
 

Impact of PMU Data Errors on Modal Extraction 
Using Matrix Pencil Method

Tamara Becejac and Thomas Overbye 
Department of the Electrical and Computer Engineering 

Texas A&M University  
College Station, Texas, USA 

tamara.becejac@tamu.edu; overbye@tamu.edu   

  
Abstract— Phasor Measurement Units (PMUs) provide 
information on the dynamic response of power systems that can 
be used to extract modal information and determine the mode 
shape of electromagnetic oscillations in real-time. Modal analysis 
introduces a significant improvement in determining and 
assessing stability margins and provides insights into the 
dynamics of the power system for monitoring and preventive 
control. Performance of modal analysis depends primarily on the 
availability and quality of the time-domain signals. However, 
PMU data is often delivered with various data quality issues. This 
paper examines the impact of different data quality issues on the 
performance of the Matrix Pencil Method (MPM), which has 
been used for power system modal analysis. The paper also 
explores the ability of the MPM to accurately identify dominant 
system modes in presence of defective data, including noise, 
outliers, and un-updated data. The results are illustrated through 
six examples ranging in size from a single signal up to results 
from a 2000-bus system. 

Index Terms— Flawed data, Matrix Pencil Method, sensitivity 
analysis, singular value threshold, Phasor Measurement Unit. 

I. INTRODUCTION 
In power systems, small signal stability problems continue 

to be a concern for power engineers [1], [2]. Power system 
disturbances are usually followed by low-frequency oscillations 
that can decay, sustain, or grow. Additionally, due to a variety 
of reasons many power systems are vulnerable to stability 
issues including inter-area oscillations. Inter-area oscillations 
occur when a group of electrically distant generators oscillates 
against each other [3]. From an operating point of view, 
oscillations are acceptable as long as they are quickly damped. 
In well-damped systems these oscillations will be absorbed 
within a few seconds. However, sometimes they may lead to 
instability and system collapse [4]. Lightly damped 
electromechanical oscillations are also of concern in the power 
industry due to their undesirable effect on economics and 
operational practices. Additionally, even low-magnitude 
oscillations, if present over an extended period, can cause 
substantial damage to power system equipment such as 
generator shafts [5]. Thus, it is essential to detect these 
oscillations in the early stages of an event to be able to quickly 
take appropriate preventive controls. 

Modal analysis is a mathematical tool used to study and 
characterize the small signal stability of a power system in the 

frequency domain [6]. Modal analysis directly extracts modal 
information from the system response to a perturbation 
including the mode’s magnitude, phase, frequency, and 
damping factor. Although oscillations cannot be completely 
eliminated, advanced controls can be added to the system to 
improve their damping and modify their frequency, assuming 
that the modes of the system are correctly identified. 

Two main approaches for estimating modal content exist in 
the power system, 1) the traditional method based on the 
linearization of power system equations, and 2) the 
identification approach based on computational techniques that 
extract the modal information from time domain data. With the 
deployment of the modern devices that are capable of capturing 
the dynamic responses of the system, such as PMUs and Digital 
Fault Recorders (DFRs), an oscillatory response of the system 
can be measured in real-time. The main idea behind the 
identification methods is to decompose the system dynamic 
response into a sum of exponentially damped modes. A 
significant advantage of the identification methods is that their 
feasibility does not depend on having a system model [7]. 
Moreover, as the power grid changes, such as due to load 
perturbations or transmission switching actions, the modes of 
the power system also change. 

If accurately estimated, system modes may help improve 
system modeling and the implementation of the control 
schemes, with a result of increased system reliability. However, 
PMU data is often delivered with various data quality issues. 
Data issues in the synchrophasor system can arise for a wide 
variety of reasons including topology errors, meter failures, and 
improper configurations. Furthermore, the communication 
infrastructure brings additional vulnerabilities to the power 
system, such as allowing intruders to launch various types of 
cyber-attacks and jeopardize the reliability of the electric grid. 

There exist several identification techniques from the signal 
processing theory for estimating the modes from time-varying 
waveforms including Prony, Hankel Total Least Square, Matrix 
Pencil. Prony’s method was the first method used for power 
system small signal stability analyses [8]. Nonetheless, several 
studies have shown some advantages from using the Matrix 
Pencil Method for the modal extraction from noisy signals over 
the traditional Prony method [9]. We are building on these 
studies to explore the advantages of MPM under not only the 
presence of noise, but also other issues that can arise in the 
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PMU data measurement set, such as outliers and un-updated 
data. 

