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Abstract—The volatility of the price of electricity in a locational
marginal price (LMP) market makes it necessary to introduce fi-
nancial price risk hedging instruments. The congestion-related and
marginal-loss-related revenue surpluses collected by the regional
transmission operator (RTO) are proposed to be redistributed to
market players. It is important to be able to correctly decompose
the LMP into its congestion and marginal-loss components, which
are critical for the valuation and settlement of these financial in-
struments. A new energy reference bus independent LMP decom-
position model using an ac optimal power flow (OPF) model is pre-
sented to overcome the reference bus dependency disadvantage of
the conventional approach. The marginal effect of the generators’
output variation with respect to load variation are used as the basis
of this decomposition model. The theoretical derivation and a proof
are given. The new model achieves a set of reference bus indepen-
dent results. An example is presented comparing the new model
with the conventional model.

Index Terms—Congestion, decomposition, electricity markets,
locational marginal price (LMP), losses, optimal power flow
(OPF).

NOMENCLATURE

Pg. Qg Generator real/reactive power output
vectors.

X State variable vector.

C(Pg) Total system cost function.

f,(X) Bus real power balance functions.

f,(X) Bus reactive power balance functions.

Pp, Qp Bus real/reactive power load vectors.

S(X), S Branch power flows and MVA thermal
limits.

G(") Variables bounds limits functions.

L(-) Lagrangian function.

Ap, Ag, 1,y Lagrangian multipliers.

T Energy reference bus index.

-7 Buses other than the reference bus 7.

v, Transmission sensitivity matrix.

S Loss factor.

X, ’\110 , ,\; Energy, loss, and congestion LMP
components.

W; Marginal generator contribution factor.

Ox/0y € R™" Ifx € R™*! andy € R™¥L.
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I. INTRODUCTION

LECTRICITY industry deregulation around the world has
E caused rapid changes in industry structure and policies. In
order to efficiently use generation resources and the transmission
grid in a competitive environment, nodal price theory, which
was first formulated in [1], is increasingly being employed,
particularly through the use of locational-based marginal pricing
(LMP) [2]. The LMP at a location is defined as the marginal
cost to supply an additional increment of load to the location
without violating any system security limits. Usually the LMP
varies throughout the system because of the effects of both
transmission losses and transmission system congestion.

The locational prices in an LMP market are usually very
volatile, which results in significant price risk for market
participants. Financial price hedging instruments need to be
used to reduce this price risk. Generally speaking, in an LMP
electricity market that considers losses and congestion, the
regional transmission operator (RTO) collects more payments
from the loads than the amount paid to the generator. Financial
instruments such as financial transmission rights (FTRs) [2]
and loss hedging rights (LHRs) [3] have been introduced to help
hedge these price risks by refunding the over-collected revenues
to FTR and LHR owners. With the introduction of these financial
instruments in a LMP-based market, there has been a desire
to decompose the LMP value into three components: energy,
losses, and congestion [8]. In particular, such a decomposition
is desirable for the settlements of FTRs and LHRs. More
specifically, FTRs, which are used to hedge the price risks caused
by congestion by returning congestion-related over-collected
revenue to the FTR owners using the marginal congestion
components (MCCs) of the LMP, have been extensively studied.
Similarly, the objective of LHRs is to hedge the price risks
caused by marginal loss by returning marginal-loss-related
over-collected revenue to the LHR owners using the marginal
loss components (MLC) of the LMPs. Although there is still
no widely accepted financial marginal loss price risk hedging
instrument, LHRs, together with FTRs, present a general picture
of full price risk hedging by using the LMP price components.
A detailed mathematical formula of hedging can be found
in [3, Appendix].

A model was proposed in [4] to breakdown the LMP into
two components: an energy/loss component and a congestion
component. A more general LMP decomposition method was
presented in [5]. More recently, in [6], the New England
independent system operator (ISO) has presented a marginal
loss model based onadc optimal power flow (OPF) [ 7] model with
distributed reference buses. However, the selection of the optimal
loss distribution factors is still a topic of research. Furthermore,
the resultant LMP and dispatching results are dependent upon
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the loss distribution factors, which are preset. Also, an LMP
components formulation based upon a distributed-slack ac power
flow is proposed in [12]. More LMP decomposition methods
involving various heuristic implementations are presented in
[13]-[15], whichproduce arguableresults because of the heuristic
settings and slack assumptions used. Finally, the author in [8]
argued that the LMP decomposition method should consider the
actual marginal effect of congestion during the calculation of
penalty factors, a key factor that had previously been neglected
in the literature.

