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Abstract: Public power system test cases that are of high quality benefit the power systems
research community with expanded resources for testing, demonstrating, and cross-validating new
innovations. Building synthetic grid models for this purpose is a relatively new problem, for which
a challenge is to show that created cases are sufficiently realistic. This paper puts forth a validation
process based on a set of metrics observed from actual power system cases. These metrics follow
the structure, proportions, and parameters of key power system elements, which can be used in
assessing and validating the quality of synthetic power grids. Though wide diversity exists in the
characteristics of power systems, the paper focuses on an initial set of common quantitative metrics to
capture the distribution of typical values from real power systems. The process is applied to two new
public test cases, which are shown to meet the criteria specified in the metrics of this paper.

Keywords: synthetic networks; power system analysis; synthetic power grids; validation metrics;
power system graph topology; Delaunay triangulation

1. Introduction

Synthetic power grids are test cases that are not based on any real power system. The motivation
for building such cases it that real grids are subject to data confidentiality restrictions, and usually real
power system cases cannot be shared publicly. Existing public cases, such as the IEEE test cases [1],
are relatively modest in size and complexity, and thus do not fully meet the needs of the power systems
research community today. A few other cases are available, including the large model introduced by [2],
which is only suitable for dc power flow and approximates the real European grid. New synthetic
test cases are being developed, and have many benefits for power engineering researchers to spur
innovation, encourage reproducibility of results, and enhance peer review, all while respecting the
secure nature of actual grid model data.

The network topology of power systems has been the subject of significant study, traceable at
least to study [3], where a small-world model was proposed that showed common properties in graph
structure with other real world networks. References [4-7] and others expanded on this topic with
particular reference to transmission grid networks, finding applications of the graph theory analysis
to system operation, security, and stability. It is certain that power grids, in light of their geographic
constraints and design for secure operation, have particular network structure characteristics that
are consistently observed across systems. Among the metrics studied, a short average path length,
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high degree of clustering, exponential degree distribution, and average nodal degree around 2.3-2.8
are documented as typical of power grid graphs.

These topological metrics have been applied in studies [8-12] to synthetic power grids, both as
pieces of a network generation algorithm and as validation criteria for networks considered. A pure
small-world model or other random graph is not sufficient [4]. After all, power grids are certainly
not random; rather, they are carefully planned. The degree distribution is approximately exponential,
but with the exception that nodes of degree one (radial) are much less prevalent. The approach of the
authors of [8] is to modify the small-world model, producing network topologies. The approach in
study [10] use a clustering-connect method to reproduce the local connectivity structures. More recently,
studies [11] and [12] consider the importance of geographic location in network structure, since these
constraints dominate the actual grid’s planning process.

The driving design standards for synthetic power grids are the actual grid models themselves,
since the objective is for synthetic grids to be as realistic as possible. A methodology for generating
full transmission system models, including everything needed for full ac power flow solutions,
was documented in study [13] and further developed in study [14]. The approach is substation-oriented
with a focus on geographic constraints. To reduce the edge search space, it uses the Delaunay
triangulation, which is a graph from computational geometry constructed to identify a set of points’
nearest neighbors. The approach also considers nominal voltage levels, to implement the local
clustering and long-distance short paths. Systems with size 150 buses and 2000 buses are described
and released.

The process begins with public geographic information on generation and population in an area,
from which synthetic substations are placed geographically. Then buses are added to these substations,
connected by transformers and a network of transmission lines, using an iterative process that considers
multiple factors. Base case models can also be extended with additional complexities for a variety of
types of studies [15-18]. To validate these models, the authors of [13,14] give statistics on the typical
topological criteria from earlier work as well as new observations about the Delaunay triangulation
and the general proportions of load and generation. However, the set of actual systems studied for
reference, the acceptable metric qualifications, and the coverage of parameters through validation
is preliminary.

Validating full power system models, that is, determining how accurately their features match
what is found in the actual grid, is key to ensuring the quality of new synthetic power grids for
their use in research and development. This paper presents a systematic approach to validation,
and contributes many new validation metrics and their defined criteria to match. These metrics are
designed to help quantify the realism of a synthetic grid. Because of the variety in engineering design
and modeling practices, actual grids are quite diverse; the interesting challenge in this work is to
capture the distribution of network characteristics, in a way that synthetic grids can be adequately
evaluated. In addition, the size of a network can affect its statistical properties, since large networks
have averaging effects. Each of these issues is addressed in this paper by studying a high-quality,
diverse, large set of North American power system models. The initial suite of validation metrics
defined here contributes a benchmark for developed cases.