The rest of this paper is organized as follows: Section II 
gives the historical overview of the identification–type modal 
analyses, Section III reviews the theoretical background of the 
Matrix Pencil Method, and Section IV documents six case 
studies. Finally, concluding remarks are given in Section V. 

II. MODAL ANALYSIS BACKGROUND 
Modal analysis can be formulated as a fitting problem of the 

pre-specified waveform to an actual time-varying waveform, 
such that the difference between the proposed and the actual 
waveform is minimized when estimating the magnitude, phase, 
frequency, and damping parameters of the fitting function. 
Estimated coefficients of the modeled waveform determine the 
modal characteristic of the linear system given as: 

 ( ) ( ) ( ) ( )
1

cos ; 0i
M

t
i i i

i
y t Ae t n t t Tσ ω θ

=

≈ + + ≤ ≤∑   (1) 

where the following nomenclature applies: 

( )y t  = observed signal 

( )n t  = system noise 

M  = number of desired modes 
ii

i iR Ae θ=  = complex amplitude 

iσ  = damping factor 

iω  = angular frequency 
 

The key idea is to model the uniformly sampled data as a 
linear combination of the exponentially dumped functions. 
There are several well-known methods used for modal 
identification: Prony’s method, Hankel Total Least Square 
(HTLS), and Matrix Pencil Method. From a historical 
perspective, the polynomial type of method (i.e., Prony’s 
method) is much older and is still widely used for the stability 
studies. Baron de Prony first developed this method in 1795 
[10]. HTLS [11] is a special case of the ESPRIT algorithm [12]. 
Hua and Sarkar introduced Matrix Pencil Method (MPM) for 
extracting poles from antennas’ transient responses [13]-[15]. 
MPM was derived from the pencil-of-functions approach [16], 
and today it is widely applied in the system identification and 
spectrum estimation areas. As an extension of the MPM, the 
Iterative Matrix Pencil Method was recently introduced for the 
modal analyses of large-scale systems [17]. The Iterative MPM 
combines the MPM and the cost functions to decrease the 
computational burden by reducing the number of signals that 
are processed during the modal extraction. Other methods 
include variable projection method [18], eigensystem 
realization method [19], and the dynamic mode decomposition 
[20]. 

Unlike the polynomial methods, MPM shows some 
advantages when dealing with signals with unknown 
characteristics [21]. Moreover, it has excellent performance 
even when the input signal has noise, which is usually the case 
with PMU data [22]. Typically, up to 20-25 dB of signal-to-
noise ratio (SNR) can be handled adequately by this technique 

[15]. The Matrix Pencil approach has a lower variance of 
estimates of the parameters of interest than a polynomial-type 
method and is computationally more efficient. While the MPM 
extracts signal poles directly from the eigenvalues, the Prony 
method requires a two-step process [3]. 

In this paper, the MPM is considered. This technique 
belongs to the group of identification methods and hence it can 
be applied to time-series data (PMU frequency). One of the 
main limitations of the identification method is the type of 
modes that can be computed (i.e., only modes that are present in 
the input data), and the inability to extract some well-damped 
modes if the input signals are noisy. Regardless, their practical 
value has been demonstrated in many studies, such as stability 
analysis, model validation, and control design [7]. 

III. MATRIX PENCIL METHOD 
With the MPM signal poles can be found directly from the 

eigenvalues of a single developed matrix. This method directly 
estimates all mode parameters by fitting the signal model given 
in (2) to an observed measurement (1) that consists of N evenly 
spaced samples. 

 ( )
1

ˆ ( ); 0,..., 1
M

k
i i

i
y k R z n k k N

=

= + = −∑   (2) 

where ( )i ij t
iz e σ ω+ Δ=  are the poles of the system. 

Parameters Ai and θi are calculated from the complex 
residues, whereas σi and ωi are estimated from the eigenvalues 
of the system poles. Since the poles zi are found as the solution 
of a generalized eigenvalue problem, the limitation on the 
number of modes M that can be extracted is removed. To 
calculate the eigenvalues and eigenvectors of the signal, from 
the sampling sequence given in (2), the first step is to form a 
(N-L)× (L+1) Hankel matrix: 

[ ]
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⎡ ⎤
⎢ ⎥+⎢ ⎥=
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L
L
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where L is called the pencil parameter, representing the free-
moving window length. It has been shown that the right choice 
of the pencil parameter helps when dealing with noisy signals 
[15]. Performance of the method is maximized if L is selected 
to be L=N/2, making the MPM perform close to the optimal 
Cramer-Rao bound [13] (the Cramer-Rao bound represents the 
best results that one can achieve in a noisy environment). 

