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Greetings from the Texas A&M Energy and Power
Group (EPG)

This 1s from the Fall 2022 EPG dinner held at Dr. Kate Davis’s house on Oct 1, 2022




A Bright Electric Future
Y

* Qur electric energy future could be quite bright!

 Electric grids worldwide are in a time of rapid transition, with many positive
developments including the addition of large amounts of renewable
generation, transportation electrification, smart grid controls, etc.

— The grid of the future is likely to be quite different from the one of the recent past

World net electricity generation by source (2010-2050)

« There are lots of good engineering il o .
challenges and it is a great time for
students entering the field!! 0
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Source: US. Energy Information Administration, International Energy Outlook 2021 (IE02021) Reference case

Image source: US EIA International Energy Outlook, 2021



Overview

T
* However, there are lots of concerns with this transition, particularly in
dealing with electric grid resilience and increasingly electric grid complexity

« Meeting these opportunities and challenges requires better techniques for
understanding the operation of electric grids (past, present, and especially
for the future).

« We also need to effectively convey the story of our rapidly changing smairt
grid to a wide variety audiences including policymakers

* This presentation focuses on how better electric grid operations
visualizations and storytelling can help us achieve this desired future

« This is a great opportunity for smart grid innovation!



Electric Grids Create Lots of Data

— SCADA has traditionally provided
a grid data at scan rates of
several seconds

— Thousands of PMUs are now deployed
providing data at 30 times per second

— In planning many thousand of studies
are now routinely run, with a single
stability run creating gigabytes

— Studying future grid configurations and
scenarios is very data intensive
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An Example: East-West Dynamics Study

A
* One project in 2020 looked at the dynamic aspects of an ac
Interconnection of the Eastern Interconnect and the WECC (with a follow

up project now starting) Nl LT

— We did lots of dynamic simulations L"L"“l«
some going out for minutes ] ' - lilh =T

— The Model has 110,000 buses, i ' - |
244 different types of dynamic = .f.ﬂ.) .ﬁ.f
models, 48,000 model instances | |

» No major showstoppers with this interconnection

* A human factors challenge was to know what happened in a simulation,
and then to explain the results to a variety of different audiences



Visualization Software Design

« Key question: what are the desired tasks that need to be
accomplished?
— Needs for real-time operations might be quite different than what is needed
In planning

« Understanding the entire processes in which the visualizations are
embedded is key

« Software should help humans make the more complex decisions,
l.e., those requiring information and knowledge
— Enhance human capabilities
— Alleviate their limitations (adding up flows into a bus)



Some Useful General References

* Colin Ware, Information Visualization: Perception for
Design, Fourth Edition, 2021

« Edward Tufte, Envisioning Information, 1990

« Edward Tufte, Visual Explanations: Images and
Quantities, 1997

Colin Ware

. - - ot Information
Edward Tufte, The Visual Display of Quantitative ienaliraticn
Information, 2001 Perception for Design

Fourth Edition

 Edward Tufte, Beautiful Evidence, 2006
 Claus Wilke, Fundamentals of Data Visualization, 2019




Books by Edward Tufte are a Good Source for
Historical Images for Data Visualization

lllustration by Charles Minard from 1869 on Napoleon’s march to, and retreat
from Moscow in 1812; Called the “Best Statistical Graphic Ever Drawn”
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Visualization Cautions!

« Just because information can be shown graphically, doesn’t mean
It should be shown

« Three useful design criteria from 1994 EPRI visualization report:

1. Natural encoding
of information

s
P
=
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2. Task specific graphics
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Tufte: “may well be
worst graphic ever”

Source: E. Tufte, The Visual Display of Quantitative Information, Graphics Press, Cheshire, CT, 1983.
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Visualization: A Great Way to Get Your Messaged
Noticed and/or to Convey Information Quickly

Salt River Project Skills Four-minute US Civil War animation, Abraham
Training Faclility, Tempe, AZ Lincoln Museum (Springfield

r vy SAY 2 »
Y 1L YWAR

Source right images: www.lincolnlibraryandmuseum.com/m5.htm 12



Aside: Real versus Synthetic Grids

* When available | prefer to work with
real (actual) grid models and data

 However access to actual power grid models is
often restricted (CEll), and this can be a particular

concern with storytelling where the focus is on clearly B
showing aspects of grid strengths and weaknesses

