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Abstract 
 
While it is widely recognized that weather impacts 

the power flow, historically weather information has 
only been implicitly included. This paper presents an 
approach for the direct inclusion of weather 
information in the power flow. Key issues addressed by 
the paper include the availability of weather 
information, the mapping of weather information to 
electric grid components, a flexible and extensible 
modeling approach for relating weather values to the 
power flow models, and the visualization of the 
weather impacts.  The approach is demonstrated on 
several electric grids ranging in size from 7000 to 
82,000 buses using weather data over several different 
years.   
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1. Introduction  

The power flow and related applications such as 
the optimal power flow (OPF) are some of the most 
common tools used to study and design large-scale, 
high voltage electric grids. As is common to all 
engineering analysis tools, there are tradeoffs 
associated with the amount of details included in the 
electric grid models that are used in the power flow. 
Factors associated with these tradeoffs include the 
existence of the models themselves, the availability of 
the model parameter information, the memory required 
to store the parameters, the computational complexity 
required to utilize the model, and the ultimate impact 
of the models on the results. The purpose of this paper 
is to show that relatively detailed weather information, 
including insolation, can become a normal part of the 
standard power flow. 

Before getting into the specifics, it is helpful to 
briefly consider what is, and what isn’t, currently 
included in the large-scale power flow models that are 
the focus of this paper. When the digital power flow 
was first introduced in the late 1950’s and early 1960’s 
[1], [2] the goal was to solve as large of systems as 

possible with memory being a key constraint ([2] notes 
the solution of grids with up to 1000 buses using just 
32 KB of memory). Hence transmission-level power 
flows started out just modeling positive sequence 
models. An early 1970’s description of the core power 
flow models is given in [3] with a more recent 
description of standardized power flow models and 
parameters given in [4] and [5].  

In comparing [3], written when computer memory 
was still very much a constraint, with these more 
recent power flow model descriptions, qualitatively the 
changes have been relatively modest. Certainly there 
are now more parameters, including the modeling of 
device limits, and there are now objects for individual 
generators, loads, three-winding transformers, and 
HVDC lines. There are also a few new types of 
models, such as the representation of transformer 
impedance correction tables [6], generator reactive 
capability curves, and device ownership.   

An example of something that has not changed is 
that the positive sequence power flow, with its 
assumptions of a perfectly balanced three-phase grid 
and uniformly transposed transmission lines. This 
approach continues to be used almost exclusively for 
transmission system power flow analysis even though 
the benefits of the three-phase power flow are well 
known [7]. This is a case in which the computation and 
model simplicity benefits of the positive sequence 
approach are seen as outweighing the benefits, but 
much higher modeling requirements, of the three-phase 
approach. An example of a modeling change that has 
occurred is the now widespread use of the DC power 
flow [8] particularly for electric market analysis. While 
the DC power flow is certainly less accurate, its much 
simpler linear computation and fewer data 
requirements make it a very attractive choice for at 
least some applications. 

Sitting between these two modeling examples is 
the paper’s focus on normalizing the explicit inclusion 
of weather information in the power flow. Of course, 
since electric grids have long been significantly 
impacted by weather, its impact has usually been 
implicitly included. This includes the modeled load 
values, assumed values for generator real power output 
limits, transmission line and transformer limits, and 
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even the resistance values for these devices. While this 
approach has historically usually been adequate, a 
number of different recent changes are making it such 
that the advantages of direct inclusion of weather now 
appear to outweigh the disadvantages. Certainly one 
problem with the implicit approach is when modeling 
assumptions are not explicit, such as when 
temperatures fall outside assumed ranges, grid 
problems can occur, such as was the case in February 
2021 in Texas during Winter Storm Uri [9]. The need 
for better weather inclusion is also noted in [10], [11].    

The remainder of the paper is organized as 
follows. Section 2 addresses the issues needed to 
effectively include weather directly into the power 
flow. Then Section 3 introduces the electric grids and 
weather sets that will be used for the examples 
throughout the remainder of the paper.  The following 
section provides some specific examples, while Section 
5 provides some future directions.   

2. Considerations for Weather Inclusion in 
the Power Flow 

In order to explicitly include weather information 
in a power flow model there is a need to 1) have 
adequate weather information for the electric grid 
footprint of interest, 2) be able to map the weather 
information to pertinent electric grid components, and 
3) have adequate models of how the weather impacts 
the grid components. This section addresses each of 
these objectives. 

