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Announcements

A]M
Read Chapter 6 from the book

~ The book presents the power flow using the polar form for the Y elements
Homework 2 1s due on Thursday September 22

The ECEN EPG dinner 1s Saturday October 1st at 5:00 pm at Prof. Davis’s
house. The address 1s 3810 Park Meadow Lane, Bryan, TX 77802.
— RSVP at https://forms.gle/6aye2butgCLDv6bz5 by Sunday, September 25,




Larger Sized Grid Power Flow Example

AlM

®

emonstration of some issues with solving power flows on larger cases

Example 1s done using the 2000 bus synthetic grid from Homework 2
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Decoupled Power Flow

Rather than not updating the Jacobian, the decoupled power flow takes
advantage of characteristics of the power grid in order to decouple the
real and reactive power balance equations

— There is a strong coupling between real power and voltage angle, and reactive
power and voltage magnitude

— There is a much weaker coupling between real power and voltage magnitude, and
reactive power and voltage angle

Key reference 1s B. Stott, “Decoupled Newton Load Flow,” IEEE Trans.

Power. App and Syst., Sept/Oct. 1972, pp. 1955-1959



Decoupled Power Flow Formulation

General form of the power flow problem
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Decoupling Approximation

Usually the off-diagonal matrices, —— and
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Off-diagonal Jacobian Terms

Justification for Jacobian approximations:

1. Usually r <<x, therefore |G;; <<|B;

2. Usually 6, 1s small so sing, ~ 0
Therefore

OP. ,

L= V|G cos@.. + B..sin@., ~ 0

5Vj l( ij i i l])

0Q; .

0. = -V Vj(Gl-j cosHij +B; s1n6?l.j) ~ (

J

By assuming ' the elements are zero, we only have to do
"> the computations



Decoupled N-R Region of Convergence
Alta
Bl The high solution ROC is
Bl actually larger than with the
fll standard NPF. Obviously
this 1s no a good a way to get
the low solution
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Fast Decoupled Power Flow, cont.

AJf
By continuing with Jacobian approximations we can obtain a reasonable
approximation that is independent of the voltage magnitudes/angles.

— This means the Jacobian need only be built/inverted once per power flow solution
This approach 1s known as the fast decoupled power flow (FDPF)

FDPF uses the same mismatch equations as standard power flow (just
scaled) so 1t should have same solution

The FDPF is widely used, though usually only for an approximate solution

- Key fast decoupled power flow reference is B. Stott, O. Alsac, “Fast Decoupled Load
Flow,” IEEE Trans. Power App. and Syst., May 1974, pp. 859-869

— Modified versions also exist, such as D. Jajicic and A. Bose, “A Modification to the
Fast Decoupled Power Flow for Networks with High R/X Ratios, “IEEE Transactions

on Power Sys., May 1988, pp. 743-746 g



FDPF Approximations

The FDPF makes the following approximations:
1.
2. =1
3. sind; =0 cosf; =

To see the impact on the real power equations recall
n
2 ViV (Gy cos Oy + By siny ) = Fg; — Py,

Which can also be written as

o

l

P-.
*1 = V cos@., + B., sin@,,) =-C

= l



FDPF Approximations

With the approximations for the diagonal term we get

oP. L

1 ~ B. =—8..

891 kZZI ik ii
k#i

The for the off-diagonal terms (k # 1) with G=0 and V=1
oF,
00,

= —Bj cosby; ~-B;

Hence the Jacobian for the real equations can be approximated as —B
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FPDF Approximations

For the reactive power equations we also scale by V.

