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Abstract— This paper summarizes a grid optimization (GO) 
competition effort in the United States to find the best solution 
strategies for up to interconnect-scale power system networks 
with around 32,000 buses. The optimization problem is a mixed-
integer, non-convex non-linear problem, (MINLP) and includes 
discrete variables such as unit commitment and line switching, 
control settings (transformer taps and phase shifters with 
impedance correction tables), and bus shunts. The case study 
includes six actual industry grids as well as 16 realistic synthetic 
grids created by three different dataset teams. The winners are 
selected and ranked based on scoring criteria, which consider the 
solution quality (such as objective functions) within time limits. 
Nine winner teams are selected from 26 competitor teams. The 
results achieved by different teams are described and the 
performance of different algorithms on synthetic grids and 
actual industry grids are compared and analyzed. 

 
Index Terms— Mixed-integer non-linear programming, 

optimal power flow, optimization, power systems, synthetic 
network models. 

I. INTRODUCTION 
Since the most common optimization problems that need to 

be solved frequently for power system operation are to 
minimize the operation cost or maximize the overall efficiency 
of the electric grids, finding the optimal solution to these 
problems will save huge amounts of money. The realistic AC 
Power Flow (ACPF) optimization problems are non-convex 
and non-linear problems, and when integer variables are also 
included it is very challenging to find the optimal global 
solution, and heuristic methods play an important role in 
improving the algorithms. Advanced Research Projects 
Agency-Energy (ARPA-E)  created the first Grid Optimization 
(GO) competition in 2018 [1]. The main goal of this project 
was to find the best solution in a limited time, ensuring that as 
the demand for energy grows and the power grid changes with 
the addition of distributed energy resources, these changes are 

met by modern grid solutions, thus revolutionizing 
optimization problems for power system operations.  

These optimization algorithms need to be tested and 
validated on realistic power system models to be 
implementable on actual grids. Due to security concerns, the 
grid data is labeled Critical Energy Infrastructure Information 
(CEII) and are not accessible to the public. Therefore, even for 
research purposes, the actual power systems cannot be publicly 
released, making the validation and comparison of the 
operation and planning algorithms difficult. While historical 
IEEE test cases exist, they are mostly smaller, less 
complicated, and do not contain pertinent information such as 
transmission line lengths, geographic coordinates of buses, and 
MVA limits. Synthetic network models were created for the 
GO competition as described in Section IV. Since the synthetic 
grid models are publicly available, the performance of any 
proposed grid optimization or control algorithm can be readily 
examined and verified.  

This paper summarizes the GO competition challenge 2 
effort in the United States to find an efficient solution strategy 
in industry-level power systems with up to 32,000 buses. The 
required optimization problem is a non-convex, NP-Hard [2, 3] 
mixed-integer non-linear problem (MINLP) since includes 
discrete variables and voltage/reactive power control settings. 
The results achieved by different teams are described and the 
performance of different algorithms on synthetic grids and 
actual industry grids are compared and analyzed. 

II. GO COMPETITION CHALLENGES 

GO competition challenge 1 focused on optimizing the 
economic operation of the electric grid while considering 
various component outages, i.e., contingencies. One important 
goal of the competition was to compare various power system 
operation algorithms and benchmark their performance on a 
variety of realistic test cases. Three teams including Texas A&M 
University (TAMU), The University of Wisconsin-Madison 
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(UW-Madison), and Pacific Northwest National Laboratory 
(PNNL) were assigned to create realistic but not real grid data. 
Competitors were tasked with solving a security-constrained 
optimal power flow (SCOPF) on networks ranging from 500 to 
30,000 buses. Challenge 1 had time limits: “real-time” (10 
minutes) and “offline” (45 minutes), with scoring methods 
considering the lowest cost and performance profiles [4]. The 
results of the GO competition challenge 1 are posted on [5].  