With respect to the underlying power flow model, the dc
power flow approach has been widely used in LMP calculation
in industry [6] due to its simplicity. However, it is shown
in [11] that the OPF results (both dispatch and locational
price) obtained from a dc model with a loss compensation
technique applied differ from those of the more accurate ac
OPF model. Thus, it is important to study the components
of the LMP using an ac power flow model, an approach that
is used exclusively in this paper.

In order to create a competitive energy market, it is important
for the RTO to send out fair and accurate price signals to
market participants. Currently, however, the LMP components
determined by the conventional LMP decomposition methods
are dependent upon the location of the energy reference bus since
the conventional method determines the LMP components using
the transmission constraint sensitivities and the loss sensitivity
factors, which are reference bus dependent [9]. That is, in
their calculation, the assumption is the compensating power
(which must always be present) is picked up at a specified
reference bus or a set of distributed slacks whose weights are
preset. Before proceeding further, it is important to note that
the energy reference bus (or buses in a distributed approach)
need not be, and often are not, the actual power flow slack
bus.

The impact of the reference bus selection can be illustrated
through the use of the three-bus power system shown in
Fig. 1. The Fig. 1 values represent the system’s OPF solution,
with a single binding transmission constraint—the flow on
the line from bus 1 to bus 2 is constrained to its 100-MVA
limit. While the LMP values themselves are reference bus
independent, the decomposition of the LMP into its three
components (Energy Component [EC], MLC, and MCC) depend
on the assumed energy reference bus. For example, Table I
shows the decomposition assuming bus 1 as the reference,
while Table II shows it with bus 2 as the reference. Note, a
characteristic of the reference bus is that its LMP has zero
loss and congestion components.

Certainly the influence of the LMP decomposition, and how
it would impact individual market participants, depends upon
the specific market rules. However, utilizing LMP components
that depend upon such an arbitrary value as which bus has
been designated as the energy reference bus certainly could
raise concerns about market fairness.

In this paper, we present a reference bus independent de-
composition of the congestion and loss component of the
LMP. Specifically, we present an algorithm in which both
the MLC values and the differences in the MCC values are
completely independent of the reference bus. Since only the
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Fig. 1. Three-bus LMP example. (Color version available online at http://

ieeexplore.ieee.org.)

TABLE I
LMP COMPONENTS WITH BUS 1 AS ENERGY REFERENCE BUS

Bus LMP LMP Components ($/MWh)
($/MWh) EC MLC MCC
Bus 1 9.50 9.50 0.00 0.00
Bus 2 10.80 9.50 0.89 0.41
Bus 3 11.87 9.50 2.12 0.25
TABLE 1II

LMP COMPONENTS WITH BUS 2 AS ENERGY REFERENCE BUS

Bus LMP LMP Components ($/MWh)
($/MWh) EC MLC MCC
Bus 1 9.50 10.80 -0.92 -0.38
Bus 2 10.80 10.80 0.00 0.00
Bus 3 11.87 10.80 1.28 -0.21

differences in the MCC values are used in the FTR settlement,
the proposed model can be considered to be independent of
the reference bus. Of course, since by definition the MCC at
the reference bus is zero, with our algorithm, changing the
energy reference bus will still change both the EC and the
MCC of all buses. However, with our algorithm, since the
MLC and the MCC differences remain the same, a change
in the energy reference bus only causes a constant shift in
the EC and MCC values.

This paper is organized as follows. In Section II, we review the
mathematical derivation of conventional LMP decomposition
method and the useful concepts of loss sensitivity and congestion
sensitivity. Our new decomposition method is presented in
Section III. The effects of reference energy price of the new
method are discussed in detail in Section IV, while Section V
presents two examples.

II. CONVENTIONAL LMP DECOMPOSITION

In this section, we review the conventional model of breaking
down LMP into energy, loss, and congestion components.