Q; = ZVVk(GkSIH‘g By cos0; )= Qg — Op;
k=1

Qi = >V, (Gy sinby, — cosé’k)—QGi_QDi
Vi k= Vi

l

For the Jacobian off-diagonals we get

0 _ —B,, cosf, ~—B
oV,
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And for the reactive power Jacobian diagonal we get

FDPF Approximations

%9 ~ —2B; - ZBik =—B;
ov; k=1

k+#i

As derived the real and reactive equations have a constant Jacobian
equal to —B

— Usually modifications are made to omit from the real power matrix elements
that affect reactive flow (like shunts) and from the reactive power matrix
elements that affect real power flow, like phase shifters

— We’ll call the real power matrix B’ and the reactive B”

12



FDPF Region of Convergence
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FDPF Cautions
Alm

* The FDPF works well as long as the previous approximations hold for
the entire system

*  With the movement towards modeling larger systems, with more of the
lower voltage portions of the system represented (for which 1/x ratios
are higher) it 1s quite common for the FDPF to get stuck because small
portions of the system are ill-behaved

* The FDPF is commonly used to provide an initial guess of the solution
for contingency analysis

14



DC Power Flow
A]M
The “DC” power flow makes the most severe approximations:

— completely 1gnore reactive power, assume all the voltages are always 1.0 per unit,
1gnore line conductance

This makes the power flow a linear set of equations, which can be solved

directly | . —
06=-B P P sign convention 1s

generation 1s positive

The term dc power flow actually dates from the time of the old network
analyzers (going back into the 1930°s)

Not to be confused with the inclusion of HVDC lines 1n the standard NPF

15



DC Power Flow References
A]M
* I don’t think a classic dc power flow paper exists; a nice formulation is

given 1n our book Power Generation and Control book by Wood,
Wollenberg and Sheble

* The August 2009 paper in IEEE Transactions on Power Systems, “DC
Power Flow Revisited” (by Stott, Jardim and Alsac) provides good
coverage

 T.J. Overbye, X. Cheng, and Y. Sun, “A comparison of the AC and DC
power flow models for LMP Calculations,” in Proc. 37th Hawaii Int.
Conf. System Sciences, 2004, compares the accuracy of the approach

16



DC Power Flow Example

EXAMPLE 6.17

Determine the dc power flow solution for the five bus from Example 6.9.

SOLUTION With bus I as the system slack, the B matrix and P vector for

this system are

-30 0 10 20 —8.0
0 —100 100 0 p 4.4

B —
10 100 =150 40 0
20 0 40 —llf}J 0 J
0.3263} ]870}
0.0091 0.5214
6=-B'P= 0.0349 radians = 2000 degrees
—0.0720 —4.125J

Example from Power System Analysis and Design, by Glover, Overbye, Sarma, 61" Edition

A] ¥
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DC Power Flow in PowerWorld

A]M
 PowerWorld allows for easy switching between the dc and ac power flows
(case Aggieland37)

Aggieland Power and nght To use the dc approach

aaaaaa

1in PowerWorld select
Tools, Solve, DC Power
Flow

Total Load 1421.0 MW 100 Nl vowordas
Total Losses: 0.00 MW 0 0

4, TEXAS345

Notice there are no losses

18



Linear System Solution: Introduction

A problem that occurs 1n many 1s fields 1s the solution of linear systems
Ax =b where A is an n by n matrix with elements a;;, and x and b are n-
vectors with elements x. and b, respectively
In power systems we are particularly interested in systems when n 1s
relatively large and A 1s sparse

—  How large 1s large is changing
A matrix 1s sparse 1f a large percentage of its elements have zero values
Goal 1s to understand the computational issues (including complexity)
associated with the solution of these systems

A] ¥
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Introduction, cont.
T
Sparse matrices arise in many areas, and can have domain specific
structures
— Symmetric matrices
— Structurally symmetric matrices
— Tridiagnonal matrices
~ Banded matrices

A good (and free) book on sparse matrices is available at
www-users.cs.umn.edu/~saad/IterMethBook 2ndEd.pdf

ECEN 615 1s focused on problems 1n the electric power domain; it 1s not
a general sparse matrix course
— Much of the early sparse matrix work was done in power!