As the innovations and developments resulting from 
challenge 1 were successful, ARPA-E created GO competition 
challenge 2 with the goal of finding the best optimization 
strategy for power systems operation over a variety of load and 
weather scenarios and with other improvements to have a more 
realistic model by adding topology optimization, component 
participation, demand response, and reactive power control and 
challenged competitors to find new ways to make the grid 
optimization faster and more secure. The objective of 
competition 2 instead of minimizing the operation cost, was to 
maximize the market surplus. The proposed algorithms were 
tested on another set of improved test cases. Three teams focused 
on transmission system models including TAMU [6], the UW-
Madison [7], and Georgia Tech [8], while the National 
Renewable Energy Lab (NREL) focused on distribution system 
models [9]. While the strategies employed by these teams varied, 
all teams were able to create geographically based, large-scale, 
realistic synthetic power systems. The case study included six 
actual industry grids as well as 16 realistic synthetic grids created 
by three different dataset teams. Also, data from multiple 
scenarios were created considering variations in the load or 
weather, and the algorithms were studied under those scenarios. 
The winners are selected and ranked based on scoring criteria, 
which consider the solution quality (such as objective functions) 
with time limits.  

III. PROBLEM FORMULATION, COMPLEXITY AND 
BENCHMARKING 

The optimization problem is an AC SCOPF to maximize the 
market surplus subject to network and generator constraints and 
steady-state physics including line and generator limits, N-1 
security constraints, co-optimization of generation and load 
dispatch with a price responsive demand model, component 
participation such as unit commitment with including ramping 
requirements, topology optimization such as line switching to 
add or remove branches from service, control settings such as 
on-load tap changer and phase-shifting transformers with 
impedance correction tables, and switchable shunts. The 
complete problem formulation for optimal power flow is 
available in [10]. 

The grid sizes are up to 32,000 nodes with around 40,000 
edges and include up to 5000 contingencies. The mathematical 
program to solve this problem requires around 900,000,000 
continuous decision variables, 250,000,000 discrete decision 
variables. The competitors were asked to solve this problem in 
less than five minutes in one set of divisions for a “real-time” 

solution and “offline” (60 minutes) in another set of divisions. 
Two other sets of divisions include the same time criteria but 
allow competitors to employ switching the status of transmission 
lines and transformers as permitted by the input datasets.  

A benchmarking algorithm is created with the goal of 
providing an early test driving of the platform and datasets, 
developing and testing various solution approaches, and instance 
analysis, searching for unexpected issues in datasets, and 
estimating problem difficulty and optimality gaps. Heuristic 
algorithms are proposed for this problem and initially the 
impacts of the contingency are ignored, and discrete variables 
are relaxed to a continuous range based on rounding heuristics 
to improve the problem complexity. Then the relaxed non-
convex NLP problem is solved. 

The tested approaches include interior point algorithms (e.g. 
Interior Point Optimizer (IPOPT) [11] and KNITRO [12]), and 
second-order gradient descent like approaches. These 
approaches only provide local optimality but based on the 
experiments seem to be very near global optimality.  Sequential 
Linear/Quadratic Programming such as Gurobi, and CPLEX are 
tested. The problem is linearized around an operating point in an 
iterative algorithm. 

Most important discrete variables such as unit commitment 
are solved first. Topology control discrete variables such as line 
switching and optimization of shunts that are less important and 
impacted by unit commitment are solved later. Next, the variable 
bounds are improved based on the solution and the costs 
associated with discrete variable controls are increased. 

The quadratic convex relaxation for ACOPF 
 with realistic side constraints are introduced in [13]. Parallel 
derivative computations are used, and the Julia and JuMP 
languages are used for programming. The open source 
benchmarking algorithm is available at [14]. 

IV. DATASETS AND CASE STUDIES 

The case studies used in challenge 2 include 16 synthetic 
grids with 84 scenarios created by three data teams that are 
available in [15], and six industry (actual) datasets composed of 
36 scenarios that cannot be made publicly available. The 
scenarios are created based on changes in the load and the 
availability of renewable energy resources.  

All power flow network configuration data files are provided 
in a specific format as an input for competitors. The input data is 
validated based on actual grids. The difficulty of each grid is 
assessed and the existence of a feasible solution for each grid is 
verified. A summary of the synthetic and industry cases used in 
the competition is given in subsections A and B, respectively. 