A. OPF Problem Formulation

The OPF problem is widely used to determine the optimal
dispatch of generators by minimizing the total operation cost
without violating various system security constraints. With the
development of electricity market, bidding cost functions are
used instead of the actual cost functions to represent generators’



CHENG AND OVERBYE: ENERGY REFERENCE BUS INDEPENDENT LMP DECOMPOSITION ALGORITHM

economic features. Mathematically, an ac OPF problem can be
formulated as

PgI,I‘lngr:laX C(Pg)
st. —Pg +Pp, —f, (X)=0 o, (D)
- Qg, +Qp, —1,(X)=0 = A, (D)
—Pg_, +Pp_ —f,_(X)=0 < A,_. (3
Qg ,+Qp_, £ (X)=0 <A, ¢
S(X)-S<o W (5)
G(Pg,Qg,X) <0 =5 (6)

Equations (1) and (2) are the power flow balance constraints
at the energy reference bus r, which may be different from the
voltage angle reference (assumed here to be bus 0). Equations
(3) and (4) include the real and reactive power flow balance con-
straints. Equation (5) models the transmission system flow con-
straints (either transmission lines, transformers, or flowgates).
Also, equation (6) models the upper and lower variable limits
(e.g., bus voltage limits, generators’ real and reactive power
output limits, etc). The state variable vector X includes the
voltage magnitudes and voltage angles of all buses, except for
the actual system slack bus.

Next, the Lagrangian function for the OPF is

L(Pg,Qg, X, Ay, Ag: ) = C(Pg)
+[~Pg, + Pp, — £, (X)]" Ay,
+[-Qg, + Qp, — £, (X)]" A,
+[-Pg_, +Pp_ — £, (X)]" A,
+[-Qo_, +Qp_, —£,_.(X)]" A,
+[8(X) -5 u+47G(Pg.Qg.X). (1)

Then the Kuhn-Tucker (KT) necessary conditions for opti-
mality are given by

oL\’ ac\7* oG\t
(E) —(E) ‘*P*(E) =0 ®

oL \* oG\t
= _ ) il =0 9
(an> Q+(0Qg) v ®

A TA of,, TA
ox /) 0X br 0X o
of,_ \" \ of,_ \" \
X por X o=
98\ oG\ "
- — =0. 10
+(5x) #+ (5%) (10)
The LMP at a particular bus location is defined as the minimal
cost for supplying an additional increment of load at the bus
location without violating the system operation security con-
straints. Hence, the real power LMP and the reactive power LMP
are the Lagrange multipliers, A, and A,, associated with the
corresponding real and reactive power balance equations. They

are the by-products of the OPF problem solution and are often
called the shadow prices.
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B. Transmission Sensitivity Matrix

Define the Jacobian matrix

- l(afpr )T (afqr )Tl

" 0X 0X
where r again refers to the energy reference bus. The Jacobian
matrix is assumed to be non-singular; otherwise, the system is
having a problem of voltage collapse or maximum loadability,
which is discussed more from a steady-state stability stand point

of view [16]. Then, differentiating (3) and (4) with respect to
Pp_ ., we have

(1)

of,_
x| 9X r 0X <I>
af,,r) = =7J] =(.) a2
< = OPp_, OPp_, 0
Define the transmission sensitivity matrix
s 090X 0S8 -1 (1
v, = ——— —_— (J°¥ 1
0X0Pp_, 0X ( r) (0) (13)

where the transmission sensitivity matrix is used to measure the
marginal variations of power flows on transmission lines with
respect to small variation of real power load at the specified bus,
assuming the generation at the energy reference bus r is respon-
sible for the real power compensation. Hence, the transmission
sensitivity matrix depends upon the energy reference bus.

C. Loss Sensitivity Vector

Define the loss sensitivity factor for bus &k (assuming bus 7 as
the reference bus) as

aplossr,;\.
Sr.k

_ _ 0Fg, — O0Pp,
S 8P—Dk o

oFg, _,
OPp, '

= 9Pp,

(14)

The loss sensitivity factor specifies how the real power losses
change with respect to the load variation at bus k, again as-
suming the bus 7 generation is responsible for the load com-
pensation.

Differentiating (1) with respect to Pp__, we have

oPg, \" _ (X \" (ot \"
oPp_ ) —  \dPp_, oX

o, \ "
= 0)J;1<0§£) . (15)
Then define the loss sensitivity vector as
T T
o = OPoss _ 0Fg, 4

’ OPDJ aPD,T

e \T
=— (I 0)J*! (ié’() +1 (16)

where the values in the loss sensitivity vector again depend upon
the energy reference bus selection. Of course, ¢, = 0.
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D. LMP Decomposition Into Energy, Loss,
and Congestion Components

Next, we present the standard LMP decomposition into its
three components, making the reasonable assumption that the
reactive power output at the reference bus does not hit its limits.
With this assumption then from (9), it is clear that A, = 0.
Then (10) can simplified as