2. Proposed Validation Methodology

Every aspect of the proposed synthetic grid validation is anchored in a thorough analysis of
high-quality real power grid models. The actual power system data for which statistics are given
in this paper comes from observations of the major North American power grid interconnections,
as obtained from the Federal Energy Regulatory Commission (FERC) form No. 715 dataset [19], as well
as twelve subset cases created by extracting areas along geographic and utility lines from the full
interconnects. From these, statistics are gathered on cases ranging from 400 to 5000 buses, in addition
to the 70,000 and 16,000 buses in full eastern (EI) and western (WECC) interconnect cases, respectively.
These studied cases are listed in Table 1, with the number of buses shown.
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Table 1. Statistics on case substations: voltage levels, load, and generation.

Percent of Percent of

Transmission Transmission Percent of Percent of Ratio of
Case No. Buses . . . X Substations  Substations with Generation
Substations with Substations with ith Load Generation Capacity to Load
Bus at 69-200 kV Bus at 201+ kV wi : pacity
EI 62,605 93% 15% 87% 11% 1.35
WECC 20,131 89% 22% 76% 17% 1.56
Area 1 4939 99% 7% 88% 4% 1.19
Area 2 1505 93% 21% 79% 14% 1.28
Area 3 3363 97% 13% 81% 28% 1.37
Area 4 693 97% 8% 90% 8% 1.54
Area 5 4013 94% 15% 79% 10% 2.04
Area 6 434 98% 13% 89% 18% 1.33
Area 7 2762 96% 12% 83% 29% 1.49
Area 8 768 56% 67% 88% 15% 0.87
Area 9 3266 87% 21% 67% 22% 1.45
Area 10 1453 73% 38% 59% 39% 1.28
Area 11 4322 90% 19% 90% 4% 1.33
Area 12 1885 98% 7% 90% 9% 1.25

The framework of this validation process is broad in application, since collecting statistics on
system properties and identifying benchmarks is appropriate for many aspects of the power system
which may be synthesized. The focus of the metrics selected for this paper, however, is in two categories:
the metrics of system proportions and those of system network. Together, these categories cover much
of what is needed for a base case power flow solution. The idea in picking metrics is to obtain
wide coverage of parameters. Except transmission lines, everything in power system models are
contained in substations, so these aggregations are the orientation of the questions answered by
selected metrics—How many substations are there? What voltage levels do they contain? How much
load and generation do they have? Then more detailed metrics are studied that set the power flow
parameters of loads and generators. Covering the branch topology is the objective of the second set of
metrics. Here, substation transformers are studied in their impedance and limit parameters. The same
is studied for transmission lines, followed by topological observations, which likewise are focused on
substations and voltage levels. At each stage, coupling is considered among metrics; clearly nominal
voltage level will significantly impact transmission line impedance, for example.

For each metric selected, a quantitative threshold standard is decided, with the expectation that
no realistic power system will violate that standard, unless there is an exception that has a justification
in engineering design choice. In other words, this validation is a screening process that looks at almost
all parts of the grid model and picks out any unusual data for further scrutiny. Exceptions of this
type are part of the diversity of engineering practices among many grids. The case size must also
be considered when looking at exceptions, as large cases are bound to have a few outliers, but will
have much more consistent trends than smaller cases, which are more sensitive to the peculiarities
of location.

3. Metrics of System Proportions: Substations, Load, and Generation

Number of buses per substation. Substation aggregation of buses indicates how buses are
related to a specific geographic location. While substation grouping and geographic location are not
strictly necessary for power flow solutions, they are integral to an understanding of grid topology,
since geography is a major driving factor in system design.