— Models and data cannot be freely shared with other

researchers, and even presenting results can be difficult

« A solution is to create entirely synthetic (fictitious)

models the mimic characteristics of actual models
— Kudos to the US DOE ARPA-E for funding work over the

last eight years in this area; “realistic but not real”




Large-Scale Synthetic Grid Models and Results are

Now Available
AJM
* There are now synthetic grid models that go up to an 82,000-bus one
grid modeling the contiguous US (CONUS)

— Our synthetic grids have embedded geographic coordinates; the TAMU ones
are available at electricgrids.engr.tamu.edu

« The widespread availability of these grids is greatly helping research!

* There are lots of challenges with synthetic grids with one being that
they have no significant operational history and people really don't
have an intuitive feel for their operation

14



82,000 Bus Synthetic Grid

The different colors
Indicate different
nominal kV voltages,
with green 765, orange
500, red 345, blue 230,
black lower.
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2000 Bus Texas Synthetic Grid
A

 This fictional grid, which has 2000 buses, is designed to serve a load
similar to the ERCOT load with a similar geographic distribution

— The grid was designed using a 500/230/161/115 kV transmission to be different

from the actual grid This grid is widely used, and we

— Public generator information is used use it in the TAMU power classes
' PR, Tee

2wy
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Decision Making, Data, Information, Knowledge
A

* Goal is to help humans make better decisions

« Competing definitions for the process of taking raw “data” and producing
something useful

— Understanding, decisions, wisdom
« Data: symbols, raw, it simply exists

 Information: Data that is given meaning, often in a relational context,
some how processed

« Knowledge: Application of information to answer “how.”
* Understanding, and/or wisdom at top

17



Understanding the Entire Process Is Key
Y

« Understanding the entire processes in which the visualizations are
embedded is crucial.

— What is the “information access” cost?

— How will the information be used and shared?

— Is it raw data, or derived values?

— Should the visualizations sit on top of a model, or is a standalone process sufficient?
— Ultimately, what are the desired tasks that need to be accomplished?

« WEe'll start with a brief coverage of some traditional approaches (tabular,
graphs and onelines, then go into some newer ones)

18



Example: Tabular Displays
i

* In many contexts, tabular displays (particularly with interactive features
such as sorting, filtering, drill-down, and the ability to enter data) can be a
great way to show data

Mumber| Area Mame MName Mom k\u"| PU Volt [Volt (kV])|Angle [Deg){Load MW|Load Mvar| Gen MW)|Gen Mvar| Switched Act G Shunt|Act B Shunt|Area Mum| Zone |Zone Num
Shunts Mvar| MW Mvar Mame

