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Announcements

• Read Chapter 7 

• Homework 4 should be done before the first exam, but need not be turned in

• Exam 1 is during class on Oct 13
– Closed book, notes.  One 8.5 by 11 inch notesheet and calculators allowed

– Distance education students should make arrangements with Sanjana with HonorLock
one approach

– Exam 1 from 2020 is available in Canvas; solutions will be posted as we get closer in
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Power Flow Sensitivity Analysis

• The idea of power flow sensitivity analysis is to get an estimate of how 
some set of values would change with respect to a change in a set of 
control values
– Need to keep in mind which control responses are implicitly modeled, such as P and 

Q changes at the slack, Q at PV buses

• The approach works by linearizing a system about an operating point; its 
usefulness depends on the validity of this approximation

• Sensitivities are widely used in power system analysis, with some 
algorithms doing sequential linearizations
– They are most valid for real power, less useful for reactive power
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Analysis Example: Available Transfer Capability

• The power system available transfer capability or ATC is defined as the 
maximum additional MW that can be transferred between two specific 
areas, while meeting all the specified pre- and post-contingency system 
conditions

• ATC impacts measurably the market outcomes and system reliability and, 
therefore, the ATC values impact the system and market behavior

• Total transfer capability (TTC )
– Amount of real power that can be transmitted across an interconnected transmission

network in a reliable manner, including considering contingencies

• ATC is the amount that is actually available; we’ll just look at TTC
– A useful reference on ATC is Available Transfer Capability Definitions and 

Determination from NERC, June 1996 (available online)
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Total Transfer Capability (TTC)  Evaluation

nm

t t

maxf 

i j

,

( )

. .

m n

j max

U = max t

s t

f f f



        L

for the base case j = 0 and each contingency case 

j = 1,2 … , J

( )0f f  

Goal is
to load
the lines
up to
their limits,
though only
when also
considering
contingencies
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Conceptual Solution Algorithm

1. Solve the initial power flow, corresponding to the initial system 
dispatch (i.e., existing commitments); set the change in transfer t(0) 

= 0, k=0; set step size d; j is used to indicate either the base case 
(j=0) or a contingency, j= 1,2,3…J

2. Compute t(k+1) = t(k) + d
3. Solve the power flow for the new t(k+1) 

4. Check for limit violations: if violation is found 
set Uj

m,n = t(k) and stop; else set k=k+1, and goto 2
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Conceptual Solution Algorithm, cont.

• This algorithm is applied for the base case (j=0) and each 
specified contingency case, j=1,2,..J

• The final TTC, Um,n is then determined by 

• This algorithm can be easily performed on parallel processors 
since each contingency evaluation is independent of the others

 ( )
, ,

j
m n m n

0 j J
U = min U

 
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Five Bus Example: Reference

Line 1

Line 2

Line 3

Line 6

Line 5

Line 4
slack

 1.050 pu

 42 MW

 67 MW

100 MW

118 MW

 1.040 pu

1.042 pu

A

MVA

A

MVA

A

MVA

1.042 pu

A

MVA

1.044 pu

 33 MW

MW200

258 MW

MW118

260 MW

100 MW

MW100

A

MVA

One Two

Three

Four

Five PowerWorld Case: B5_DistFact
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Five Bus Example: Reference

3

( MW )

1 2 0 6.25 150

1 3 0 12.5 400

1 4 0 12.5 150

2 3 0 12.5 150

3 4 0 12.5 150

4 5 0 10 1,000

 i j g


b
maxf 

1

2

4

5

6
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Five Bus Example 

• We evaluate U2,3 using the previous procedure
– Gradually increase generation at Bus 2 and load at Bus 3

• We consider the base case and the single contingency with line 2
outaged (between 1 and 3): J = 1

• Simulation results show for the base case that

• And for the contingency that

• Hence   ( ) (1)
2,3 2,3 2,3, 240U min U U MW= =

( )
2,3 450U MW=

(1)
2,3 24U MW=
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Five Bus: Maximum Base Case 
Transfer

Line 1

Line 2

Line 3

Line 6

Line 5

Line 4
slack

 1.050 pu

 55 MW

 71 MW

100 MW

150 MW

 1.040 pu

1.041 pu

A

MVA

A

MVA

1.041 pu

A

MVA

1.043 pu

 29 MW

MW200

258 MW

MW163

305 MW

100 MW

MW100

A

MVA

One Two

Three

Four

Five

100%
A

MVA

2,3
( ) 450U MW=
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Five Bus: Maximum Contingency 
Transfer

Line 1

Line 2

Line 3

Line 6

Line 5

Line 4
slack

 1.050 pu

 34 MW

 92 MW

100 MW

150 MW

 1.040 pu

1.036 pu

A

MVA

A

MVA

1.038 pu

A

MVA

1.040 pu

  8 MW

MW200

258 MW

MW142

284 MW

100 MW

MW100

One Two

Three

Four

Five

100%
A

MVA

2,3
(1) 24U MW=
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Computational Considerations

• Obviously such a brute force approach can run into computational issues 
with large systems 

• Consider the following situation:
– 10 iterations for each case
– 6,000 contingencies
– 2 seconds to solve each power flow

• It will take over 33 hours to compute a single UTC    for the specified 
transfer direction from m to n.