With respect to the availability of past and present 
weather information, it is safe to say that it is widely 
available. As an example, for the research related to 
this paper the team obtained hourly historical weather 
data for many sites worldwide covering a date range 
from the 1940’s to 2022 [12]. While the number of 
weather stations has increased over the years, even in 
the late 1940’s data is available for about 600 stations 
in the contiguous USA.  Figure 1 shows these stations, 
along with a contour of the temperature from January 
31, 1949 when the low temperatures in some parts of 
Texas were significantly below those seen during Uri; 
later in the paper this weather will be applied to 
modern grids. 

Concerning the weather stations to use, as a 
minimum there should be coverage over the electrical 
footprint of interest. There is no single standard for 
identifying weather stations, but the International Civil 
Aviation Organization (ICAO) provides data for more 
than 22,000 locations worldwide using 4-letter 
identifiers, with each location having a specified 
latitude, longitude and elevation. As an example, real-
time weather information for about 5000 stations using 
the ICAO identifiers is available at [13]. The World 

Meteorological Organization (WMO) uses five digit 
identifiers. For electric grid studies these stations could 
be supplemented with information from weather 
monitoring sites maintained by the electric utilities. 
The types of measurements needed would be modest, 
with the approach presented here using temperature, 
wind speed and cloud cover percentage (the data sets 
also had dew point and wind direction, but they were 
not used here). For the results presented here, the 
measurement times are given using Coordinated 
Universal Time (UTC) in the ISO8601 format. For 
solar PV the insolation is estimated by using the time, 
latitude and longitude to determine the sun’s azimuth 
and elevation, and then combining this with the cloud 
cover percentage.      

 

 
Figure 1: Temperature Contour for January 31, 1949 
  
Given that power flows sometimes study grids 

many years in the future, these situations also need to 
be considered.  One approach would be for the Electric 
Reliability Organizations (EROs) to select a set of 
times from the past that represent the desired 
conditions.  Examples could include a hot summer day 
with high winds, a similar day without much wind, a 
fall night, etc.  A complementary approach would be 
for the EROs (working with their meteorological staff) 
to develop or obtain a set of hypothesized future 
weather conditions, noting that there are many 
different entities who create such models. Whether the 
data is historic or forecasted, an advantage of including 
the weather with the power flow case is the underlying 
assumed weather is then explicit.     

The second objective is to map the weather 
information to the electric grid components.  
Traditionally power flow data sets have not included 
geographic information for the electric substations. 
However, this is rapidly changing driven in part by 1) 
the widespread availability of geographic information 
systems, 2) visualization techniques that can leverage 
geographic information [14], and 3) the need for 
geographic information for geomagnetic disturbance 
studies [15]. Examples of NERC regions requiring the 
submission of geographic information include [5], 
[16], and [17]. Large-scale synthetic electric grids with 
electric substation latitudes and longitudes are also 



available [18], [19], [20]. Finally, in the US the 
latitudes and longitudes for all generators larger than 1 
MW are available at [21]. Hence most present day 
power flow models already either directly have the 
needed geographic information, or have it in 
supplemental files. 

To integrate weather into power flow analysis 
what is needed is to have such information at the 
locations of the grid components such as the generators 
and transmission lines. Given the now widespread 
availability of weather stations, weather information is 
usually available at least close by to the electric grid 
location.  Then 2D scattered data interpolation methods 
can be used to provide good estimates of values at the 
desired grid locations.  While there is no best method 
for all situations, Delaunay triangulation or using the 
closest station with valid measurements works well in 
most situations. As an example Figure 2 shows a 
contour of the temperatures during Winter Storm Uri in 
2021 using data from more than 2500 stations.  When 
using this data with the 110,000 bus and 43,000 
electric substations of the actual North American 
power grid used in [22], the average distance between 
an electric substation and the closest weather station is 
19.8 km.   

 
Figure 2: Temperature Contour for February 15, 2021 

 
However, there certainly can be situations in 

which standard interpolation does not work well, such 
as mountains, valleys and some coastal regions. For 
these the approach utilized here is to use data from a 
specified weather station regardless of distance. A 
specific example is the Columbia River Gorge, which 
divides the US states of Washington and Oregon. With 
a length of about 190 km and average width of 5 km, 
the gorge has a unique and complex climate that can 
include quite high winds [23]. This has resulted in the 
siting of a large amount of wind generation, with the 
characteristic that the wind speeds at the wind power 
plants (WPPs) in the gorge can be quite different from 
nearby weather stations outside the gorge. Figure 3 
visualizes the generation (from the 82,000-bus grid 
introduced in the next section) and weather stations in 
the gorge using the geographic data view (GDV) 
approach from [14] in which the ovals show the 

generation capacity with the colors indicating the fuel 
type (green for wind, blue for hydro, black for coal, red 
for nuclear, brown for natural gas, and yellow for 
solar); the white rectangles show the weather stations.   