1 1001 Far West ODESSAZO 115.00 0,98035% 112.802 -30.18 20,78 5.89 0.00 0,00 1 Far West T E,
2 1002 Far West PRESIDIO 20 11500 1.01218 116400 -24.75 15.41 437 0.00 0.00 1 Far West T 9
3 1003 Far West O DOMMELL1  115.00 1.00832 115956 -25.0 0.00 0,00 1 Far West T g
4 1004 Far West O DONMELL1 230,00 1.01000 232.301 -26.84 158.25 -29.07 0.00 0.00 1 Far West T 9
5 1005 Far West BIG SPRING 51 115.00 1.007%0 } 2277 0.00 0.00 1 Far West T E,
6 1006 Far West BIG SPRING 5 13.80 1.00147 -20.60 25.73 -4,94 0.00 0.00 1 Far West T 9
7 1007 Ear West JvaM HORM O 115.00 1.01973 -25.10 7.0 1.99 0.00 0.00 0.00 1 Far West T 9
8 1008 Far West IRAAN 20 115.00 1.00133 -13.78 0.00 0,00 1 Far WestT 9
9 1009 Far West IRAAN 21 13.80 1.00000 -10.41 B1.87 -2.55 0.00 0.00 1 Far West T 9
10 1010 Far West PRESIDIO 10 11500 1.01933 -23.46 0,00 0.00 0,00 1 Far West T g
11 1011 Far West PRESIDIO 11 22.00 1.01958 -22.12 7.50 0.00 0.00 0.00 1 Far West T 9
12 1012 Far West SANDERSOMN{ 115.00 0.93399 -29.67 2,99 0.85 9.29 0.00 0,00 1 Far West T E,
13 1013 Far West MOMAHANS 2 115.00 1.00167 -21.95 29,23 8.28 0.00 0.00 1 FarWestT 9
14 1014 Far West GRAMDFALLS ¢ 115.00 1.00324 -18.0 222 0.63 0.00 0.00 1 Far West T E,
15 1015 Far West MARF& O 115.00 1.02132 -24.87 7.51 2.13 0.00 0.00 1 FarWestT 9
16 1016 Far West GARDEM CITY ' 115.00 1.01758 -21.9 2.89 0.82 31.06 0.00 0.00 1 Far West T 9
17 1017 Far West QODESSA 40 115.00 0.98205 -28.53 18.34 5.20 0.00 0.00 1 FarWestT 9
18 1018 Far West MOTREES O 115.00 0.99128 -27.25 0.07 0.02 0.00 0.00 1 Far West T 9
19 1019 Far West MIDLAND 40 115.00 1.00073 -29.70 61,78 17.50 143.20 0.00 0,00 1 Far West T E,
20 1020 Far West BIG SPRING 11 115.00 1.021%0 -21.73 80.13 0.00 0.00 1 Far West T 9
21 1021 Far West BIG SPRING 1" 13,80 1.00000 -15.11 149,63 -25.59 0.00 0,00 1 Far West T g
22 1022 Far West O DONMELL 2 115.00 1.01132 -24.18 0.00 0.00 1 Far West T 9
23 1023 Far West O DONMELLZ 13,80 1.01000 -15.27 135.00 3.21 0.00 0,00 1 Far West T g
24 1024 Far West ODESSA G0 115.00 0.99425 -26.17 63.04 17.86 0.00 0.00 1 FarWestT 9
25 1025 Far West BIG SPRINGS T 115.00 1.01805 -20.73 0.00 0.00 1 Far West T 9
26 1026 Far West BIG SPRINGS 1 13,80 1.00000 -11.21 93.15 -4.41 0.00 0,00 1 Far WestT 9
27 1027 Far West MIDLAND 20 115.00 1.01258 -32.9 101.21 28.68 76,90 0.00 0.00 1 Far West T 9
28 1028 Far West COAHOMA D 11500 1.01371 L -25.80 10,01 2,34 0.00 0,00 1 Far West T E,
29 1029 Far West MIDLAND 30 115.00 1.00868 115.99 -31.93 83.18 23,57 40,70 0.00 0.00 1 Far West T 9
an AN Car 1Ala+ Al RIKIC MY 44C AN 4 AN 440 1An 4 AC A LD £ no Lala'al Falatsl Lala'al 1 Cavrldlard T n

19



Use of Color

A

« Some use of color can be quite helpful The book by Colin Ware is a

— 10% of male population has some degree great resource

of color blindness (1% for females) Sequential paleties

« Do not use more than about ten colors - e

for coding if reliable identification is required ===
 Color sequences can be used - N

effectively for data maps (like contours) Diverging paletiss -

— Grayscale is useful for showing shapes m== .=

— Multi-color scales (like a spectrum) have o [N Bl

advantages (more steps) but also disadvantages = | N | |
(effectively comparing values) compared to [

bi-color sequences
Images from betterfigures.org/2015/06/23/picking-a-colour-scale-for-scientific-graphics/ 20



Graphs

time-variation

Frequency (H

5 10 20 2% 30

0 15 pa
Time (Seconds)

A few curves, detail of each
visible, key can identify objects
(several thousand values)

Frequency (Hz)

The number of curves needs to match the task

10 15 20
Simulation Time (Seconds)

Envelope of response for the
80k bus, 40,000 substation
frequencies (24 million values)

Graphs are also a great way to show information, particularly for

When showing
many curves
Important
features might
get covered

21
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Graphs: 40,000 Substation Examples

Sm;ulatlon Time (Secénds)