A. SYNTHETIC GRIDS 

Texas A&M University (TAMU) synthetic grids: 
The TAMU synthetic grid models are created using 

publicly available data provided by the U.S. Census Bureau 
and generator information provided by Energy Information 
Administration (EIA). These grids are created over certain 
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geographic footprints with providing latitudes and longitudes 
but since the structure of these grids is not the same as industry 
grids, they do not include CEII. The fundamental steps for the 
creation of synthetic power system models including 
geographic load, generator substations, and assignment of 
transmission lines are presented in [16]. The overall approach 
for building these networks, which is explained in [6] and [16] 
includes substation planning, transmission planning, and 
reactive power planning.  

Key challenges in the creation of these grids include 
geographic constraints such as lakes, mountains, and urban 
areas, as well as network topology parameters, power flow 
feasibility for the base and N-1 contingency conditions, 
computational challenges arising from the n2 possible 
combinations of branches (where n is the number of buses), 
multiple competing metrics, and consideration of contingency 
conditions that further increases computational time. The 
North American Eastern Interconnect (EI) and Western 
Electricity Coordinating Council (WECC) cases are used as a 
benchmark to validate the synthetic grids. References [17, 18] 
present some metrics for validating synthetic grids for 
achieving realistic data sets. Graph theory is used for 
topological metrics such that nodes are buses; and edges are 
transmission lines. Table I shows a summary of important 
characteristics of Texas A&M University (TAMU) synthetic 
grids. 

TABLE I 
IMPORTANT  CHARACTERISTICS OF TAMU GRIDS 

 GOTX600 GOTX2000 GOTX12K GOTX31K 

Buses 617 2020 12209 31777 

Substations 737 1250 7500 15500 

Areas 1 1 7 24 
Transmission 

Lines 723 2318 13216 34713 

Transformers 130 538 2,184 6858 

Loads 405 1392 6986 16578 

Generators 94 194  2009 4663  

Shunts 50 98 724 1996 
Phase 

Shifters 2 2 5 4 

Total Load 
GW 8 17 51 372 

University of Wisconsin (UW-Madison) synthetic grids: 
The UW-Madison grids are created using the methods 

described in [7]. First, synthetic substations with associated 
geographic coordinates and load were created as described in 
[19]. The peak load value was determined for each of the 50 
states in the US, utilizing historical data from utility 
companies, independent service operators (ISOs) or regional 
transmission organizations (RTOs). Next, databases of land 
use category and intensity were utilized to disaggregate a 

percentage of the peak load in each state across each of the 
census tracts in that state. Next, week-long to year-long load 
profiles for various load types were obtained from New York 
State Electric and Gas Corporation (NYSEG), and NREL. 
These load profiles were combined with the disaggregated 
peak load data across each census tract to create a year’s worth 
of synthetic load data with hourly resolution. Then, synthetic 
substations with associated geographic coordinates and 
synthetic load data were combined with publicly available 
generator information from the EIA 860 report [20] as the 
required input data for creating synthetic power system grid 
models.  

TABLE II 
IMPORTANT CHARACTERISTICS OF UW-MADISON GRIDS 

 
FLA ISO-

NEW NENY GASCAL SOUTH 

Buses 4224 6049 6889 8316 16789 

Substations 1797 3145 3019 4725 7911 

Areas 2 6 10 7 7 
Transmission 

Lines 2605 4920 4248 7723 14724 

Transformers 2325 3086 3619 4249 8654 

Loads 1673 3368 4625 4457 6986 

Generators 399 406 609 813 2009 

Shunts 436 236 212 1179 724 

LTC 1846 2735 760 440 997 

Phase Shifters 3 3 5 3 2 
Total Load 

GW 50 25 48 88 103 

For transmission planning, rather than discard a large 
number of the potential transmission lines that could be 
constructed in the synthetic network, the University of 
Wisconsin network creation algorithm retains most of the 𝑛2/2 
potential paths, and utilizes optimization techniques to ensure 
only a small subset of these potential paths are included in the 
final network. A three-level algorithm was designed to create 
the synthetic grids. For a given generation and load scenario, 
the inner loop computed the flows on each of the potential and 
existing transmission lines utilizing a modified network flow 
algorithm. These resulting flows were passed to the middle 
loop which modified the network topology by adding the 
potential path with the highest flow and changing the line limits 
for existing lines. After the termination of the middle loop, the 
outer loop updated the load and generation scenario and 
computed a new net injection scenario that was passed to the 
inner loop. This process was repeated until all load and 
generation scenarios were considered or a target bus to branch 
to bus ratio is met. After the initial topology was established 
using the three-level algorithm, initial network parameters 
were assigned based on the line MVA limits in the middle loop. 
DC power flow calculations were run sequentially, with a 
subset of the overloaded or substantially underutilized 