Furthermore, two additional matrices [Y1] and [Y2] are 
constructed from [Y] by deleting its last and first columns, 
respectively. 

 [ ]1

( )

(0) (1) ( 1)
(1) (2) ( )

( 1) ( ) ( 2) N L L

y y y L
y y y L

Y

y N L y N L y N − ×

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
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L
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M M O M
L

  (4) 
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Now, from the equations (2), (4) and (5) we can write: 

 [ ] [ ][ ][ ]1 L RY Z R Z=   (6) 

 [ ] [ ][ ][ ][ ]2 0L RY Z R Z Z=   (7) 

where 
 [ ] [ ]1 2, ,..., MR diag R R R=   (8) 

 [ ] [ ]0 1 2, ,..., MZ diag z z z=   (9) 
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[]diag  represents the diagonal matrix. 
Next, we defined the matrix pencil as given in (12): 

 [ ] [ ] [ ][ ] [ ] [ ]{ }[ ]2 1 0L RY Y Z R Z I Zλ λ− = −   (12) 

where [I] is an identity matrix. 

If the pencil parameter L satisfies M≤L≤N-M, then the rank 
of [Y2]-λ[Y1] is equal to M [13]. On the other hand, if λ=zi, the 
ith row of [Y2]-λ[Y1] is equal to zero, and the rank decreases to 
M-1. Therefore zi is the generalized eigenvalue of the matrix 
pencil pair {[Y2], [Y1]}. To find poles, one should find the 
eigenvalues of the: 

 [ ] [ ] [ ] [ ]{ } [ ] [ ]
1

1 2 1 1 1 2
H HY Y Y Y Y Y

−+ =   (13) 

The superscript “+” denotes the Moore-Pensore inverse or 
pseudoinverse matrix, superscript “H” stand for Hermitian 
(conjugate) transpose, and “-1” denotes inverse. 

After solving (13) and obtaining zi and M, the residues Ri 
can be calculated from the least square problem as given in 
(14); 
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Finally, we can get the amplitudes, phases, frequencies, and 
damping factors as follows: 

 i iA R=   (15) 

 ( ) ( )arctan Im / Rei i iR Rθ = ⎡ ⎤⎣ ⎦   (16) 

 ( ) ( )arctan Im / Re /i i iz z tω = Δ⎡ ⎤⎣ ⎦   (17) 

 ln /i iz tσ = Δ   (18) 

The damping ratio can be calculated using the following 
equation: 
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In the case of data that contains noise before estimating the 
desired number of poles, the sampled sequence should be 
conditioned to reduce the impact of the input noise. This can be 
achieved by applying the Singular Value Decomposition 
(SVD) of the matrix in (3). The SVD is a method for 
factorization of matrices of the form: 

 [ ] [ ][ ][ ]HY U V= Σ   (20) 

where [Σ] is the rectangular diagonal matrix. The diagonal 
matrix elements σi, are the singular values of the matrix [Y]. 
The columns of [U] and [V] are unitary matrices containing the 
left-singular vectors and right-singular vectors of [Y], 
respectively. The SVD reduces the dimension of the data set 
while preserving the primary relationships within the set and 
ignoring the variations below some predefined threshold. 

The Matrix Pencil decomposes [Y] with the SVD with the 
result being the poles and residuals. In this case, the SVD is 
also used to determine the number of modes (model order) M, 
in the observed signal. In the noiseless case, M is equal to the 
number of non-zero singular values. However, in the presence 
of noise, singular values that were previously zero are 
perturbed and become non-zero. Now, the best way to 
approximate M is to look into the ratio of singular values of 
[Y], σi, to the largest singular value, σmax, and compare to 
predefined Singular Value Threshold (SVT), defined as 
SVT=10-p, where p represents the number of significant 
decimal digits. In this case, all singular values with the ratio 
below the threshold are considered noise and discarded. This 
step is reflected as a built-in pre-filtering process [15]. 

 
max

i SVT
σ
σ

≈   (21) 

Next, we can use the first M significant singular values to 
reconstruct the original matrix [Y], and the pair {[Y1], [Y2]}: 
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H
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Y U V
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=

= Σ
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  (22) 

where [Σs] is the first M columns of [Σ], and [V1s] and [V2s] are 
obtained from [Vs] by deleting its last and first rows 
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Figure 1.  Original simulated signal. 