AP—-r
()

l(afp_T)T (afq_r)T
X X
- (%%{T)TAPT + (g—S>Tu+ (g—i)Tfy. (17
Thus, we have
()= (%)
+J;7t (g—i)Tu+J;1 (g—;")Try. (18)

This allows (17) to be rewritten as

e o)

T
1+(1 0)J1 (%;) ]Apr
T T
+(@ 0) [J:l (3—;) p+J (g—§> vl (19)

which gives the desired breakdown of A;,_,

=1X, —

Ay =1X X+ A7 (20)

with the energy component given by (21), the loss component
by (22), and the congestion component by (23)

A= s (21)

of, \*
-1 Dr
v o (%]
Ap, =Sr—rAp,;
as\T oG\ T
¢ _ -1 -1

oG\ "
_vT -1

l
Ap—r - -

(22)

(23)

As discussed in Sections II-B and II-C above, both the loss
sensitivity vector and the transmission sensitivity matrix depend
on the selection of reference bus. Hence, the conventional de-
composition of the LMP depends upon the reference bus. An-
other undesired feature of conventional LMP decomposition is
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that not only do the component values themselves depend upon
the reference bus, but even the differences in these component
values between any two buses depend upon the reference bus
selection. The differences of LMP congestion/loss components
of two buses represent the marginal congestion/loss costs of an
additional transaction between these two buses. For example, in
looking at the difference between the loss components at buses
3 and 2 in Table I, the value is 2.12 — 0.89 = 1.23, while in
Table II, it is 1.28. Such differences can certainly affect the per-
ception of fairness in pricing losses and congestion and can pos-
sibly send out inaccurate price signals. In the next section, we
present an alternative decomposition method.

III. NEw DECOMPOSITION APPROACH

A. Simplification of OPF Problem Formulation

To simplify the derivation, if one assumes a known OPF solu-
tion, then the following notational simplifications can be made.
First, from the known OPF solution, we divide the generator
buses into those that have marginal generators (i.e., not oper-
ating at a limit) and those that are non-marginal (i.e., operating
at either an upper or lower limit). In the derivation that follows,
the non-marginal generators will be thought of as having fixed
real power outputs. Also, without loss of generality, one can as-
sume there is only one marginal generator at each marginal gen-
erator bus. Conceptually, this could be done by replacing all the
generator cost curves at a bus with an aggregate, single gener-
ator cost curve that assumes the bus’s net generation is optimally
allocated to the generators at the bus.

Second, the buses can be divided into those that have genera-
tors that are actively regulating their reactive power output and
those that either have no generation or have generators operating
at their reactive power limits. The reactive power equations can
be deleted for the regulating buses since their corresponding La-
grange multipliers are zero.

Third, all the voltage variables operating at a limit can be re-
moved from the state variable vector X by fixing them to the
binding limits values. Last, one can remove all non-binding con-
straints from (6). The net result of these four simplifications is a
new optimization problem that shares the same optimal solution
with the original one. This new optimization can be written as

min  C(Pg)
s.t. —Pg+ PDG - fpg (X) =0 < /\Pg (24)
Pp ,—f, ;(X)=0 =X (25
Qp — fq(X) =0 — /\q (26)
S(X)-S=0 — . 27)

With the previous simplifications, Pg now only contains the
real power marginal generators, while the cost function C(Pg)
only includes the costs of the real power marginal generators.
The corresponding values of Pp,;, Pp__, and Qp are also ad-
justed based upon the previous simplifications, while the func-
tions £, (X) and S(X) are also simplified.
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B. Marginal Effect of Load Variation of OPF Problem
The Lagrangian for this new OPF problem is

L(Pg, X, Apg, Ap_g, Ag, 1) = C(Pg)
+ [_Pg + Pp; — Pg (X)]T’\Pg
+ [P'Dw -t (X)]T’\P—g
+[Qp — £,(X)]" Xy + [SX) - 8] " .

The KT necessary condition for optimality is now

oL \T _ [oac\T
0Pg - \0Pg

(28)

—Ap, =0 (29)

T T T
OF, of,
oL = 3 Apg + = Ap_g
oX oX oX
ot \" os\"
- (ax) ¢t (ax) p=0o G0

Note that according to the implicit function theorem, Pg, X,
Apgs Ap_g» Ag» and p are all now functions of Pp.
Then, take the derivative of (24)—(27), (29), and (30) with

respect to Pp, , writing the result in matrix form

A -1 oPg/dPp,

-1 E Oy /OPp,
F, | | oA, /0P,
F, 9A/OPp,

F3 aﬂ/aPDk
ET FY FY F! D 0X/OPp,
0
—0Pp, /0Pp,
_ _8PD_67/8PDk 31
0
0
where
02C Oty
A= 8P2’ B= X'’
F __af” g A = 98
=X TPTaox) T ax
0%f, 0%f,
D= Zaxpi pe T 0Xq5 q7+zax2"l (32)

Last, (31) can be solved using the result given in the Appendix to
give the marginal variation of the generator outputs with respect
to the bus real power load variation.

