nearly 7,000 buses geo-
graphically sited on the Electric Reliability Council of Texas
(ERCOT) footprint using the same voltage levels as the built
ERCOT system, shown in Figure 1. An overview of case infor-
mation is provided in Table I. This grid has a corresponding
synthetic distribution system [14], the topology of which is
leveraged in mapping EV loads to the transmission-level grid.

TABLE I: System Information for TX7k Grid

Attribute Value
Buses 6717
Transmission Voltage Levels 69 kV, 138 kV, 345 kV
Peak Load 80 GW
Generation Capacity 100 GW

B. EV Load Modeling

Due to a presently low market penetration of EVs (in Texas
in 2021, only 0.24% of vehicles registered in Texas were
EVs [15]), there exists a lack of availability of widespread
EV charging data. Thus, simulations are useful for generating
EV charging data. The modeling of EV loads relies on an
underlying transportation network model and traffic flow simu-
lations coupled with charging behavior models. This modeling
process was demonstrated in [16] and is applied in this paper
for the greater Houston region.

A dynamic traffic assignment (DTA) model provides a
mesoscopic analysis of traffic flow over a spatio-temporal
resolution. The DTA model uses the transportation network

and travel demand models to generate a trip trajectory and
calculates on-road energy consumption of EVs. For a defined
market penetration of EVs, trips are randomly assigned to be
EV or non-EV trips. The vehicle range of those designated
to be EVs is assigned based on the proportion of 100-mile,
200-mile, and 300-mile ranges from EV sales data [17].

Charging behavior was modeled with the goal of creating
a realistic EV load profile. This was accomplished using a
microscopic charging behavior model that accounts for char-
acteristics of daily travel as well as various levels of anxiety
of drivers. Thus, the resulting charging load incorporates
variation based on time-of-day, remaining battery range, and
trip characteristics. The outcome of using this behavior model
is a charging load that is higher overnight, reflecting people
charging their vehicles towards the end of the day when their
batteries are more depleted after their daily travel.

The outcome of the EV modeling is a charging load time
series at various locations in the synthetic system. These loads
are incorporated to the electric grid model by the procedure
developed in [16]. In summary, substation service areas are
created using Voronoi polygons around the geographic location
of the substation and the EV charging loads are mapped to the
substations serving their respective locations. The EV charging
loads are represented by loads added to buses within the
substations in the electric grid model.
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Fig. 2: Charging profiles for 5% and 15% of EV integration

III. CASE STUDY

The case study presented in this paper involves the elec-
trification of a fraction of light-duty vehicles in the greater
Houston area (located in eastern Texas along the Gulf Coast)
within the context of the TX7k system. The case study
simulates the grid during a sample peak load day (August 5).
During this 24-hour time period, non-EV load varies between
45 and 80 GW through a typical daily cycle. This load profile
for the base case is shown in Figure 3.

This paper considers the impacts of charging demand at 5%
and 15% EV market penetration in Houston by comparing the
EV integration scenarios with a base case that does not include
EV integration. The EV charging profiles are based on the EV
modeling discussed in Section II and are shown in Figure 2.
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Fig. 3: Load profile for the base case

Each scenario (base case, 5% EV integration, 15% EV
integration) is run using a time step simulation that solves an
AC optimal power flow for each hour of the simulation using
a unit commitment designed for each case’s peak load. The
LMP and line loading results for the EV integration scenarios
are compared to the base case to determine the impact of the
added EV charging load.

IV. RESULTS
A. Locational Marginal Pricing

The results for the LMP study are shown in Figure 4
displaying time points of interest during the day. In particular
note that, 3 am contains the peak of the EV charging load, and
12pm demonstrates the minimum EV charging load. There is
a pattern of decreased cost with the inclusion of EV charging
during the afternoon hours, particularly from around 12pm to
6pm. Otherwise, the marginal prices remain relatively the same
across the scenarios throughout the night and early morning.
There are not great variations between the 5% and 15% cases
though these cases can differ significantly from the base case.

The greatest differences correspond to the peak system load
period during the day. During the peak load of the selected
sample day (in 3 pm model), the marginal cost decreased up
to 1000%/MWh with the inclusion of electric vehicle load. At
3pm, the greatest negative variations occurred in the northern
Texas area, as shown in Figure 6. Both levels of EV integration
demonstrate that a small EV load may significantly reduce
LMP at peak hours. This observation is discussed in Section
IV-C.