 

 

 

 
Figure 2.  Number of modes and mean error of the reconstructed signal 

with four different values of additive noise. 

respectively. Using the set of equations from (13)-(18), all 
desired shapes and parameters can be calculated. 

IV. CASE STUDY 
The impact of the synchrophasors errors on the performance 

of the MPM is demonstrated through two examples: 

1) Artificially created single data sequence with 
known modal parameters. 

2) The transient stability simulation of a 2000-bus 
synthetic grid [23]. 

In both examples, we explored the sensitivity of the 
algorithm to noise, outliers present in the data sequence, and the 
effect of un-updated data. The numerical results verify the 
effectiveness of this approach. 

A. Simulated signal decomposition, without noise 
First the signal given in (23) is used to generate an example 

data sequence with known modes: 

 ( ) ( ) ( ) ( )0.075 0.15cos 2 0.15 cos 2 0.35t ty t e t e t n tπ π− −= ∗ + ∗ +   (23) 

where n(t) represents any flawed data (i.e., noise, outliers, and 
un-updated data), y(t) contains 300 points, and the signal is 
sampled at a rate of 30 Hz (a total of 10 seconds of sampled 
data is used for the analysis). This signal clearly has two modes 
at 0.15 Hz and 0.35 Hz with damping ratios of 7.96% and 
6.82%, respectively. Fig. 1 shows the original clean data curve. 

In order to apply the MPM to this data set, the pencil 
parameter L and the Singular Value Threshold need to be 
defined first. Values for the pencil parameter between N/3 and 
2N/3 are preferred, where N is the number of data points [15]. 
The fixed value of L in this study is calculated as follows: 

 ( ) ( )( )( )1/ 2* / 3 / 2L ceil ceil N floor N= +   (24) 

The MPM is very sensitive to the value of the SVT. For this 
example, all values in the range 0<SVT<0.692 allow correct 
extraction of the modes and its damping ratios. However, if the 
SVT is 0.693 then the MPM detects only one mode with a 
frequency of 0.147 Hz, which is relatively close to the original 
value of 0.15 Hz. However, the damping ratio is 
underestimated, with the values of 4.67% compared to 7.96%. 
Thus, the SVT plays a critical role in a case that signal is not 
“clean”. In the following analysis, the optimal value of the 
parameter SVT is determined in the presence of noise and other 
flawed data. 

 

1) Decomposition of the simulated signal with noise 

In order to determine the optimal value of the SVT, white 
Gaussian random noise is added to the original synthetic signal 
with four values of the signal-to-noise ratio (SNR) ranging from 
10-40dB. We considered the number of estimated modes and 
the mean error between the original waveform without noise 
and one reconstructed from the modes calculated with the PM 
algorithm. One hundred simulation runs for each test case were 
done and Fig. 2 shows the results from these analyses. The 
“stars” represent the value of the SVT for which the MPM 
correctly calculated the number of modes present in the original 
signal. The findings are summarized in Table I. 

The SVT max value mostly depends on the signal content 
while the SVT min value controls the process of removing the 
noise. With increasing the SVT, more noise is removed from 
the signal, and the reconstructed waveforms better fit the 

TABLE I. LIMITS OF THE SINGULAR VALUE THRESHOLD IN THE 
PRESENCE OF NOISE  

SNR (dB) Singular Value Threshold 
min max 

10 0.3 0.7 
20 0.07 0.7 
30 0.03 0.7 
40 0.008 0.7 
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Figure3.  Simulated and reconstructed waveforms in the presence of 

data spikes. 

TABLE III.  LIMITS OF THE SINGULAR VALUE THRESHOLD IN 
                                               THE PRESENCE OF UN-UPDATED DATA 
 

Singular Value Threshold≥0.05 
Frequency 

(Hz) 
Damping 
Ratio (%) Lambda Amplitude 

0.150 6.58 -0.0621 0.978 
0.347 7.41 -0.1616 1.033 

 

 
Figure 4.  Simulated and reconstructed waveforms with the un-updated 

data. 

original, giving a highly accurate estimation of the mode 
parameters. However, a large value for the SVT could remove 
actual existing modes, so one has to be careful with the choice 
of the threshold. Typical noise level present in PMU data is 
around 40 dB [22], which means that parameter SVT can take 
value as low as 0.008. To accommodate for the uncertainties 
and possible higher noise, we fixed the threshold value to 0.05. 