The EI averages 2.3 buses at each substation, and the WECC averages 2.5. The subset cases
considered vary from 1.7 buses per substation to 4.5. The number of buses represented in each
substation can be affected by modeling decisions about how much detail is represented, including
generator step-up transformers and sub-transmission network equivalents. Figure 1 shows the
distribution of substation size. There are many substations with 1-3 buses, much fewer with 4-10 buses,
and fewer still with 10-25. The larger the case is, the longer the tail of this distribution, as Figure 1
shows. For cases on the order of 100 buses, the tail could end at about the 1% threshold, which would
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which would make a largest substation of about 8 buses acceptable. The EI and WECC cases (orange
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Substation voltage levels. The synthetic networks will focus on transmission nominal voltage
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RN Systarnalids nedwsver urebstis RehepkaceHidppdesigaed in this way, in which case
substpliian il SPOUDS tuieohd B iR HiR JAVed CataBREYi IR R LN BRRELABES load, generating,
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(ERARITHES P, %fgg}%gmggggl customer-level circuits, which for these exceptions appears to be
grouper ata igdepleyelihandri fydical & ishégsefom about 6-18 MW of load per bus on average.
This bead adeaeb bye dhe seleqiesd rasrsoyasy SramatarsonddiMPbridradRet Brpoway sraghithibis.
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ssausedivpsglicates the relationship between the size of a network in buses and the amount of peak
load #i%‘ﬂféesz shows the distribution of bus loads, for buses which have at least one load.
The HigtBudishovssithendirtiybatipenali e aadsa serdausisn vaichidiy aistid eashenel lasdiohar
distEbrbes Yaswevdrlaly cdseenning Lmtbe Asshegatirr datisionadsed hmededitbe fradsrmbgady
s dHenavamrlbifases showsadtaeuRebeh of sthallehaads, with a smaller percentage of larger
ones.Jhtip $ietbian benaheidhd Lpnatyteva1aee 4298t EI and WECC and their sub-regions generally
have 20-60% more generation capacity than the peak load, as shown in the rightmost column of Table 1.
There are two exceptions, one which imports lots of power and has 12% less generation capacity than
total load, and one which has 104% more capacity as it exports a lot of power. The other cases fall
within the realistic range of 20-60% capacity surplus. For any self-contained system, this metric should
be almost inviolable.
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reserves and economics of the generation fleet. As shown in Figure 4, this value is 60-80% for most of

the r&igurecd Licbiekility density of generator capacity, with height representing area since it is a
logarithmic plot, for EI (blue), WECC (orange), and 12 subset cases (black).
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cases, for at least 70% of generators, that ratio of maximum reactive power to maximum active power
should be between 0.40 and 0.55.
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same at each active power operating point. As a basic qualification that seems to meet the data in real
Exesiest it 12de8T0% of generators, that ratio of maximum reactive power to maximum active pé#ft
should be between 0.40 and 0.55.

4. Metrics of E}/stem Network: Transformers and Transmission Lines
S

Metrlcs 0 tem Network: Transformers an Transmission Lines
1s set o 1dat10n metrics ocus on arameters o) stem_bran hes and he1r to
et o t10n etrlcs us. o ters ) x?yste anc
For trans ormers, 1s s rai connect differen a e eve s w1
transfor 1s strai orwar connect erent ? e leve
su statlons 1r1es t trla ul ation metrlc are re eate as exce en roxies or man
tations nes "the De trlan ulation metric r s ex e ent ro ies or man
e ne o arac errstrcs revious wor as s u arame ers are give
e networ a}ra(‘henstlc revious wor e netw r ara eters are 1V n
due attent 1Qn e cou mﬁ tre51s ance, reac ance, me le %t}ir Vol vels ¢ olvé.
ttentlon to the ¢ istance, reacta e, len ; VO tag eve S can
1 rans ormer per—unlt reactan rans ormer reactance is evaluat e transformer power
involve,
base V. which,is related to.the value used i seb e formula:
ﬂanstA fm’ér per-unit reac?ance OItrang%(S tmer reactance ma]’rec? onqt%e trans ]}ormer power
T
base in MVA, S Bxf , which is related to the X,,,, value ugegglfm the power flow case by the formula:
X7 x 1
p. uT ; p-u. X —GTxf S ( )
X
Xph = Xpy X —5 . (1)

Analysis shows in the transformer reactance para%neters a rather consistent distribution,
wherf\¥iglysis shpersunithe HansMBIFHABARCS F1kaNTE EEPeds T b sapiSERtABI ¥ Fethithisi o R
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m{p@@l@}%,@g}ﬁghe distribution is roughly normal, centered around 0.12, with some variation

as shown in the figure.
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Figute 6: Probability density of transformer reactancs, for El (bine), WEEE (srange), and ervelops of
12 subset eases (black), and nermal fit (red).