20



Gaussian Elimination
T
The best known and most widely used method for solving linear systems
of algebraic equations is attributed to Gauss
Gaussian elimination avoids having to explicitly determine the inverse of
A, which is O(n?)
Gaussian elimination can be readily applied to sparse matrices
Gaussian elimination leverages the fact that scaling a linear equation does
not change its solution, nor does adding on linear equation to another

2x, +4x,=10—>x, +2x,=5

21



Gaussian Elimination, cont.
T
e (Gaussian elimination 1s the elementary procedure in which we use the first
equation to eliminate the first variable from the last n-1 equations, then we
use the new second equation to eliminate the second variable from the last

n-2 equations, and so on
* After performing n-1 such eliminations we end up with a triangular system

which 1s easily solved in a backward direction

22



Example 1

*  We need to solve for x 1n the system

2 3 -1 0][x 20
6 -5 0 2||x,| |-45
2 -5 6 —6||x| |- 3
4 2 2 -3||x| | 30

* The three elimination steps are given on the next slides; for simplicity,
we have appended the r.h.s. vector to the matrix

* First step 1s set the diagonal element of row 1 to 1 (1.e., normalize it)



Example 1, cont.

Eliminate x, by subtracting row 1 from all the rows below it

1
multiplyrow 1 by —
2

multiplyrow 1 by 6
and add torow 2

multiply row 1 by -2
and add torow 3

multiply row 1 by -4
and add torow 4

10

15

- 23

- 10

24



Example 1, cont.

Eliminate x, by subtracting row 2 from all the rows below it

1
multiplyrow 2 by —
4

multiply row 2 by 8
and add torow 3

multiply row 2 by 4
and add torow 4

10

25



Example 1, cont.

* Elimmation of x; from row 3 and 4

multiply row 3 by 1

multiply row 3 by -1
and add torow 4

26



Example 1, cont.

Then, we solve for x by “going backwards”,
substitution:

x, = -2
x, - 2x, = T= x, = 3
3 1 15
X, ——x,+—-x, = — = x, = 1T
4 2 4
x+§x —1x = 10 = x, = 1

1.e., using back

27



LU Decomposition

AJf
What we did with Gaussian elimination can be thought of as changing the
form of the matrix to create two matrices with special structure

One matrix, shown on the last slide, 1s upper triangular

The second matrix, a lower triangular one, keeps track of the operations
we did to get the upper triangular matrix

These concepts will be helpful for a computer implementation of the
algorithm and for its application to sparse systems

28



LU Decomposition Theorem

Any nonsingular matrix A has the following factorization:

A=LU

where U could be the upper triangular matrix previously developed (with
1’s on 1ts diagonals) and L 1s a lower triangular matrix defined by

.<.
ra(.i._l) J =1

ij
€ﬁ=< j>i

0

29



LU Decomposition Application

As a result of this theorem we can rewrite

Ax=LUx=b
Define y = Ux
Then Ly =b

Can also be set so U has non unity diagonals

Once A has been factored, we can solve for x by first solving for y, a
process known as forward substitution, then solving for x in a process
known as back substitution

In the previous example we can think of LL as a record of the forward
operations preformed on b.

30



LDU Decomposition

AJf
* In the previous case we required that the diagonals of U be unity, while
there was no such restriction on the diagonals of L

* An alternative decomposition 1s

A =YDU
with L = YD

where D 1s a diagonal matrix, and the lower triangular matrix i1s modified to
require unity for the diagonals (we’ll just use the LU approach in 615)

31



Symmetric Matrix Factorization

A] ¥

 The LDU formulation is quite useful for the case of a symmetric matrix
A=A"
A=VDU=UDIS = A7
u=u
A=U'DU

* Hence only the upper triangular elements and the diagonal elements need to
be stored, reducing storage by almost a factor of 2

32



Symmetric Matrix Factorization

AJf
* There are also some computational benefits from factoring symmetric
matrices. However, since symmetric matrices are not common in power

applications, we will not consider them 1n-depth

* However, topologically symmetric sparse matrices are quite common, SO
those will be our main focus

33



Pivoting

AJ
* An immediate problem that can occur with Gaussian elimination 1s the
issue of zeros on the diagonal; for example

S

This problem can be solved by a process known as “pivoting,” which
involves the interchange of either both rows and columns (full pivoting) or
just the rows (partial pivoting)

— Partial pivoting is much easier to implement, and actually can be shown to work
quite well

34



Pivoting, cont.