2) Decomposition of the simulated signal with arbitrary 
data injection 

Here the tested data sequence is modified to contain data 
spikes lasting for a total of 0.13s in samples 172 to 175. These 
spikes could occur in real PMU data due to either time skew in 
the GPS or a cyber-attack [26]. Once again, we sweep the 
values of the SVT with the results of the analyses presented in 
Fig 3. The calculated mode parameters are given in Table II.  

When the SVT is equal to 0.05 the number of estimated 
modes is 13, much higher than the original. Nevertheless, both 
“real” mode frequencies are calculated with a maximum error 
of 0.01 Hz. The damping ratio is overestimated for both modes 
with the maximum error equal to 0.77%. Decreasing the value 
of SVT to 0.06 gives the exact number of modes and a slightly 
better estimate of the damping ratio. However, if the SVT 
decreases to 0.01, the number of modes is 63, and the error is 
much higher. 

3) Decomposition of the simulated signal with un-updated 
data 

Next, we added a 0.5s long sequence of un-updated data 
from 6.5s to 7s with the results shown in Fig 4. For all values 
of the SVT higher than 0.05, the MPM was able to correctly 
estimate the number of modes with the results given in Table 
III. 

B. Large Synthetic Grid 

A 2000-bus network that is publicly available at [25] is 
used to generate the synthetic synchrophasor measurements. 
Figure 5 shows 500kV part of the transmission network along 
with the 13 synchrophasors located in the substations with the 
large generators. The waveforms used for this study are from 
the virtual PMU frequency measurements in response to the 
loss of generator in the substation “MIAMI”. The sampling 
frequency is initially set to 0.5 cycles, and data is later re-
sampled with the factor four, to get the reporting rate of 30 
frames per second. The simulation duration is 20s, producing 
600 points per PMU channel. Figure 6 shows the original 
measurements, where each curve represents the frequency 
measurement acquired from one of the PMUs in the system. 
The authors in [24] developed the approach to tune the model 
dynamics, so that the synthetic data created using this fictitious 
network has the characteristics of actual networks. 

To apply the MPM on the synthetic PMU data set, the 
following parameters for the algorithm are used: pencil 

TABLE II. ESTIMATED MODE PARAMETERS IN THE PRESENCE OF 
ARBITATY DATA INJECTION  

Singular Value Threshold=0.05 
Frequency 

(Hz) 
Damping 
Ratio (%) Lambda Amplitude 

0.149 8.32 -0.0779 0.992 
2.845 0.67 -0.1203 0.016 
2.614 0.91 -0.1488 0.019 
2.388 1.10 -0.1655 0.002 
0.350 7.59 -0.1671 1.022 
0.593 4.55 -0.1697 0.021 
2.162 1.30 -0.1761 0.018 
1.936 1.50 -0.1832 0.014 
1.711 1.75 -0.1879 0.012 
1.485 2.05 -0.1912 0.019 
0.811 3.75 -0.1913 0.011 
1.259 2.44 -0.1933 0.001 
1.035 2.98 -0.194 0.020 

Singular Value Threshold≥0.06 
0.149 8.24 -0.0772 0.988 
0.350 7.53 -0.1659 1.0156 
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Figure 5.  2000 bus system with 13 virtual PMUs. 

 

Figure 6.  Original clean frequency measurements from 13 PMUs. 

 
Figure 7.  Clean frequency measurement and reconstructed signal. 

parameter of L=250 is calculated using the (23) and the SVT is 
initialized to 0.05. Furthermore, the data set is pre-conditioned. 
That is, from each PMU channel, we first subtracted the trend 
and then scaled it by its respective standard deviation. 

In general, the MPM is designed to process single signals. 
However, with small adjustments it can be used on the multi-
channel data set. First, the Henkel matrix as given in (3) for 
each signal is constructed and at the end, all matrices are 
vertically concatenated to form one single matrix. Once the 
modes are estimated, (14)-(19) are used to evaluate the mode 
shapes and frequencies in each channel separately. 