 

 
Figure 3: Generators and Weather Stations in the  

Columbia River Gorge 

The last objective is having adequate models of 
how the weather impacts the various grid components. 
What is proposed here is to mimic the multi-model 
approach widely used in electric grid stability analysis. 
In this stability method a number of different model 
types are available to represent different system 
components. The set of available models for the 
different components started small [24] with an initial 
focus on just the synchronous generators, and then 
gradually expanded and became more standardized.  
As an example, [25] and [26] illustrate the change in 
generator exciter modeling. Now it is common for 
stability software vendors to support 100’s of different 
models covering a gradually expanded set of electric 
grid object classes (e.g., synchronous generators, 
renewable generators, loads, HVDC lines, relays, etc.) 
based upon the needs of their customers. In a similar 
manner the initial set of supported weather models 
would start small and grow as needs changed. 

 The purpose of this paper is to present and 
demonstrate an overall methodology on large-scale 
grids.  The paper’s purpose is not to introduce any new 
models since there are already a wide number available 
in the literature covering the impact of weather on 
many different power flow models.  Examples include 
generator maximum MW output, transmission line 
ambient-adjusted ratings [27], dynamic transmission 
line ratings [28], and temperature dependent 
transmission line resistance [29]. Rather here just six 
somewhat generic models are used, with all modeling 
the impact of various weather values on the maximum 
real power output values for electric generators. The 
assumption, well supported by available data, is that 
the geographic location of each generator is known.  

The first model provides a simple representation 
for the WPP real power output, taking the local wind 
speed as an input.  This model utilizes the wind turbine 
power curve models of [30], [31], and [32].  
Parameters include the rated real power (MW), the cut-



in wind speed, the rated wind speed, the cut-out wind 
speed, and a scalar multiplier to estimate the hub 
height winds from surface winds.  The second to fourth 
models are similar to the first, except that they provide 
somewhat generic power curve representations of the 
three IEC wind turbine classes using data from [33]. 
The Section 4 discusses the sensitivity of the results to 
these different models with Figure 17 showing the four 
speed-power curves.       

The fifth model represents solar PV power 
generation, taking the local cloud cover percentage and 
the date/time as inputs, and providing the maximum 
real power as the output, implementing the models of 
[30].  Parameters include the rated real power, the type 
of solar PV tracking (fixed, single-axis, dual-axis), the 
azimuth, the tilt angle, and an assumed sky diffuse 
factor. For wind and solar generators in the USA, many 
of these parameters are available in [21].   

The sixth model provides a simple approximation 
of how generator real power output limits vary with 
temperature, taking temperature as an input and 
providing a scalar on the maximum real power value as 
an output.  The parameters for this model are shown in 
Figure 4, with the right side modeling the well-known 
reduction in output (for at least gas turbines) with 
increasing ambient temperature [34]. The left side 
models the reduction in output with decreasing 
temperature, with the assumption that this model is 
more intended to represent the potential for generators 
to fail rather than describing an explicit temperature 
dependence.  The increasing likelihood of generator 
failures with cold temperatures is described in [9] and 
[35].  Either the left or right side can be omitted just by 
setting the corresponding scale value to 1.0.           

3. Example Electric Grids and Weather 
Data 

In order to show that weather can become a 
normal part of standard power flow analysis, this paper 
utilizes five geographically-based, larger-scale electric 
grids.  The first four are synthetic grids [36] whereas 
the last is the previously mentioned 110,000-bus grid 
modeling a proposed interconnection of the North 
American Eastern and Western grids [22]. The oneline 
for the first synthetic grid, which has 6700 buses and 
covers a geographic footprint of most of the US state 
of Texas, is shown in Figure 5. The grid’s nominal 
voltage levels are 345 kV (red), 138 kV (black) and 69 
kV (gray). The grid has a total of about 105 GW of 
generation, with 25 GW of wind and 2.3 GW of solar. 
Figure 6 shows the grid’s generation capacity using the 
same GDV approach as used in Figure 3; the size and 
location of the generation is based on 2019 EIA 860 
data.  The second grid is similar to the first except the 

amount of solar and wind generation capacity has been 
increased to what could occur in 2030 (assuming 
extremely high renewable growth).  It has a total of 
about 55 GW of wind and 27 GW of solar (for 
reference in 2022 Texas has a total of about 46 GW of 
wind and solar).   