If bus £ is a marginal generator bus, we have

0Pg 7+ OPD
=(I-ETE"A ¢ =(I-ETE"A 33
oPp, J9Pp, ~ e (9
while if bus k is a non-marginal generator bus, we have
E
opP opP k
¢ —EH'FTU'—_2=¢ —EH'FTU| o
aP’Dk J D,gk 0
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where matrices T, H, and U are as defined in the Appendix.
Combining these results for every bus k£ and rewriting in the
matrix form gives

OPg .
—1- ETE7A
oPp, (33)
P
9Pg —EH'FTU'T 0o 0). (36)
oPp_,

The net result is the 0Pg/0Pp, a matrix that provides de-
tailed information about how the generators would actually par-
ticipate in optimally supplying additional power to each bus.
This information then provides a reasonable basis for decom-
posing the LMP into its components. Such a decomposition is
developed next.

C. LMP Decomposition With Piecewise Linear Cost
Functions Model

Although theoretically one could adopt any valid generator
cost functions for the OPF problem, linear cost functions are
widely used to represent generators’ economic features in in-
dustry. Therefore, the following derivation assumes the use of a
piecewise linear generator cost function. With this assumption,
we have

9%*C

A = — =
E)Pé 0 37
which simplifies (35) to
0Pg
TPoq =1 (38)

aresult that states that additional real power variation at the mar-
ginal generator buses will be fully compensated by the gener-
ator(s) at the bus. Therefore, incremental load changes at these
buses would have no impact of the system power flows and
hence no impact on system losses. Thus, it is reasonable to claim
that the LMP loss component at the marginal generator buses
is zero, which implies that any LMP differences between these
buses are totally caused by system congestion.

If non-piecewise linear cost functions are used, it is obvious
that load variation at the marginal bus will be compensated by all
the marginal generators instead of only by the local one. Thus,
this will make marginal loss not equal to zero. However, nowa-
days in industry, piecewise linear cost functions are widely used
instead of the quadratic ones (or other forms). It is believed that
piecewise linear cost functions have already given us a good
enough result for the industry standard.

If A° is chosen as the energy price throughout the system,
then the LMP congestion component vector for the marginal
generator buses is given by

A = Ay (39)

This yields the desirable result that while different values for
A€ result in different LMP congestion components, the differ-
ences between these congestion components remains the same.
The effect of the selection of reference energy price A\¢ will be
discussed in detail in Section I'V.
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Fig. 2. Breakdown marginal generator variation into two parts. (Color version
available online at http://ieeexplore.ieee.org.)

Next, we present the LMP decomposition for the other buses
in the system, with the key assumption being that an incremental
load change at bus £ would be optimally supplied by the mar-
ginal generators. Hence, the variation in the marginal generation
can be expressed as

oPg

o = 5

———dPp,. (40)
To proceed with the derivation, first divide dFg, into two
parts: 1) dPg, /1+ ¢; 1, which supplies the real power load vari-
ation at bus k, dPp, , and 2) (; 1./1+¢; 1 )dPg,, which supplies
the real power loss variation. This division is illustrated in Fig. 2.
Next, define the contribution weight of generator ¢ with re-

spect to the load variation at bus k as

1 0Fg.
Wik = 2
’ 1+¢rdPp,

Z Wi k= 1.

Of course, when bus k is a marginal generator bus, we have
Wyl = 0z ;ﬁ k‘, W,k = 1, and Sik = 0.

According to the relationship between the primal and dual
variables, and also following the definition of the LMP, for every
bus k (marginal or non-marginal generator bus), we have

(41)

where
(42)

_ 7 9Pg dPg

Moo = Mg 55 P (43)

which can be expressed in matrix form as
oPg\"
Ap = =2 ’\Pg'
oPp
Substituting (41) into (43) gives
Pk Z)‘Pg ap Z)‘pg wzk(1+§1k)
= Z Apg, Wik + Z Apg, Wi, kSi k
Z()\c+)\c )wzk+z)\ cWi kSi Kk

_)\C+Z)\pg w’tk<’tk+z)\pg Wi,k

(44)

(45)
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which provides the desired breakdown of the LMP by compo-
nent

Ape =X+ AL X2 (46)
Mow = D Apg, WikSi i (47)
A = Z/\Ic’c,iwi*k‘ (48)

From the derivation above, it is clear that the proposed new
decomposition method considers the marginal effect of load
variation, and the marginal cost is broken down according to
a reasonable explanation of each part’s purpose.