Simulation Time (Seconds)

Blue: East
Red: West

East
Frequencies

T

For the 40,000 substation plot, color can be
helpful in showing the East response (blue)
versus West (red) but the curve order matters.
It is probably better to use two plots, with one
for the East and one for the West (obviously
using the same scale)

West
Frequencies

Frequency (Hz)

Siﬁulamn Tifne (Socdﬁdsp
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Onelines
AJm

« Widely used and can be quite effective for showing substations (or local
regions) or smaller grids; can be slow on larger systems

—— — —

Mar2ar THE Price 75¢

NEW YORKER

Metric: Unserved MWh: 0.00
Unserved Load: 0.00 MW ¢

...........

New Yorker Image source: en.wikipedia.org/wiki/View_of the World_from_9th_Avenue
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Visualization Background: Preattentive Processing

* When displaying large amounts
of data, take advantage of
preattentive cognitive
processing
— With preattentive processing the

time spent to find a “target” is

iIndependent of the number of
distractors

* Graphical features that are
preattentively processed include
the general categories of form,
color, motion, spatial position

Source: Information Visualization (Fourth Edition) by Colin Ware, Fig 5.12
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Figure 5.12 Most of the preattentive examples given here can be accounted for by the
processing characteristics of neurons in the primary visual cortex.

All are

T
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except

for juncture

and
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however too

many can

defeat their

purpose
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Preattentive Processing with Color & Size
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Detecting Patterns
A

« Alarge portion of information visualization is associated with detecting
patterns

+ Gestalt (German for “pattern™) Laws
— Proximity
— Similarity (we didn’t discuss color)

— Connectedness
— Common Fate (flows)

26



Proximity, Similarity, Connectedness,

.

;s @ —
@ -

1111

Rows Columns Groups
Connectedness is stronger
SRk R h R than proximity, color, shape
® ® ¢ ¢ ® ¢ o ® ®© ® ® ® o o
O % Gimilarity makes all
® ¢ ¢ & & o o ® ® ® & & & o .
s se o s se e BEEICEIETRASIGIE
® ®© ® & & o o ® ®© ® ® & ¢ o

Source: Information Visualization (Fourth Edition) by Colin Ware, Chapter 6 Images
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Common Fate: Patterns in Motion

* Motion can be a very effective means for showing relationships
between data

* People perceive motion with great sensitivity
« Motion can also be used to Vetric UWMO O B X K O M

11
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Scattered Data Interpolation

(Colored Contouring) =

* For wide-area visualization, contours can be effective for showing large
amounts of spatial data

— Takes advantage that as humans we perceive the world in patterns (sometimes
even when none exist!)

— Now widely used

« Scattered data interpolation algorithms are needed to take the discrete
power system data and make it spatially continuous

— Various algorithms can be used include a modified Shephard’s and Delaunay
triangulation

* A color mapping is needed

29



Shepard’s Algorithm, Blue/Red Discrete Color mapping
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Delaunay Algorithm, Blue/Red Discrete Color mapping
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Delaunay Algorithm, Spectrum Continuous Color
mapping
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Contour Visualizations of Winter Storm Uri and 1949

N : A wr \ = : § |
\ Date and Time (Central) 02!15[2021 04:00 AM Wind Gen: 51613 MW 01/31 1949 04:00 AM (Central)

Solar Gen: D MW '-
*

I's

A paper describing the use of weather in the power flow is T. J. Overbye, F. Safdarian, W. Trinh, Z. Mao, J. Snodgrass, J. Yeo, “An Approach for the
Direct Inclusion of Weather Information in the Power Flow,,” Proc. 56th Hawaii International Conference on System Sciences (HICSS), January 2023;
it is available at overbye.engr.tamu.edu/publications as the first one in 2023. 33



Midwest January 2020 Wind Drought Visualization
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Some General Thoughts on

Electric Grid Visualizations =

« While the previous techniques can be quite helpful, there is often just too
much data to display

* Interactive visualizations, taking advantage of the underlying geographic
Information, can be quite effective, particularly if the displays can be
rapidly customized to show different sets of information

* Also, much of the data should first be pre-processed using potentially
guite sophisticated algorithms
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Geographic Data Views
i