 
Figure 4: Piecewise Linear Temperature Model  

 
Figure 5: 6700 Bus Grid Oneline 

 
Figure 6: 6700 Bus Grid Generation GDV  

The third synthetic grid has about 24,000 buses 
and 6300 generators with a total of 320 GW of 
generation including 47 GW of wind and 1.8 GW of 
solar.  Its oneline is shown in Figure 8 using the same 
nominal voltage color convention with additional 



voltage levels of 500 kV (orange) and 230 kV (blue).  
The size and location of its generators is also based on 
2019 EIA 860 data.  The last synthetic grid has 82,000 
buses covering the contiguous US and is identical to 
the grid used in [22] in which 80,000 buses are used to 
model a combined East-West grid and 2000 buses 
model a separate grid covering most of Texas. The 
grid’s oneline is shown in Figure 9 using the previous 
nominal voltage color convention with the addition of 
light green for 765 kV; the thick black line indicates 
the division between the East and Texas portion of the 
grid and the West.  The power flow models for all of 
the synthetic grids are available at [37].       

 

 
Figure 7: 6700 Bus Grid Generation GDV (2030) 

 
Figure 8: 24,000 Bus Online 

The examples in the next section are all based on 
hourly historic weather data obtained from [12] dating 
back to the 1940’s.  While the source contains 
worldwide data, for this paper the examples are 

restricted to North American measurements. The 
number of weather stations with valid measurements 
varies, with a general increase from about 600 in the 
late 1940’s to 2500 in 2020.  The measurements used 
here are 1) temperature, 2) surface wind speed, and 3) 
percentage cloud cover.   
 

 
Figure 9: 82,000 Bus Grid Oneline 

4. Large-Scale Grid Examples 

There are many different ways weather 
information can be used in power flow analysis.  This 
section provides some specific examples, within the 
paper’s focus, of using weather to modify the output of 
either WPPs based on wind speed, solar PV based on 
insolation, and potentially all generators based on 
temperature. Hence these examples address the 
growing power flow challenge of providing coherent 
generator maximum power limits as the number of 
WPPs and solar rapidly grows. 

In general, the inclusion of these examples in the 
power flow and/or optimal power flow is fairly 
straightforward. Results presented here are modeled 
using PowerWorld Simulator Version 23 in which 
during the solution process the previously described 
weather-dependent models are used to change the 
generators’ maximum real power outputs limits.  
Additionally, since wind and solar generators often 
operate at their maximum, weather dependent limits, 
the models can change the generators’ modeled real 
power output and potentially their on/off status. 
Examples in which it would usually be appropriate to 
directly change the generators’ on/off status and power 
output would be wind or solar generators in the power 
flow which, given these generators’ low costs, would 
typically be operating at their maximum, or would be 
off.  Then during the power flow solution the output of 
the other generators would be adjusted as normal to 
satisfy the area interchange constraints. An example in 
which changing the actual output might not be 
appropriate would be a generator with a temperature 
limit model that is not operating above its limit.      

Most of these examples demonstrate results using 
1949 weather. There are two reasons for this. First, 
1949 is the year of record cold for much of Central 



Texas, so it is a good year for comparison with Winter 
Storm Uri. Second, being more than 70 years ago, it 
demonstrates that fairly good analysis can be done 
even using such data and hence all subsequent years 
could be considered as well.  It is important to 
emphasize that the point of using historical data is not 
to represent the grid itself at some point in the past.  
Rather, it is to apply to the grid being studied (usually 
representing either present day or future conditions) 
past weather, which since this past weather has already 
occurred, there is at least some probability of 
something similar occurring in the future. As 
previously noted forecasted future conditions could 
also be used.      

As a first example consider the 6700 bus grid from 
Figure 6 that has 153 WTGs and 36 solar PVs, all of 
which have been modeled using the paper’s approach 
of weather dependent maximum real limits. The 
challenge is to set these maximum limits consistently. 
Of course one approach would be to just study the 
situations of either full available capacity, or zero 
available capacity everywhere. While this simplifies 
the problem, it is likely an over simplification since 
these two points might not actually represent the most 
severe operating conditions, and could be quite rare. 
The challenge for any other operating point is to have a 
consistent set of limits since the WTG values are 
correlated by the underlying winds and the solar PVs 
by their insolation.  The solution proposed here is to 
explicitly include the weather, which if based on 
observations or meteorological models, provides the 
correlations. 