IV. EFFECT OF THE SELECTION OF REFERENCE ENERGY PRICE

Using the derivation from the previous section and making
use of (42), the difference between the congestion components
for any two buses m and n is given by

Ap =7

Pm Pn

= Z (/\pci — ,\C) Wi m — Z (/\pai — /\C) Wi n
= Mg, Wi = win) = D Nwim + Y XNwim,
=D g, (Wim = win) (49)

a result that is clearly independent of A°. Furthermore, since
)‘Pgi’ w; 1, and ¢; 5, are all independent of reference energy
price, the value of the loss component is also independent of
the energy reference bus.

From the above discussion, we find several important features
of the proposed decomposition scheme.

1) LMP at any bus is determined by the original OPF problem
and is independent of the decomposition scheme and the
reference energy price selection.

2) The values for the loss components are independent of the
reference bus location, which obviously implies that the
differences in these values between buses are also indepen-
dent of the reference bus.

3) The reference bus location does change the value of the
congestion component, but the differences in the conges-
tion components between any two buses are not affected
by the reference bus location.

The physical idea behind the decomposition process reveals
the marginal impacts on loss and congestion. Also, the above
properties satisfy the fairness, accuracy, and consistency re-
quirements for an LMP decomposition scheme.

V. NUMERICAL EXAMPLE

A. Tutorial Three-Bus System Example

As an example, we again consider the three-bus system intro-
duced in the introduction section, as shown in Fig. 1. After the
OPF problem is solved, one can easily deduce that the genera-
tors at buses 1 and 2 are both marginal. From the previous dis-
cussion, this implies the LMP loss components for both buses
are zero, i.e., A, = 0$/MWh and X, = 0 $/MWh. Because
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TABLE III

THREE-BUS SYSTEM LMP COMPONENTS BY PROPOSED
DECOMPOSITION SCHEME

Bus LMP LMP Components ($/MWh)
($/MWh) Energy Loss Congestion
Bus 1 9.50 9.50 0.00 0.00
Bus 2 10.80 9.50 0.00 1.30
Bus 3 11.87 9.50 1.66 0.71

the selection of the energy reference bus does not affect the dif-
ference between buses of the loss components or the congestion
components, we can arbitrarily select the energy reference bus,
set to bus 1 in this example. Thus, A® = X,, = 9.50 $/MWh,
which gives A7 = 0 §/MWh and X, = 1.30 $/MWh. Next,
to break ), into components, do the following.
1) Calculate the loss sensitivity factors at the optimal solution
point, ¢; 3 = 0.2232, ¢» 3 = 0.1188.
2) Solve for marginal variations using (34) or (36),
(0Pg, /0Pp, OPg,/0Pp,) = (0.5561 0.6102).
3) Determine the contribution factors using (41), wi,3 =
0.4546 and wp 3 = 0.5454.
4) Calculate the loss and congestion components of A, using
(47) and (48)

1

Aps = Apg, W1,361,3 + Apg, W2,362,3 = 1.66
C _ C (& —_

)‘p3 —)\pgl w13+ )\pgzwz’g =0.71.

The final results are presented in Table III.

To further illustrate, suppose there is an incremental increase
in the real power load at bus 3, say, | MW. The marginal vari-
ations indicate that to optimally supply this additional 1 MW,
0.5561 MW would come from the bus 1 generator, 0.6102 MW
would come from bus 2, and the system losses would increase
by 0.163 MW. Hence the bus 3 LMP is easily verified by multi-
plying these changes in generation by the corresponding LMPs
for the generators’ buses

0.5561 x 9.50 + 0.6102 x 10.80 = 11.87 $/MWh.  (50)

With the assumption that the change in bus 3’s load is allo-
cated optimally to the marginal generators, the change in system
losses and hence the loss sensitivity at bus 3 (or any other bus)
is independent of the reference bus.