Number 

Grid 

Number 

Grid 
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transmission lines being upgraded or downgraded after each 
DC power flow calculation. This resulted in the subnetworks 
at each voltage level becoming disconnected, so the three-level 
network creation algorithm was again run on the subnetworks 
at each voltage level to ensure each subnetwork was mostly 
connected. For each subnetwork, transmission lines were 
added to the network until the target bus to branch ratio was 
met. Finally, this DC “planning case” was modified to become 
ACOPF feasible using a modified version of the algorithm 
described in [21]. A summary of Wisconsin grids is shown in 
Table II.   

Georgia Tech (GA) synthetic grids: 

The GA network data is a snapshot of the French 
transmission grid provided by the French Transmission System 
Operator (TSO) Réseau de Transport d'Électricité (RTE) for 
the N70_S2000 case. Other synthetic grids were originally 
created by the UW-Madison team for the GO Competition 
Challenge 1 and explained in more detail in chapters 3, 4, and 
7 of  [7], but modified and the required data for the GO 
Competition Challenge 2 was provided by Georgia Tech team.  

The N70_S2000 grid contains information about each bus, 
transmission line, transformer, generator, and load. However, 
all component names are obfuscated, which prevents direct 
identification of the real network information. Geo-coordinates 
for each bus are then reconstructed by combining the grids’ 
information with publicly-available data, namely, the location 
and voltage level of all substations in France [22]. The 
reconstruction of geo-coordinates is formulated as an 
optimization problem, where the objective seeks to minimize 
the reconstruction error on the length of transmission lines, 
constraints enforce that each substation is assigned to a 
compatible location, and other constraints that ensure no two 
substations are assigned to the same location [23]. Table III 
shows a summary of important characteristics of GA grids.  

TABLE III 
IMPORTANT CHARACTERISTICS OF GA GRIDS 

 
 
 

N70_
S200

0 

N81_
WIILI
AMN 

N82_N
EISO

V9 

N82_N
EISO

V6 

N12_
WIILI
AMN 

N14_1
05TX2
ND4U 

N20_ 
UW_ 

LA2MN 

Buses 2312 3288 3970 4601 8718 10480 19402 

Areas 18 1 1 1 1 1 1 
Transm
ission 
Lines 

2188 3577 4563 5204 9991 9991 23145 

Transfo
rmers 857 1455 2138 2180 4897 4897 11754 

Loads 1529 4198 2744 3369 12744 7846 5819 
Genera

tors 479 707 391 408 368 1209 968 

Shunts 322 23 13 17 107 1730 2451 

LTC 773 0 0 0 5 5 12 
Phase 

Shifters 0 0 0 0 26 26 36 

Total 
Load 
(GW) 

25 52 25 29 48 48 155 

A. Industry Grids 

Industry grids are actual grids, which are used for the GO 
competition 2 but are CEII and cannot be published. The main 
challenge with these grids was selecting, organizing, and 
adjusting the real data according to the competition format. 
Table IV shows a summary of important characteristics of 
industry grids. 

TABLE III 
DETAILS OF INDUSTRY GRIDS 

 
MS

RBB 

FRAN
CE-

EHV-
LYON

BB 

GO
TxS
PP 

France
_BB AUS2 GOTx

WECC 

Buses 403 3411 3593 6705 16955 22720 

AC Lines 438 3628 2160 7384 16071 17859 
Transmission 

Lines 112 871 2004 1578 4675 10110 

Loads 384 2959 1355 5696 9419 8369 

Generators 139 969 602 2042 1868 4203 

Shunts 9 56 370 77 1630 1635 
Generator 

Contingencies 138 968 80 2024 0 100 

Branch 
Contingencies 276 2220 421 4555 3803 900 

V. DATA VALIDATION AND SOLUTION EVALUATION  

Data checker and solution evaluator software were 
developed and were publicly available from the start of the 
competition at [24]. The data checker is used to verify that 
every instance of the competition problem is formatted 
correctly and satisfies the data properties asserted in the 
competition formulation. The solution evaluator is used to 
evaluate a solution provided by a solver for a problem instance. 
Solution evaluation verifies that the required solution files exist 
and ensures that it is formatted correctly, while evaluating the 
variable bounds and constraints, and computing the total 
objective value. The solution evaluator computes the 
maximization objective, which is the total market surplus MS, 
including benefits from energy consumption, minus costs and 
penalties. 

