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Announcements

• Read Chapter 6 from the book
– The book presents the power flow using the polar form for the Ybus elements 

• Homework 2 is due on Thursday September 22

• The ECEN EPG dinner is Saturday October 1st at 5:00 pm at Prof. Davis’s 
house.  The address is 3810 Park Meadow Lane, Bryan, TX 77802. 
– RSVP at https://forms.gle/6aye2butgCLDv6bz5 by Sunday, September 25th.
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Larger Sized Grid Power Flow Example

• Demonstration of some issues with solving power flows on larger cases
– Example is done using the 2000 bus synthetic grid from Homework 2
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Decoupled Power Flow

• Rather than not updating the Jacobian, the decoupled power flow takes 
advantage of characteristics of the power grid in order to decouple the 
real and reactive power balance equations
– There is a strong coupling between real power and voltage angle, and reactive 

power and voltage magnitude

– There is a much weaker coupling between real power and voltage magnitude, and 
reactive power and voltage angle

• Key reference is B. Stott, “Decoupled Newton Load Flow,” IEEE Trans. 
Power. App and Syst., Sept/Oct. 1972, pp. 1955-1959  
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Decoupled Power Flow Formulation
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Decoupling Approximation
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Off-diagonal Jacobian Terms

6

 

 

Justification for Jacobian approximations:

1. Usually r << x, therefore 

2. Usually  is small so sin 0

Therefore

cos sin 0

cos sin 0

ij ij

ij ij

i
i ij ij ij ij

j

i
i j ij ij ij ij

j

G B

V G B

V V G B

 

 

 






  




   



P

V

Q
θ

By assuming ½ the elements are zero, we only have to do
½ the computations 6



Decoupled N-R Region of Convergence

The high solution ROC is 
actually larger than with the 
standard NPF. Obviously
this is no a good a way to get 
the low solution
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Fast Decoupled Power Flow, cont.

• By continuing with Jacobian approximations we can obtain a reasonable 
approximation that is independent of the voltage magnitudes/angles.
– This means the Jacobian need only be built/inverted once per power flow solution

• This approach is known as the fast decoupled power flow (FDPF)

• FDPF uses the same mismatch equations as standard power flow (just 
scaled) so it should have same solution

• The FDPF is widely used, though usually only for an approximate solution
– Key fast decoupled power flow reference is  B. Stott, O. Alsac, “Fast Decoupled Load 

Flow,” IEEE Trans. Power App. and Syst., May 1974, pp. 859-869

– Modified versions also exist, such as D. Jajicic and A. Bose, “A Modification to the 
Fast Decoupled Power Flow for Networks with High R/X Ratios, “IEEE Transactions 
on Power Sys., May 1988, pp. 743-746 8



FDPF Approximations
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FDPF Approximations

• With the approximations for the diagonal term we get

• Hence the Jacobian for the real equations can be approximated as –B
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FPDF Approximations

• For the reactive power equations we also scale by Vi

• For the Jacobian off-diagonals we get
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FDPF Approximations

• And for the reactive power Jacobian diagonal we get

• As derived the real and reactive equations have a constant Jacobian 
equal to –B
– Usually modifications are made to omit from the real power matrix elements 

that affect reactive flow (like shunts) and from the reactive power matrix 
elements that affect real power flow, like phase shifters

– We’ll call the real power matrix B’ and the reactive B”
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FDPF Region of Convergence
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FDPF Cautions

• The FDPF works well as long as the previous approximations hold for 
the entire system

• With the movement towards modeling larger systems, with more of the 
lower voltage portions of the system represented (for which r/x ratios 
are higher) it is quite common for the FDPF to get stuck because small 
portions of the system are ill-behaved

• The FDPF is commonly used to provide an initial guess of the solution 
for contingency analysis 
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DC Power Flow

• The “DC” power flow makes the most severe approximations:
– completely ignore reactive power, assume all the voltages are always 1.0 per unit, 

ignore line conductance

• This makes the power flow a linear set of equations, which can be solved 
directly

• The term dc power flow actually dates from the time of the old network 
analyzers (going back into the 1930’s)

• Not to be confused with the inclusion of HVDC lines in the standard NPF

P sign convention is 
generation is positive 

1 θ B P

15



DC Power Flow References

• I don’t think a classic dc power flow paper exists; a nice formulation is 
given in our book Power Generation and Control book by Wood, 
Wollenberg and Sheble

• The August 2009 paper in IEEE Transactions on Power Systems, “DC 
Power Flow Revisited” (by Stott, Jardim and Alsac) provides good 
coverage

• T. J. Overbye, X. Cheng, and Y. Sun, “A comparison of the AC and DC 
power flow models for LMP Calculations,” in Proc. 37th Hawaii Int. 
Conf. System Sciences, 2004, compares the accuracy of the approach

16



DC Power Flow Example

Example from Power System Analysis and Design, by Glover, Overbye, Sarma, 6th Edition 17



DC Power Flow in PowerWorld

• PowerWorld allows for easy switching between the dc and ac power flows 
(case Aggieland37)

To use the dc approach
in PowerWorld select 
Tools, Solve, DC Power 
Flow

Notice there are no losses
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Linear System Solution: Introduction

• A problem that occurs in many is fields is the solution of linear systems 
Ax = b where A is an n by n matrix with elements aij, and x and b are n-
vectors with elements xi and bi respectively

• In power systems we are particularly interested in systems when n is 
relatively large and A is sparse

– How large is large is changing 
• A matrix is sparse if a large percentage of its elements have zero values
• Goal is to understand the computational issues (including complexity) 

associated with the solution of these systems 
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Introduction, cont.