To determine interesting weather conditions one 
approach is to quickly process all the weather in a data 
set by just applying the models to the power flow data 
without actually solving the power flow. Figure 10 
shows the results for the hourly wind and solar 
generation in the 6700 bus case using the 1949 weather 
values. Computationally this is relatively quick, scaling 
with the number of generators and number of time 
points considered. Even using not particularly 
optimized code, processing only took about one second 
per day with hourly data for the 82K bus system. This 
data at each hour can then be used to determine a 
power flow or OPF solution (demonstrated with the 
24K bus grid). 

From this data, interesting conditions can be 
determined for further study. For 1949 one such time  
is the record cold that occurred on January 31 (i.e., 
Figure 1). Figure 11 uses a gray color mapping to 
visualize the wind generation that occurred at 4 a.m. on 
1/31/49 using the same GDV size scale and colors as 
from Figure 6 (for clarity the non-renewable generation 
has been removed and obviously there would be no 
solar at 4 a.m.).  Interestingly there was relatively little 

wind throughout Texas with almost no wind in South 
Texas; at this time the available wind capacity would 
be 7.3 GW (out of a total of 25 GW).   

 
Figure 10: 6700-Bus (2019) Grid Hourly Wind and Solar 

Capacity using 1949 Data 

 
   Figure 11: 6700-Bus (2019) Grid Wind Jan 31, 1949 
 
In applying the temperature model to all the 

natural gas generators, WPPs and solar PV generators 
using the model’s default parameters it appears that 
there might have been more generation lost compared 
to Uri if the 1949 weather had occurred. This is 
because while the temperatures in parts of Texas were 
higher in 1949, they were lower over the parts of the 
state with the most natural gas generation. Also, 
because of the lower winds overall, the WPP outputs 
would likely have been lower.   

Of course, the purpose in this paper is just to 
introduce the weather inclusion methodology, and not 
to provide in-depth results for any particular events.  
But this methodology could be used to provide such 
results in more detailed studies. Other interesting times 
can be when there are sudden changes (particularly 
decreases) in the wind and/or insolation since this can 
result in a potentially rapid drop in the renewable 
generation.  The largest hourly decrease was 12.9 GW 
on November 12th at 6 p.m.  Figure 12 shows similar 
results for the 2030 grid. 



Moving on to the 24K grid, the explicit 
representation of weather is likewise helpful 
particularly since the grid has more than 600 WTGs 
and more than 600 of mostly small solar PVs. Using 
the previous approach the renewable capacity at each 
time point can quickly be determined.  The impact of 
these assumptions on the OPF solution is illustrated in 
Figure 13 and Figure 14 in which each figure uses 
GDVs to show the solution generator outputs and a 
color contour to visualize the bus locational marginal 
costs (LMPs). Both figures model a near peak load, 
something that would usually occur in the later 
afternoon during the summer. However, the first 
figure, based on the case study of [38], makes the 
unrealistic assumption of near maximum wind 
availability. The second figure makes the more realistic 
assumption of much lower wind, basing the results on 
(somewhat arbitrarily) July 15, 1949 at 6 p.m. 
Certainly there can be convergence issues associated 
with simultaneously changing many power system 
maximum generator power limits.  The key takeaway 
in this paper is to provide a relatively simple and 
flexible methodology for explicitly representing the 
weather to set these limits.   

 
Figure 12: 6700-Bus (2030) Grid Hourly Wind and Solar 

Capacity using 1949 Data 
 

 
Figure 13: 24K-Bus Grid LMP Contour with High Wind 

The last example is with the 82K-bus grid, with 
this grid included to demonstrate that the approach can 
be applied to quite large systems. As with the previous 
examples the system was first screened using the 1949 
data, with the hourly renewable generation values 
shown in Figure 15. With this grid the largest hourly 
decrease in aggregate was just 3.7 GW, though there 
was substantially more volatility on a percentage basis 
in the individual area values. Figure 16 shows the 
renewable generator values for the hour with the 
highest values; a gray-scale is used in the figure to 
show the associated wind speeds.   

 

 
Figure 14: 24K-Bus Grid LMP Contour with Lower Winds 

 
   Figure 15: 82K-Bus Grid Hourly Wind and Solar Capacity 

using 1949 Data 
 

 
   Figure 16: 82K-Bus Grid Renewal Generation using  

May 3, 1949 Data 



As noted in Section 1, there are always tradeoffs 
associated with engineering modeling. This will 
certainly be the case with the direct inclusion of 
weather and weather-related models into the power 
flow. For example, balancing the number of different 
models, the complexity of each model, the availability 
of the model parameters, and the impact of the model 
outputs on the results. As is the case with electric grid 
stability analysis, how these issues are addressed will 
gradually change over time based on results from 
research and other studies. 