B. Line Loading

The percentage of MVA limit of the most heavily loaded
lines were compared across the scenarios. In both of the EV
integration cases, the same set of lines were the most heavily
loaded lines. These lines are high voltage lines within the
synthetic electric grid system (138 kV and 345 kV). They
are located in the East of Texas as shown in Figure 7.

Even though most of the charging demand occurs overnight,
the greatest changes as a result of EV integration occur

between 6am and 8pm as shown in Figure 5. In general, the
lines in the 15% EV penetration case had more variation from
the base case than the 5% case. However, the overall shape of
both cases remain relatively the same.

From 6am to 8pm, the 15% case greatly reduces the loading
of several of the most heavily loaded lines. During these hours,
the most heavily loaded lines experience a decrease in loading
or remain fairly constant when compared to the base case.

With the EVs added, the amount of lines that are over 95%
MVA Capacity changes as shown in Figure 8. Five percent
integration of EVs causes a shift of heavily loaded lines to the
peak hours of the system (between 1pm and 7pm). However,
the addition of 15% EV leads to less heavily loaded lines
during the peak load of the system. In general, there are more
variations during the morning hours of 3am to 6am for the
15% case.

From the comparisons in Figure 5, and 8, adding EV load
has slightly changed the power flow without any negative im-
pact on line loading in this EV charging scenario. Interestingly,
for both levels of EV integration, the loading on the most
heavily loaded lines are even slightly decreased during a high
load day simulation. Please note that if the MVA flow in the
lines are not close to the line capacity, slight changes in the
flow does not impact LMPs but changes near line capacity and
line congestion can significantly increase LMPs.

C. Discussion

The decrease in LMP is consistent with a decrease in line
loading on the most heavily-loaded lines. Figure 8 shows a
chart with the number of branches loaded in excess of 95%
of the rated MVA capacity. Although there was a decrease
in loading on the most heavily-loaded branches, the count of
all heavily-loaded branches remains high. This may indicate
that the inclusion of EV loads in this case study has acted to
distribute the power more evenly across the lines in the system,
reducing the congestion on the most heavily loaded lines and
increasing the congestion on more moderately-loaded lines.

Generally, for both the 5% and 15% integration case, a
decrease during the peak hours in the heaviest loaded lines
in the system as shown in Figure 5. These lines are mostly
located in eastern Texas (Figure 7) and connect the wind-rich
northwest portion of the system with the high load region
of the system to which the additional EV load was added.
The decrease of LMP being most prevalent in northern Texas
(Figure 6) is indicative of the inexpensive generation in the
north west and congestion along some of the major branches
that would carry the generation to other regions of the system.

V. CONCLUSION AND FUTURE WORK

The impact of EVs on line loading and bus LMPs were
studied on the synthetic Texas 7k grid using a realistic EV
charging load model approximated based on spatio-temporal
travel patterns. The studied was implemented on a sample
high load day with a peak load of approximately 80 GW.
The studied EV charging scenarios included 5% and 15%
EV market penetration in the Houston area (located in eastern
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Fig. 5: Variations in line loading on the most heavily-loaded lines from 5% and 15% integration compared to the base case.

Texas along the Gulf Coast). The results show that a suitable
charging schedule leads to reduction in the loading of the most
heavily loaded lines during the peak load hours. The lines
which were most heavily loaded belong to the two highest
voltage levels in the system and are among those which
connect the wind-rich northwest portion of the grid to the
eastern portion and experienced the additional loading. As the
congestion was alleviated on these lines during peak hours,
bus LMPs decreased. This analysis presents a case study of the
behavior of the grid on a peak summer day with the inclusion
of EV charging in the greater Houston area. Results may vary
for different regions of study or under different grid conditions.

In the future, additional case studies will be conducted to
evaluate the impact of EVs under different loading conditions
and weather scenarios, and with EV integration modeled in

different regions of the grids. Further insights can be gained
from considering the impact of EV integration with modelling
the increase in the renewable energy sources. For example,
Texas has a huge capability of wind farms with around 17%
of the overall general being supplied through wind turbines in
2019 [18].
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Fig.

7: Locations of heaviest loaded lines in the Texas 7000

Bus System. The dark blue boxes represent 345 kV lines while
the light blue ones represent 138 kV lines.
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