• Sparse matrices arise in many areas, and can have domain specific 
structures
– Symmetric matrices

– Structurally symmetric matrices

– Tridiagnonal matrices

– Banded matrices

• A good (and free) book on sparse matrices is available at 
www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

• ECEN 615 is focused on problems in the electric power domain; it is not 
a general sparse matrix course
– Much of the early sparse matrix work was done in power!
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Gaussian Elimination

• The best known and most widely used method for solving linear systems 
of algebraic equations is attributed to Gauss

• Gaussian elimination avoids having to explicitly determine the inverse of 
A, which is O(n3)

• Gaussian elimination can be readily applied to sparse matrices
• Gaussian elimination leverages the fact that scaling a linear equation does 

not change its solution, nor does adding on linear equation to another

1 2 1 22 4 10 2 5x x x x        
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Gaussian Elimination, cont.

• Gaussian elimination is the elementary procedure in which we use the first 
equation to eliminate the first variable from the last n-1 equations, then we 
use the new second equation to eliminate the second variable from the last 
n-2 equations, and so on

• After performing n-1 such eliminations we end up with a triangular system 
which is easily solved in a backward direction
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Example 1

• We need to solve for x in the system

• The three elimination steps are given on the next slides; for simplicity, 
we have appended the r.h.s. vector to the matrix 

• First step is set the diagonal element of row 1 to 1 (i.e., normalize it)

1

2

3

4

2 3 1 0 20

6 5 0 2 45

2 5 6 6 3

4 2 2 3 30

x

x

x

x

     
          

      
        



Example 1, cont.

• Eliminate x1 by subtracting row 1 from all the rows below it

 
1

1
2

multiply row by 

     
 

1  2
3

multiply row by
and add to row

    1  4
 4

multiply row by
and add to row

  
 

1 6 
2

multiply row by  
and add to row

3 1
1 0 1 0

2 2

0 4 3

0 8 7 6 2 3

0 4 7 3 1 0

1
1 5

2





   

  

 
 
 
 
 
 
 
 
 
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Example 1, cont.

• Eliminate x2 by subtracting row 2 from all the rows below it

    
1

2
4

multiply row by

    2 8
3

multiply row by
and add to row  

    
  

2 4
4

multiply row by
and add to row









 
 
 
 
 
 
 
 
 

3 1
1 0 1 0

2 2

0 1

0 0 1 2 7

0 0 1 1 5

3 1 1 5
4 2 4
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Example 1, cont.

• Elimination of  x3 from row 3 and 4









 
 
 
 
 
 
 
 
 

3 1
1 0 1 0

2 2

0 1

0 0 1 2 7

0 0 0 1 2

3 1 1 5

4 2 4

 3   1multiply row by

 3    -1
  4

multiply row by
and add to row

26



Example 1, cont.

• Then, we solve for  x by “going backwards”,    i.e., using back 
substitution: 

     
2 3 4 2

3 1 15
7

4 2 4
x x x x

 
4

2x

   
3 4 3

2 7 3    x x x

    
1 2 3 1

3 1
10 1

2 2
x x x x
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LU Decomposition

• What we did with Gaussian elimination can be thought of as changing the 
form of the matrix to create two matrices with special structure

• One matrix, shown on the last slide, is upper triangular

• The second matrix, a lower triangular one, keeps track of the operations 
we did to get the upper triangular matrix

• These concepts will be helpful for a computer implementation of the 
algorithm and for its application to sparse systems
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LU Decomposition Theorem

• Any nonsingular matrix A has the following factorization:

where U could be the upper triangular matrix previously developed (with 
1’s on its diagonals) and L is a lower triangular matrix defined by

A = LU





1

=

(j )
i j

ij

a

0


j i

j i
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LU Decomposition Application

• As a result of this theorem we can rewrite

• Can also be set so U has non unity diagonals

• Once A has been factored, we can solve for x by first solving for y, a 
process known as forward substitution, then solving for x in a process 
known as back substitution

• In the previous example we can think of L as a record of the forward 
operations preformed on b.  