Instances of the problem were constructed for multiple 
scenarios of multiple networks. Each power system network 
model consists of the buses, lines, transformers, generators, 
loads, and other power system components. Scenarios for each 
network were generated by varying conditions of weather, 
load, fuel markets, equipment maintenance, and limits on 
equipment flexibility imposed by hypothetical operating 
practices. For the final event, a total of 84 networks including 
synthetic and industry grids and 120 scenarios were studied.  
A prior point solver, packaged with the data checker and 
solution evaluator, was developed to construct a baseline 

Grid 

Number 

Number 

Grid 
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objective value for each scenario. The prior point solver 
creates a feasible solution by setting every variable equal to 
the value it held in the prior operating point provided in the 
data. Then these variable values are projected onto simple 
bounds and bounds that can be derived from constraints, to 
ensure the feasibility of the prior point solution.  

The algorithms from all competitors were run and evaluated 
on all scenarios in all divisions on a common hardware 
platform consisting of a cluster of up to 6 nodes and 144 cores. 
For each network, a network score was computed as a 
combined score for all of scenarios of that network. A dataset 
score was computed as a combined score from all scenarios. 
The dataset scores for all competitors determined the rankings 
within each divisions. 

VI. NUMERICAL RESULTS AND ANALYSIS   

A popular approach to solving large-scale non-convex 
MINLP problems uses interior-point quasi-second-order-
gradient-descent algorithms such as IPOPT [11] or KNITRO 
[12] which require the computation of the gradient and Hessian 
of each constraint at each iteration. In addition, sequential 
linear quadratic programming algorithms that linearize around 
an operating point are usually being implemented using Gurobi 
or CPLEX solvers. These solvers are often used as subroutines 
for building sequential algorithms. However, both methods 
only provide local optimality. Different strategies are proposed 
by different teams and the general strategies of the top six 
winners are explained below in more detail.  
1) Gravity X team: ranked first 
This team grouped the discrete variables into batches and then 
solved a sequence of non-convex continuous problems while 
rounding some of the discrete variables after each solution 
using an iterative Batch Rounding algorithm inspired by 
MINLP heuristics such as feasibility pump [25] and fix-and-
relax method [26]. They found a subset of important variables 
and active constraints and ignored non-active constraints. They 
utilized IPOPT solver, which is an open-source solver. For 
initialization, all voltage magnitudes are set to one per unit and 
their angles to zero. The Gravity language, which is a fast-
modeling language with symbolic differentiation and 
disjunctive constraint support, is used to model and solve the 
MINLP problem. Also, instead of solving ACOPF for all 
contingencies, they solved the base case and made some 
adjustments on the problematic buses of the solution for each 
contingency. This team ran more than 2650 experiments in the 
testing environment sandbox to improve their algorithm and 
tune parameters. For simplification, this team ignored line 
switching constraints. 
2) NU_Columbia_Artelys team: ranked second 
This team used a combination of the solver KNITRO for 
optimization and the IPOPT method as a filter function. They 
used a KNITRO merit function for step-size computation and 
provided a balance in optimality and feasibility. They used 
Python for simulation and AMPL as an intermediary between 
their Python code and KNITRO. This team only considered 
binary variables and modeled integers as the summation of 