To verify the finding from the first set of case studies 
regarding the optimal value of SVT, additional sensitivity 
analysis was conducted, now on the synchrophasor frequency 
measurements, and the best results were achieved with the 
value of SVT=0.05. Figure 7 shows the solution of the MPM 
when the SVT is 0.05 and the estimated parameters are given 
in Table IV, including dominant modes frequencies, damping 
ratios, and lambdas. The tested case has seven dominant 

modes, and these results were utilized as the reference point for 
the following analyses. In the next three case studies low-
quality measurements were introduced demonstrate the 
effectiveness of the MPM. In each case, one type of flawed 
PMU data has been randomly inserted into the data set. 

1) Synchrophasor data with noise 

First, Gaussian random noise with SNRs ranging from 40 
to 20 dB were added to the original clean PMU data set. Figure 
8 shows one data curve with the applied noise with SNR=20 
dB and the reconstructed waveform using the results from the 
MPM algorithm. Detail results are presented in Table V. 

As expected, the MPM could effectively extract all the 
modes with high accuracy despite the additive noise. It can be 
seen that this algorithm shows great resistance to the noise and 
successfully identifies all the dominant modes. The maximum 
frequency error is 0.003 Hz and the damping ratio error is 
1.2%.  

TABLE IV.    MODAL PARAMETERS ESTIMATED FROM THE 13 PMU 
FREQUENCY MEASUREMENTS 

Singular Value Threshold≥0.05 

Frequency (Hz) Damping Ratio 
(%) Lambda 

0.061 24.55 -0.094 
0.223 35.30 -0.496 
0.329 34.36 -0.716 
0.633 9.04 -0.360 
0.660 7.96 -0.330 
0.942 6.86 -0.407 
1.828 8.78 -1.022 

 

TABLE V.    MODAL PARAMETERS ESTIMATES FROM 13 PMU 
FREQUENCY MEASUREMENTS WITH NOISE AND RESPECTIVE ERRORS 

SNR 
(dB) 

Frequency 
(Hz) 

Frequency 
Error (Hz) 

Damping 
Ratio (%) 

Damping 
Ratio 
Error 

40 

0.061 0 24.48 -0.075 
0.223 -0.0002 35.21 -0.090 
0.329 -0.0003 34.50 0.147 
0.633 0.0002 9.04 -0.002 
0.659 -0.0004 7.96 0.001 
0.943 0.0005 6.84 -0.016 
1.828 -0.0001 8.77 -0.012 

30 

0.061 0 24.40 -0.148 
0.222 -0.0011 36.50 1.200 
0.331 0.0016 33.81 -0.549 
0.633 0.0000 8.82 -0.216 
0.659 -0.0005 8.19 0.234 
0.945 0.0028 6.80 -0.056 
1.827 -0.0010 8.80 0.014 

20 

0.061 0.0001 24.90 0.346 
0.222 -0.0014 36.38 1.076 
0.334 0.0044 33.60 -0.762 
0.632 -0.0009 8.52 -0.519 
0.661 0.0015 8.61 0.656 
0.946 0.0033 6.72 -0.139 
1.832 0.0038 8.71 -0.078 
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2) Synchrophasor data with outliers 

Next, the test data set of the 13 synthetic PMU frequency 
measurements was modified with small constant values of  
random “data spikes” added to all of them. The length of each 
corrupted data segment is 0.13s. Figure 9 shows the 
reconstructed waveform with the presence of spike; the results 
are summarized in the Table VI. It can been seen that the MPM 
is relatively immune to this type of flawed PMU data. 

 
3) Synchrophasor data with un-updated data segments 

In this test case a 0.5s duration of the tested sequence was 
modified to contain an un-updated segment for all 13 
waveforms simultaneously. This type of error can arise due to 
the issues in PDC or the communication traffic. Figure 10 
shows one of the original measurement curves along with the 
reconstructed one. Mode parameters are given in Table VII. 
Even though all the real modes are detected, in this test case, 
there is one additional “fake” mode extracted with the low 
damping ratio. This leads to the conclusion that some pre-
screening of PMU data should take place, to avoid false 
detection. 

V. CONCLUSIONS 

The applicability of the MPM for the modal extraction 
from the time-domain data sequence was examined, and results 
were presented through two case examples. In this study, we 
found the optimal value of the SVT for the proposed method, 
for which the MPM was able to accurately calculate the modes 
parameters in the presence of the flawed data, i.e., noise, 
outliers, and un-updated data. We also showed how the method 
could be applied on sets of multiple PMU streams, and we 
showed its ability to correctly detect and accurately 
characterize dominant modes after a major disturbance in the 
large-scale system. 
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