Define 

Then 

Ax = LUx = b

y = Ux

Ly = b
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LDU Decomposition

• In the previous case we required that the diagonals of U be unity, while 
there was no such restriction on the diagonals of L 

• An alternative decomposition is

where D is a diagonal matrix, and the lower triangular matrix is modified to 
require unity for the diagonals (we’ll just use the LU approach in 615) 

with  

A = LDU

L = LD

%

%
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Symmetric Matrix Factorization

• The LDU formulation is quite useful for the case of a symmetric matrix 

• Hence only the upper triangular elements and the diagonal elements need to 
be stored, reducing storage by almost a factor of 2 

T

T T T

T

T



 



A A

A = LDU U DL A

U L

A = U DU

% %

%
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Symmetric Matrix Factorization

• There are also some computational benefits from factoring symmetric 
matrices.  However, since symmetric matrices are not common in power 
applications, we will not consider them in-depth

• However, topologically symmetric sparse matrices are quite common, so 
those will be our main focus
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Pivoting

• An immediate problem that can occur with Gaussian elimination is the 
issue of zeros on the diagonal; for example

•
This problem can be solved by a process known as “pivoting,” which 
involves the interchange of either both rows and columns (full pivoting) or 
just the rows (partial pivoting)
– Partial pivoting is much easier to implement, and actually can be shown to work 

quite well

0 1

2 3

 
 
 

A =

34



Pivoting, cont.

• In the previous example the (partial) pivot would just be to interchange the 
two rows

obviously we need to keep track of the interchanged rows!

• Partial pivoting can be helpful in improving numerical stability even when 
the diagonals are not zero
– When factoring row k interchange rows so the new diagonal is the largest element in 

column k for rows j  >= k

2 3

0 1

 
 
 

A =%
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LU Algorithm Without Pivoting Processing by row

• We will use the more common approach of having ones on the diagonals 
of L.  Also in the common, diagonally dominant power system problems 
pivoting is not needed.
The below algorithm is in row form (useful with sparsity!)

For i := 2 to n Do Begin  // This is the row being processed

For j := 1 to i-1 Do Begin  // Rows subtracted from row i

A[i,j] = A[i,j]/A[j,j]  // This is the scaling 

For k := j+1 to n Do Begin  // Go through each column in i

A[i,k] = A[i,k] - A[i,j]*A[j,k]

End;

End;

End;
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LU Example

• Starting matrix

• First row is unchanged; start with i=2

• Result with i=2, j=1; done with row 2

20 12 5

5 12 6

4 3 8

  
   
   

A =

20 12 5

0.25 9 7.25

4 3 8

  
   
   

A =

A[2,2]= A[2,2]-A[2,1]*A[1,2]

=12-(-0.25)*(-12) =9

A[2,3] = A[2,3]-A[2,1]*A[1,3]

=-6 –(-0.25)*(-5) = -7.25
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LU Example, cont.

• Result with i=3, j=1;

• Result with i=3, j=2; done with row 3; done!

20 12 5

0.25 9 7.25

0.2 5.4 7

  
   
   

A =

20 12 5

0.25 9 7.25

0.2 0.6 2.65

  
   
   

A =

A[3,1]= A[3,1]/A[1,1]

=-4/20= -0.2

A[3,2] = A[3,2] – A[3,1]*A[1,2]

A[3,2] = -3 – (-0.2)*(-12) = -5.4

A[3,3] = 8 – (-0.2)*(-5) = 7

A[3,2]= A[3,2]/A[2,2]

=-5.4/9= -0.6

A[3,3] = A[3,3] – A[3,2]*A[2,3]

A[3,3] = 7 – (-0.6)*(-7.25) =2.65 
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LU Example, cont.

• Original matrix is used to hold L and U

20 12 5

5 12 6

4 3 8

1 0 0

0.25 1 0

0.2 0.6 1

20 12 5

0 9 7.25

0 0 2.65

  
    
   

 
   
   

  
   
  

A = LU

L

U

With this approach
the original A matrix
has been replaced
by the factored values!
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Forward Substitution

Forward substitution solves              with values in b
being over written (replaced by the y values)

For i := 2 to n Do Begin  // This is the row being processed

For j := 1 to i-1 Do Begin 

b[i] = b[i] - A[i,j]*b[j]    // This is just using the L matrix

End;

End;

b = Ly
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Forward Substitution Example

10

Let  = 20

30

1 0 0

From before 0.25 1 0

0.2 0.6 1

[1] 10

[2] 20 ( 0.25)*10 22.5

[3] 30 ( 0.2)*10 ( 0.6)*22.5 45.5

y

y

y

 
 
 
  

 
   
   


   
     

b

L
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Backward Substitution

• Backward substitution solves              (with values of y
contained in the b vector as a result of the forward 
substitution)

For i := n to 1 Do Begin  // This is the row being processed

For j := i+1 to n Do Begin 

b[i] = b[i] - A[i,j]*b[j]    // This is just using the U matrix

End;

b[i] = b[i]/A[i,i]    // The A[i,i] values are <> 0 if it is nonsingular

End

y = Ux
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Backward Substitution Example

 
 

10

Let  = 22.5

45.5

20 12 5

From before 0 9 7.25

0 0 2.65

[3] (1/ 2.65)*45.5 17.17

[2] (1/ 9)* 22.5 ( 7.25)*17.17 16.33

[1] (1/ 20)* 10 ( 5)*17.17 ( 12)*16.33 14.59

x

x

x

 
 
 
  

  
   
  

 

   

     

y

U
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