binary variables. Also, instead of solving ACOPF for all 
contingencies, they solved the base case and made some 
adjustments on the problematic buses of the solution for each 
contingency. They used an initial solution as a candidate, ran 
KNITRO on the relaxation iteratively, fixed integer variables 
and then reran the whole problem. They observed which buses 
from the initial solution were infeasible beyond a certain 
threshold, then fixed integer variables elsewhere and ran the 
problem with the integer variables fixed.  
3) GOT-BSI-OPF team: ranked third 
This team used a feasible region based homotopy-enhanced 
IPOPT method [27] to solve the ACOPF. Their hypothesis was 
that since the most challenging constraints for an ACOPF are 
inequality constraints, this team found the active inequality 
constraints to reduce the problem size. They first neglected 
thermal limits to reduce the nonlinear constraints to zero and 
then found the active inequality constraints to reduce the 
problem size. They applied a homotopy two-stage IPOPT with 
and without considering active thermal limits. They included 
any thermal limits that were violated or at their limit in the next 
step. If only constraints with thermal limit violations are 
solved, the number of thermal nonlinear constraints were 
reduced. They also did a sensitivity analysis for discrete 
variables and considered state estimation results from 
supervisory control and data acquisition (SCADA) online data. 
Based on their observation, the proposed two-stage method 
with and without thermal inequality constraints was more 
robust compared to the single stage IPOPT method. The 
convergence of the proposed Homotopy method for nonlinear 
problems is in [27]. This team has also studied the feasible 
region in [28]. Trust-tech methodology [29] is also used for 
unit commitment and other binary variables, based on branch-
and-bound is used that can be added to heuristic algorithms 
such as Particle swarm optimization (PSO) and genetic 
algorithm (GA). The theory behind the proposed method is 
published in [30]. 
4) Pearl Street technologies: ranked fourth 
This team proposed equivalent circuit programming for power 
flow model optimization. They developed software called 
SUGAR (Suite of Unified Grid Analyses with Renewables) 
[31], which is an equivalencing tool for power grid 
optimization and is mainly used for circuit optimization. They 
designed the adjoint circuit to achieve the desired properties of 
the optimal solution and then reverse engineered it to 
mathematical objectives and constraints on power system 
response. They implicitly modeled a relaxed discrete variable 
such as unit commitment, control models and line switching 
and achieved a fast solution.  
5) Electric Stampede team: ranked fifth 
This team used Python and coupled two optimization 
problems: one with mixed integer linear programming 
(CPLEX solver) and another one with continuous non-linear 
constraints (IPOPT). They first ignored unit commitment and 
ran an ACOPF. They then combined DCOPF with unit 
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commitment and a linearized cost function. For simplification 
this team also removed line switching constraints.  
6) GMI-GO team: ranked sixth 
This team created two decoupled problems and handled integer 
decisions and nonlinear constraints separately. They used 
heuristics for unit commitment and line switching to ignore 
integer variables. IPOPT was used for solving an ACOPF, and 
similar to most other teams and benchmarking algorithms, 
contingencies were solved based on their ranks. The decoupled 
method solved the base case first and then IPOPT solver was 
used to modify the base case. They used various heuristics and 
unit commitment adjustments.  
More information about the strategies used by the winners is 
available in [32].  

Overall, it is observed that the Gravity X is the winner of 
the competition but for four industry cases, Gravity X did not 
perform as it did for synthetic grid, the main problem is 
because of active and reactive power imbalance on some buses. 
This can be an indication of problems in tuning control devices 
such as transformer controls, switchable shunts, or set points 
of generators.  

VII. CONCLUSION 
The GO competition is run as a significant effort to find the 

best solution within a time limit to non-convex MINLP power 
system operation and electricity market problems, particularly 
ACPF with contingencies, reactive power control and 
component participation constraints. The results and strategies 
of the top six strategies to solve these problems are analyzed and 
unusual behaviors and different performances are observed on 
top strategies on synthetic versus industry grids. For the 
synthetic network models, Gravity X is the overall winner with 
the highest objective value for all but two grids where it was 
second place. However, Gravity X did not perform well on four 
out of six industry grids because of a real or reactive power 
imbalance on some buses that lowered its score. In addition, 
most synthetic grids have the same top-ranked team for different 
scenarios while most industry gids have different top-ranked 
teams, with slight differences in the objective value. One reason 
is that the competitors did not have access to the full cases and 
had a limited amount of time to run simulations on the industry 
grids. However, the heuristic-based algorithms need many 
experimental runs to improve their solutions and tune parameters 
based on the resulting performance of the algorithms. Another 
reason is the existence of bad data and inaccurate models in 
industry cases.  
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