B. Thirty-Seven-Bus System Example

The method is next demonstrated on the 37-bus designl
system from [10], with the modification that two of the three
transmission lines between UIUC69 and BLT69 have been
opened to create congestion. The system’s OPF solution is
shown in Fig. 3. At this solution, there is a single binding
transmission constraint—the flow on the line from bus UITUC69
to bus BLT69 is constrained to its 100 MVA limit. At the
optimal solution, the two marginal generators are located at
LAUF69 and BLT69. The bus LMPs, their decomposition into
the loss and congestion components (assuming LAUF69 as the
reference energy bus), the associated variation in the two mar-
ginal generators, and their loss are shown in Table IV. Again,

Fig. 3. Thirty-seven-bus example. (Color version available online at http://iee-
explore.ieee.org.)

using the table data, the LMP values can be easily verified. For
example, if the load is increased by 1 MW at TIM345, 0.757
MW would come from the generator at LAUF69, while 0.239
MW would come from the generator at BLT69. Using the same
approach as (50), the result is

0.757 x 28.90 + 0.239 x 22.53 = 27.26 §/MWh.  (51)

In Table V, we compare the MLC and MCC obtained from the
proposed model and the distributed-slack model (two marginal
generators are equally weighted). It is obvious that the selection
of distributed-slack buses and their weights has big impact on
LMP decomposition, while in the proposed new model in this
paper, the slack buses are not predefined and the slack used in
decomposition is actually the physical slack buses at the optimal
solution point with weights optimally calculated according to
optimal dispatch at the solution point.

The new model gives a more reasonable decomposition,
which is also consistently independent of slack selection.

VI. CONCLUSION

This paper proposes a new LMP decomposition model using
the ac OPF model. The LMP components from the conven-
tional decomposition model usually depend on the selection of
reference bus. By analyzing the actual marginal effect of load
variation, the proposed model overcomes the disadvantage of
conventional model and achieves reference energy price inde-
pendent results. The loss components reflect the actual cost of
marginal consumption of loss. The congestion components dif-
ferences do not change with the selection of energy reference
price. The proposed model is proved to be accurate, consistent,
and fair. In this paper, we only discuss the ac OPF model using
piecewise linear cost functions. Although piecewise linear cost
functions are widely accepted by industry, theoretically, more
general results using other valid cost functions [the marginal ef-
fects of load variations are obviously more complex according
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TABLE IV

THIRTY-SEVEN-BUS SYSTEM LMP COMPONENTS ($/MWh) BY PROPOSED

DECOMPOSITION SCHEME WITH A¢ = 28.90 $/MWh
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TABLE V