* One way to make visualizations more interactive is to use underlying
geographic information to quickly auto-create displays

— Known as geographic data views (GDVSs)
 GDVs can be used either on individual objects (like generators,

buses, or substations), or on aggregate objects (like areas and
zones)

 The GDV display attributes (e.g., size, color) can be used to show
object data

 The GDV displays can be saved for later use and links to the
underlying objects allow for drilldown
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82,000 Bus System Area GDV Example

®

Size is proportional to the
area’s generation, while
the color is based on the
amount of exports
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Texas 2000 Substation GDV

AlM
T
. | Size is proportional
F . to the substation MW
o LB throughput, while
— A ST the color is based on
R the amount of
substation
generation
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82,000 Bus Example GDV

Alm
Each GDV is

linked, the GDVs
can easily be
customized, and the
display can be
saved (generation
substations are
magenta, load
substations are
yellow)

—-100.00 MW
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Layout Algorithms Can Help

T

* Force-based layout algorithms can be used with GDVs to improve
readabllity
=T [

s

Image shows the 82K
case generation with size
proportional to MW output;
color indicating percent
reactive power. At a
glance it is clear many
units are at their reactive
power limits.
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Actual US Generation Capacity (2021) GDV Example

Red is nuclear, brown natural gas, black coal, blue hydro,
green wind, yellow solar %

> L& \ S
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e .

A

Oval size is proportional to the substation generation; image shows public data from EIA Form 860, 2021 41



Pseudo-Geographic Mosaic Displays
A

« GDVs can be quite useful, but there is a tradeoff between geographic
accuracy and maximum display space usage

— Much of the electric grid is concentrated in small (primarily urban) areas

* Pseudo-Geographic Mosaic Displays (PGMDs) utilize a tradeoff of
geographic accuracy to maximize display space
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80,000 Bus System Area PGMD

b - —
[ ==
. -
— ¥ = —
ey =T - -
e
1 )
- - IL‘ S was
- | m—
- e .
i - ———
vy e D - —-
o a0 e — L
~— | -
[ _—
- — —- J Pevsybvene Exer
[ _ —Spedewy
P .. v
— | S—— O— —
ez Lxh>a ey 4
— e
N

T

- GDVs are as
gre before (size =

— . areagen

1:_ MW, color =
- Interchange);

B  the
percentages

“— show the

e

“" amount of

Pennsylvania Eastern

=== transition

et
g | e

43



Texas 2000 Substation PGMD
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GDV Grouping
A

« Oftentimes there are just too many objects, so they need to be grouped

* There are many different ways to group them, with common ones by area,
zone, substation, owner.

 GDV objects can also be grouped geographically with interactive grouping
possible

— Grouped object attributes can then be summarized different ways, such as sum, abs
sum, average, minimum, maximum, etc.

— Called GDV Summary Objects (GSOs)
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Texas 7K, 10 by 10 Grid

Min Voltage

Y

—1.000 PU

I,

Thisisa 10 by 10
latitude/longitude grid with
the GSO center based on the
grid point. The disadvantage
of this is some objects are
outside the border. The size
IS generation, the color is the
minimum voltage.
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Texas 7K, 10 by 10 Grid, Weighted Center

This Is the same
-I.OGOPU =
grid, except the
- = GSO center Is
zzzzzzzz : _ based on the
-0.940 PU L

average of all its
elements. This
approach is often
preferred.

= Gen 4013 MW
[t Volt 0.991 pu

Gen 49581 Gen 7629
Volt 0.965| Volt 0.971 pu
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The Grid Size Can be Easily Modified

Min Voltage

e 1060 PV

—1.000 PU

.

o=

Gen 2967 MW
Volt 1.035 pu

This shows results
for a 15 by 15 grid,
with the same scale
as before.
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Visualizing Multiple Values
Y

We commonly combine the

Transient Stability Time (Sec): 3.250 GSO displays with contours to
- visualize multiple values. This
Image (from a stability run)
shows a frequency contour
(made by substation GDV5)
with GSOs showing the voltage
change.