 
Figure 17: Speed-Power Curves for Different WPP Models 

 
As a step in this direction, Figure 17 shows the 

curves for the four WPP types modeled here, with the 
Class 1 to 3 values coming from [33]. While detailed 
information about all the WPPs in the US is given in 
[21] (including the specific wind turbine model and 
hub height), initially it is quite likely that studies would 
be done using default models. Hence the results 
presented here have used the simple Default model 
shown in Figure 17.   

To look at the sensitivity of the results to this 
assumption, Figure 18 compares the wind results from 
Figure 15 with the results that are obtained using the 
assumption of all Class 1 models  (i.e., WPPs designed 
for high wind conditions). The average difference is 
about 6500 MW. Since the Class 1 model is the most 
different from the Default and represents a very small 
percentage of the WPPs in the US (most are Class 2), 
this difference over estimates what would be obtained 
if detailed models had been used for all the WPPs.  

Of course what degree of detail is needed and how 
errors from one assumption compare with others is 
study specific. To give a final example that briefly 
considers how the models can be validated and 
improved, on July 11, 2022 the Electric Reliability 
Council of Texas (ERCOT) had an extremely high 
electric load due to hot conditions across their footprint 
and low wind generation. As noted in [39] ERCOT had 
installed wind and solar capacity of 35.1 GW and 11.8 
GW respectively. In order to compare the paper’s 
synthetic 6700 bus grid results with the actual 

conditions from this day, the synthetic grid’s 
generation, which was originally based on 2019  data, 
was augmented to match the size and location of the 
actual July 2022 wind and solar capacity in ERCOT. 
Since the specific details on the wind class was not in 
the synthetic grid, as a simplification all the wind 
generation was assumed to be Class 2. Weather data 
for July 11, 2022 at 3 p.m. (CDT) was obtained from 
[13], and then the algorithm was applied to determine 
the estimated wind generation. Since default models 
were used and the weather data was readily available, 
this took very little additional work to include this 
weather dependence in the power flow.    

 
Figure 18: Difference in 82K-Bus Hourly Winds between 

Using the Default Model and the Class 1 Model  
 
Depending on the assumed hub height scalar the 

estimated wind generation ranged from 3815 MW for a 
scalar of 1.2 to 5970 MW for a scalar of 1.4. This 
compares favorably to the actual value reported by 
ERCOT of about 3700 MW (with the value rapidly 
varying from 2000 MW at 2 p.m. to 5400 MW at 4 
p.m.). Figure 19 shows a contour of the wind at 3 p.m. 
using the Figure 16 color mapping  along with the 
assumed outputs of the 6700 bus grid wind (green) and 
solar (yellow) generators; the dots show the location of 
the weather measurements obtained from [13].  

 
Figure 19: July 11, 2022 Wind Contour at 3 p.m. CDT 

 



Figure 20 shows a zoomed view of this same data, 
except with the values of the actual wind 
measurements shown in the white boxes and the WTG 
outputs shown in the green ovals. Note that over 
relatively small distances the wind speed can vary 
substantially (e.g., from 3 m/s to 10 m/s).  Hence as 
was the case from earlier of the Columbia River Gorge, 
the results could likely be improved substantially by 
ensuring that the appropriate wind measurements, 
WTG model classes, and hub height scalar are assigned 
to the WTGs in this region.  Of course whether this 
level of detail is needed would be study specific, but 
once these modeling details have been determined, 
they could be used in all future studies.     

      

 
Figure 20: July 11, 2022 Wind Contour at 3 p.m. CDT,  

Zoomed View of South Texas 

5. Conclusion and Future Directions 

The paper has shown that it is fairly 
straightforward to explicitly include weather data in 
power flow models and that there are significant 
advantages associated with this approach. The issues 
that have been addressed include the availability of 
weather data, the mapping of weather information to 
electric grid components, and the development of a 
flexible and extensible modeling approach for relating 
weather values to the power flow models. Several 
large-scale examples have been presented with 
consideration of the visualization of the results.  There 
are many directions for future work including the 
development of many more models, the sensitivity of 
the results to the models, computational considerations 
in processing many different time periods, and power 
flow convergence issues in moving between different 
time points.    
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