LMP COMPONENTS OBTAINED USING DISTRIBUTED-SLACK MODEL

AND NEW PROPOSED MODEL

Bus Name LMP LMP Components | Marg. Variation New Model Dl&fz%‘;gg:g:ﬁ;k
MLC MCC | LAUF69 | BLT69 Bus Name LMP (Physical Slacks) BLT69:50%)
TIM345 2726 | 0109 [ -1.536 [ 0.757 0.239 MLC | »cc | MLC MCC
MOROI138 28.30 0.047 ] -0.650 0.900 0.102 TIM345 2726 | -0.109 [ -1.536 1.690 | -0.145
ROBIN69 30.29 0.487 0.904 1.160 | -0.143 MORO138 28.30 0.047 | -0.650 2620 | -0.015
RAY69 2631 | -0.116 | -2477 0.610 0.386 ROBIN69 30.29 0.487 0.904 4310 0.350
TIM69 29.13 0.190 0.041 1.013 [ -0.006 RAY69 2631 -0.116 | -2477 0.710 | -0.125
FERNAG69 25.48 0269 [ -3.693 0.426 0.584 TIM69 29.13 0.190 0.041 3.355 0.125
WEBERG69 27.71 0287 [ -1477 0.771 0.233 FERNAG69 25.48 0269 [ -3.693 | -0.550 0.340
UIUC69 33.05 0.748 3.399 1.565 | -0.541 WEBER69 2771 0287 | -1.477 1.730 0.260
PETE69 32.16 0.783 2.481 1.421 -0.396 UIUC69 33.05 0.748 3.399 6.925 0.515
PIE69 28.50 0367 | -0.764 0.892 0.121 PETE69 32.16 0.783 2.481 5.965 0.585
HANAG9 31.44 0.795 1.740 1304 | -0.278 PIE69 28.50 0367 | -0.764 2.525 0.325
GROSS69 27.87 0.249 -1.278 0.807 0.201 HANAG9 31.44 0.795 1.740 5.225 0.605
SHIMKO69 2526 | -0.041 -3.601 0.435 0.563 GROSS69 27.87 0249 | -1.278 1.975 0.235
WOLEN69 23.99 0.106 | -5.015 0.215 0.789 SHIMKO69 2526 | 0041 3601 -0500]| -0.005
HALE69 32.17 0.684 2.588 1434 | -0411 WOLEN69 23.99 0.106 | -5.015 [ -1.950 0.215
HISKY69 31.73 0.716 2.116 1.361 | -0.337 HALEG69 32.17 0.684 2.588 6.090 0.475
JO345 26.89 0419 | -1.594 0.739 0.245 HISKY69 31.73 0.716 2.116 5.575 0.540
JO138 27.00 -0.451 -1.449 0.760 0.223 JO345 26.89 -0.419 -1.594 1.605 -0.480
BUCKY 138 27.54 -0.241 -1.121 0.817 0.174 JO138 27.00 -0.451 -1.449 1.750 -0.515
SLACK345 26.95 -0.184 -1.771 0.718 0.275 BUCKY138 27.54 -0.241 -1.121 2.090 -0.300
SAVOY138 27.32 -0.312 -1.273 0.792 0.197 SLACK345 26.95 -0.184 -1.771 1.440 -0.215
SAVOY69 26.52 -0.533 -1.847 0.697 0.283 SAVOY138 27.32 -0.312 -1.273 1.925 -0.370
PATENG69 26.61 0.264 -2.557 0.606 0.404 SAVOY69 26.52 -0.533 -1.847 1.305 -0.595
SLACK138 26.77 -0.220 -1.914 0.695 0.297 PATENG9 26.61 0.264 -2.557 0.565 0.290
AMANSG69 31.59 0.791 1.897 1.329 -0.303 SLACK138 26.77 -0.220 -1.914 1.285 -0.250
RAY345 26.80 -0.147 -1.951 0.691 0.304 AMANSG69 31.59 0.791 1.897 5.355 0.625
RAY138 26.41 -0.112 -2.374 0.626 0.370 RAY345 26.80 -0.147 -1.951 1.255 -0.170
TIM138 28.32 0.084 -0.665 0.899 0.104 RAY138 26.41 -0.112 -2.374 0.815 -0.125
LAUF138 28.22 -0.058 -0.623 0.901 0.097 TIM138 28.32 0.084 -0.665 2.610 0.035
LAUF69 28.90 0.000 0.000 1.000 0.000 LAUF138 28.22 -0.058 -0.623 2.635 -0.140
BOB138 2431 -0.002 -4.590 0.281 0.719 LAUF69 28.90 0.000 0.000 3.295 -0.110
BOB69 23.90 0.010 -5.012 0.214 0.786 BOB138 24.31 -0.002 -4.590 -1.490 0.075
RODGERG69 25.09 -0.991 -2.815 0.537 0.424 BOB69 23.90 0.010 -5.012 -1.940 0.100
BLTI138 24.06 -0.031 -4.813 0.245 0.753 RODGERG69 25.09 -0.991 -2.815 0.285 -1.045
BLT69 22.53 0.000 -6.370 0.000 1.000 BLT138 24.06 -0.031 -4.813 -1.720 0.055
DEMARG69 24.33 0.395 -4.963 0.226 0.791 BLT69 22.53 0.000 -6.370 -3.350 0.165
LYNNI138 26.92 -0.340 -1.640 0.734 0.253 DEMARG9 24.33 0.395 -4.963 -1.920 0.555
LYNN138 26.92 -0.340 -1.640 1.565 -0.390
to (56)] can be obtained easily following the scheme and phys- )
ical meaning proposed in this paper. Also, more research is germane to the solution of (31)
needed studying FTRs and loss hedging rights using an ac power
flow model. A I -
-1 E
F
APPENDIX ET FT D
-  der ~ ~ ETE'A-1 EH 'FTU-!
This Appendix derives the solution (31) under the assumption e leTero1
that the left-hand matrix of (31) is nonsingular. First, to present  — AElTE _é _TA AEH™F L u (56)
this matrix more compactly, define U™ FHE"A —U
TETA H-'FTU-!
F' = (F{ F] F3) (52)
H =D + EAET (53) REFERENCES
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T=H'!'-H'FU'FTH. (55) [2] W. W. Hogan, “Contract networks for electric power transmission,” J.

Its inverse can then be derived using elementary row operations.
In the interest of brevity, (56mly lists the portion of the inverse
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