A] ¥

* In the previous example the (partial) pivot would just be to interchange the

twoO rows
%o 2 3
0 1

obviously we need to keep track of the interchanged rows!

* Partial pivoting can be helpful in improving numerical stability even when
the diagonals are not zero

— When factoring row k interchange rows so the new diagonal is the largest element in
column k for rows j >=k

35



LU Algorithm Without Pivoting Processing by row
AJf
* We will use the more common approach of having ones on the diagonals
of L. Also in the common, diagonally dominant power system problems
pivoting is not needed.
The below algorithm is in row form (useful with sparsity!)

For1:=2 ton Do Begin // This is the row being processed
Forj:=1 to1-1 Do Begin // Rows subtracted from row 1
Ali,]] = A[1,3]/Al},3] // This is the scaling
For k :=j+1 to n Do Begin // Go through each column in 1
AliLk] = A[Lk] - A[i,j]*A[j.k]
End;
End;

End; 36



LU Example

A]M
e Starting matrix
20 —12 -5
A=|-5 12 -6
4 3 8

A[2,2]= A[2,2]-A[2,1]*A[1,2]

~12-(-0.25)*(-12) =9
e Result with i=2, j=1; done with row 2 A[2,3]1=A[2,3]-A[2,1]*A[1,3]

* First row 1s unchanged; start with 1=2

20 -12 -5 — 6 —(-0.25)%(-5) = -7.25
A=[-025 9 -725
4 3 8 |

37



LU Example, cont.

Result with 1=3, j=1;

A =

20 -12 -5 |
025 9 -725
02 54 7

A[3,11= A[3,11/A[1,1]
—4/20=-0.2

A[3,2] = A[3,2] — A[3,1]*A[1,2]
A[3,2] =-3 - (-0.2)*(-12) = -5.4
A[3,3] =8 — (-0.2)*(-5) =7

Result with 1=3, j=2; done with row 3; done!

A

20 =12 =5
-025 9 -7.25

02 -0.6 265 |

A[3,2]= A[3,2]/A[2,2]
=.5.4/9=-0.6
A[3,3]=A[3,3] - A[3,2]*A[2,3]
A[3,3]=7 — (-0.6)*(-7.25) =2.65
38



LU Example, cont.

T
* Original matrix 1s used to hold L. and U
20 -12 -5
A=|-5 12 —-6|=LU
4 3 8 With this approach
B 0 0 the original A matrix

has been replaced
by the factored values!

02 06 1
(20 —-12 -5 |
U=|0 9 -725
0 0 265

39



Forward Substitution

Forward substitution solves b = Ly with values in b
being over written (replaced by the y values)

Fori:=2 ton Do Begin // This is the row being processed
Forj:=1toi-1 Do Begin
b[1] =b[1] - A[1,j]*b[j] // This 1s just using the L. matrix
End;
End;

40



Forward Substitution Example

0
Let b=| 20
] 0 0]
From before L = | —0.25 1 0
| 02 06 1
y1]=10

2]1=20—-(-0.25)*10=22.5
y[3]=30—-(-0.2)*10—-(—-0.6) *22.5=45.5

<




Backward Substitution

* Backward substitution solves y = Ux (with values of y
contained in the b vector as a result of the forward
substitution)

Fori:=nto 1 Do Begin // This is the row being processed

Forj :=1+1 to n Do Begin
b[1] =b[1] - A[1,j]*b[j] // This is just using the U matrix
End;
b[1] = b[1]/A[1,1] // The A[i,1] values are <> 0 if it is nonsingular
End

42



Backward Substitution Example

10
Let y=| 22.5
1 45.5
(20 -12 -5
FrombeforeU=| 0 9 -7.25
0 0 265 ]

X3]=(1/2.65)%45.5=17.17
x[2]=(1/9)*(22.5-(~7.25)*17.17) =16.33
x1]=(1/20)*(10 = (=5)*17.17 = (~12) ¥16.33) = 14.59