Transformer MVA limiit andl WR satie. Treanstommer MWV lintitand] X/R ratio statisties include
outlieis fior laige cases, because R andl MIVA limits for transformers are not absolutely esseniiall o
power flow studies. Sometimmes a defawll smalll R value is used, so that the X/ retiio apprais o be
10000 or more, whieh is unlikely to be aceurate. However, for many transformers the data is reliable.

It is found that the transformer high voltage level is well correlated with both of these
characterisics. THustiieanablsisidsippracbin thalphd R organineid &y bpltagedgydbiel bottbdn Eharid
WRGVETE. Maemedije shyectite setotbecctmmmpnivigeaobvalfiealaseashdsle] of drafistansermer.

The validation criteria for MVA limit and X/R ratio are based on the median value, as well as the
10th and 90th percentile values. Cases should have at least 80% of transformer values within the 10th
and 90th percentiles, and at least 40% above and 40% below the median. The less constrained of the EI
and WECC values can be used.



Energies 2017, 10, 1233 8 of 14

Table 2. Transformer Power (MVA: (Mega-Volt-Ampere)) limit and X/R statistics.
Energies 2017, 10, 1233 8 of 14
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Table 3. Transmission line per-km, per-unit X, for EI.

Voltage Level (kV) 90% Median 10%
500 0.000210 0.000155 0.000121
345 0.000518 0.000360 0.000198
230 0.001550 0.000945 0.000343
161 0.003780 0.001828 0.000517
138 0.006295 0.002471 0.000596
115 0.006387 0.003398 0.000796

Transmission line X/R ratio and MVA limit. In the same way, the 10/50/90 percentiles were
calculated for transmission line X/R ratio and MVA limit, for major voltage levels, as shown in Table 4.
Reference [18] has also examined MVA limit for transmission lines. These statistics do not consider
transmission lines whose R values or MVA limits are not given. It is noticeable how narrow the
10-90 window is in each statistic, indicating the relatively consistent range in which realistic line
parameters fall. The rule-of-thumb for validation, allowing for some variability, is for at least 70% of
lines to fall inside the 10-90 window. Synthetic transmission lines are also validated during construction
if they are synthesized from actual conductors and tower configurations, as described in [12] and done
for synthesized cases in this paper.

Table 4. Transmission line X/R ratio and MVA limit, for EL

Voltage Level (kV) X/R Ratio MVA Limit

90% Median 10% 90% Median 10%
500 26.0 17.0 11.0 3464 2598 1732
345 16.0 12.0 9.0 1494 1195 897
230 12.5 9.0 6.4 797 541 327
161 10.0 6.0 4.1 410 265 176
138 9.1 5.7 3.0 344 223 141
115 8.3 4.6 25 255 160 92

Ratio of transmission lines to substations, at a single nominal voltage level. The next set of
metrics relate to the most-studied aspect of power grid synthesis: the transmission line topology.
While the complex network literature has approximated the topology analysis with random models
such as small-world [3,5,7,8], others have discussed the limitations of such a model because of its
deviations from node distribution and its highly-designed, static topological nature [4,9,12].

It is important to define how the power system is viewed as a graph. Because bus modeling,
aggregating circuit nodes, can vary within a substation and be more dependent upon breaker
configuration, the focus is on substation topology, where substations are the graph vertices and actual
transmission lines connecting different substations are the edges. Since there is a special distinction and
connectivity limitation between branches of different nominal voltage levels, most of the transmission
line topology statistics are also based on individual networks at a single nominal voltage level. Statistics
were created by dividing the studied cases into their line topologies, using substations as the graph
vertices at 115 kV, 230 kV, 345 kV, 500 kV, etc.