-60.20 i

—-60.00 Hz

Voltage Change

-:0.100 )
0.000 PU

—-0.100 PU
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Visualizing Transmission System Flows

* The previous techniques can be quite helpful for showing
many power system values, but don’t scale well for
showing transmission system flows

Area to area flow
visualization,
EPSON, 1998,
Zurich, CH
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Delaunay Triangulation Based
Wide-Area Flow Aggregation

* The next several slides present

— An algorithm for visualizing power system flows using a Delaunay triangulation
approach (giving a planar graph)

— A demonstration of the algorithm on grids of all sizes, different levels of
aggregation and different flows

T.J. Overbye, J. Wert, K. Shetye, F. Safdarian, and A. Birchfield, “Delaunay Triangulation Based Wide-Area
Visualization of Electric Transmission Grids,” Kansas Power and Energy Conference (KPEC), Apr. 2021.
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Delaunay Triangulation Based Wide-Area Flow
Aggregation =

* The algorithm is simple and fast

— Assume n buses, m bus groups and b branches joining the buses, with geographic
information available for the buses

— Map each branch to its terminal bus group(s)
— Do a Delaunay triangulation of the m bus groups to create a set S of segments

— For each branch quickly determine a segment path between its terminal bus groups
adding it to the list for each segment
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Seven Bus Example

Al
* This can be illustrated with a seven bus example with five bus
groups, A={1,2}, B={3,4}, C={5}, D={6}, E={7}
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Computing Path Between Two Groups

 In general calculating the path between two bus groups is not
exceptionally fast (given that is has to be applied to each branch)

 However, when the graph is based on a Delaunay triangulation paths
can be calculated very quickly

 Different algorithms exist to do this, with the paper using a Greedy
Routing algorithm

« Determining the path for a branch between its terminal bus groups
has three options

1. Both ends in same group so branch is ignored
2. Ends are in first neighbor groups so simple
3. Use the Greedy Routing algorithm
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500 Bus Example

« Slide shows the original
network with several
Intersecting branches and
then two applications of
the algorithm

Original System, b=599

Algorithm
m =208, s=311

Algorithm
m =28, s=49
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Algorithm on 82,000 Bus Grid
Y

 In all cases for the following slides the algorithm took less than one second

Algorithm m =76, s=114 (after removing zero branch segments)
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Algorithm on 82,000 Bus Grid

Algorithm using
a 10 by 16
latitude/longitude
GSO grid
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Algorithm on 82,000 Bus Grid, PTDFs

| - “ [ Algorithm
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Visualization of Stability Results, 82K
i

~ Transient Stability Time [y :
B~ | Image is snapshot
wmp —— 7, from a stability results
" movie for a generator
+—=+ |oss contingency, with
GDVs showing the
voltage change
contour, GSOs
the generation change,
and GSLOs the line
flow changes.
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Some Techniques for Dealing with Time-Varying Data
A

* Need to keep in mind the desired task!
« Tabular displays
« Time-based graphs (strip-charts for real-time)

* Animation loops
— Can be quite effective with contours, but can be used with other types of data as well

« Data analysis algorithms, such as clustering, to detect unknown properties
In the data

— There is often too much data to make sense without some pre-processing analysis!
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Animation loops
A

« Animation loops trade-off the advantages of snapshot visualizations with
the time needed to play the animation loop

— A common use is in weather forecasting

* In power systems applications the length/speed of the animation loops
would depend on application
— In real-time displays could update at either SCADA or PMU rates

— Could be played substantially faster than real-time to show historical or perhaps
anticipated future conditions
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Animation Example: 1.00 Seconds

- Transient Stability Time

Voitage Change
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Animation Example: 1.05 Seconds




Animation Example: 1.10 Seconds




Animation Example: 4.80 Seconds




A Few Animations

Transient Stability Time (Sec): 5.000
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Conclusions
i

* We've reached the point in which there is too much data to handle most of
it directly

— Certainly the case with much time-varying data

 How data is transformed into actionable information is a crucial, yet often
unemphasized, part of the software design process

* There Is a need for continued research and development in this area

— Synthetic power grid cases, including dynamics, are now emerging to provide input
for this research
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Thank You! Questions?

This presentation is available at overbye.engr.tamu.edu/presentations/
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