The first fundamental statistic, ratio of lines to substations, is measured for grids at a certain
nominal voltage level, and expresses the expected number of transmission lines present, given the
number of substations containing the voltage level. This topological metric encompasses the density
and redundancy of the graph, as well as average nodal degree. For actual cases, this was evaluated
by looking at subset networks with at least 50 substations at voltage levels of 115 kV and higher,
as shown in Table 5. The result was that all networks fall roughly in the range of 1.1-1.4 for the ratio of
transmission lines to substations.
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Table 5. Ratio of lines to substations and line length to minimum spanning tree (MST) at nominal
voltage level.

Case Largest Network 201+ kV Largest Network 115-200 kV
Lines/Substations  Line Length/MST  Lines/Substations  Line Length/MST

Area 1l 1.26 2.07 141 2.57
Area 2 1.29 2.49 1.25 1.84
Area 3 1.18 1.64 1.24 2.03
Area 4 - - 1.21 1.95
Area 5 121 1.99 1.20 1.70
Area 6 - - 1.15 1.43
Area7 1.32 2.37 1.27 2.16
Area 8 1.16 1.69 - -

Area 9 1.41 2.98 1.26 2.07
Area 10 1.36 2.12 1.3 1.84
Area 11 1.2 1.85 1.21 1.83
Area 12 12 1.81 1.28 217

Percent of lines on the minimum spanning tree. The Euclidian minimum spanning tree (MST)
is the minimum distance graph which connects all substations at a voltage level. This statistic,
along with the following Delaunay triangulation statistics, helps to capture the geographic constraints
of transmission line networks. Using the spatial relationships between nodes as key to understanding
the topology is central to the approaches of [9,11], and [13]. Reference [13] shows the fraction of actual
lines which come from MST, Delaunay, and Delaunay neighbors in EI and WECC, with the MST
percentage around 50%.

Distance of transmission lines along the Delaunay triangulation. The Delaunay triangulation is
calculated from a set of coordinates, dividing the plane into triangles, in which no triangle’s circumcircle
contains another point [20]. As shown in [12], which appears to be the first application of this technique
to power grid synthesis, most transmission lines have a very short distance along it, and this is
an excellent metric of the geographic constraints of transmission line topologies. This reference shows
about 75% of lines are on their Delaunay triangulation, about 20% are second neighbors, and about 5%
are third neighbors. The number of lines that are fourth neighbors and higher is consistently below 1%.

There are a variety of topology-related graph theory statistics, including the distribution of nodal
degrees, clustering coefficient, and average shortest path length, for which transmission networks
have distinguished characteristics that have been explored in previous work [3-13]. References [12,13]
have shown that matching the Delaunay triangulation statistics often encompasses the key graph
characteristics observed on actual cases, in addition to respecting the geographic constraints of power
grids, since transmission lines in general connect nearby substations.

Ratio of total length of all lines to the length of the minimum spanning tree. This metric
compares line length at a nominal voltage level to the minimum length needed to connect all the
substations, i.e., the length of the minimum spanning tree. These values are shown in Table 5. For networks
above 100 kV and larger than 50 substations, most have this ratio between 1.4 and 2.6. In addition to the
relative consistency in this ratio, the driving intuition is that it measures the relationship between the
actual size of a power grid and the theoretical geographic minimum required.

5. Validating Two Example Cases

The above validation metrics were applied when building two new synthetic test cases described
by this section. The methodology used for building the cases is fundamentally the same as that
presented in [13], tuned to target the validation tests identified in this paper. These cases are available
online [1]. This section uses these cases as an example to show the validation process and verify the
realism of these cases.

The 200-bus case ACTIVSg200 was built on the geographic footprint of fourteen counties in
central Illinois, an area with a population of about 1.1 million. First, 160 loads based on census data are
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presented two new freely-available test cases that will be useful for power system studies, validated as
meeting these metrics of realism.

The metrics in this paper focused on the proportions and distribution of various elements
in the power system: substations, buses, loads, generators, transformers, and transmission lines;
it also gave statistics about the branch parameters and the geometric graph structure of the voltage
networks comprising the network. This set of metrics covers the main components needed for ac
power flow solutions. Additional power system complexities such as bus voltage regulation schemes,
transformer taps and phase-shifters, and impedance correction tables may be the subject of future
work to refine synthetic grid validation. While this paper’s metrics are applicable to small and large
systems, additional trends and definable statistical distributions specific to larger systems may appear
and be studied in future work as synthetic power grids become larger and more complex.
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