• Consequently, there is an acute need to develop fast tools that can provide 
satisfactory estimates
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Sensitivity Problem Formulation 

• Denote the system state by

• Denote the conditions corresponding to the existing 

commitment/dispatch  by s(0), p(0) and f(0) so that

• Define the angle difference as       

θ
x

V

 
 
 

@ 1 2θ [ , , , ]T
N  @

1 2V [ , , , ] T
NV V V@

( ) ( )

( ) ( )

g(x ,p ) 0

f h(x )

0 0

0 0

 =


=

the power flow equations

line real power flow vector

The V values
are the voltage
magnitudes

θ jk j k @
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Sensitivity Problem Formulation
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N
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=

 =   

g includes the real and reactive
power balance equations
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Sensitivity Problem Formulation

• For a small change, p, that moves the injection from p(0)  to p(0) + p , 
we have a  corresponding change in the state x with

• We then apply a first order Taylor’s series expansion 

( ) ( )g (x x, p) 00 0p    =

   
 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

x p

x p

g
g x x,p p g x ,p x

x

g
. . .

p

0 0

0 0

0 0 0 0

p h o t


  =  




  

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Sensitivity Problem Formulation

• We consider this to be a “small signal” change, so we can neglect the 
higher order terms (h.o.t.) in the expansion

• Hence we should still be satisfying the power balance equations with this 
perturbation; so 

   ( ) ( ) ( ) ( )x p x p

g g
x 0

x p0 0 0 0

p
 

   
 
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Sensitivity Problem Formulation

• Also, from the power flow equations, we obtain

g

p Ig
0p g

p

P

Q

 
     = =      
  

g g
g θ V J(x,p)
x g g

θ V

P P

Q Q

  
   = = 

   
   

and then just the power flow Jacobian
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Sensitivity Problem Formulation

• With the standard assumption that the power flow Jacobian is 
nonsingular, then

• We can then compute the change in the line real power flow vector 

0 0 1( ) ( ) I
x J(x ,p ) p

0

       
 

1( ) ( ) Ih h
f s (x ,p ) p

x x 0

T T
0 0J

                       
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Sensitivity Comments

• Sensitivities can easily be calculated even for large systems
– If p is sparse (just a few injections) then we can use a fast forward; if 

sensitivities on a subset of lines are desired, we could also use a fast backward

• Sensitivities are dependent upon the operating point
– They also include the impact of marginal losses

• Sensitivities could easily be expanded to include additional variables in 
x (such as phase shifter angle), or additional equations, such as reactive 
power flow 

19



Sensitivity Comments, cont.

• Sensitivities are used in the optimal power flow; in that context a 
common application is to determine the sensitivities of an 
overloaded line to injections at all the buses

• In the below equation, how could we quickly get these values?

– A useful reference is O. Alsac, J. Bright, M. Prais, B. Stott, “Further 
Developments in LP-Based Optimal Power Flow,” IEEE. Trans. on Power 
Systems, August 1990, pp. 697-711; especially see equation 3.

1( ) ( ) Ih h
f (x ,p ) p

x 0

T T
0 0f J

x

                       
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Sensitivity Example in PowerWorld

• Open case B5_DistFact and then Select Tools, Sensitivities, Flow 
and Voltage Sensitivities
– Select Single Meter, Multiple Transfers, Buses page

– Select the Device Type (Line/XFMR), Flow Type (MW), then select the line 
(from Bus 2 to Bus 3)

– Click Calculate Sensitivities; this shows impact of a single injection going to 
the slack bus (Bus 1)

– For our example of a transfer from 2 to 3 the value is the result we get for bus 
2 (0.5440) minus the result for bus 3 
(-0.1808) = 0.7248

– With a flow of 118 MW, we would hit the 150 MW limit 
with (150-118)/0.7248 =44.1MW, close to the limit we 
found of 45MW 21



Sensitivity Example in PowerWorld

• If we change the conditions to the anticipated maximum loading 
(changing the load at 2 from 118 to 118+44=162 MW) and we re-
evaluate the sensitivity we note it has changed little 
(from -0.7248 to -0.7241)
– Hence a linear approximation (at least for this scenario) could be justified

• With what we know so far, to handle the contingency situation, we 
would have to simulate the contingency, and reevaluate the sensitivity 
values
– We’ll be developing a quicker (but more approximate) approach next 
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Linearized Sensitivity Analysis

• By using the approximations from the fast decoupled power flow we can 
get sensitivity values that are independent of the current state.  That is, by 
using the B’ and B’’ matrices

• For the real power line flow we can approximate

   

 

2
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By using the FDPF appxomations
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Linearized Sensitivity Analysis

• Also, for each line 

and so, 

0

0
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
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Sensitivity Analysis: Recall the Matrix Notation

• The series admittance of line  is g +jb and we define

• We define the LN incidence matrix

 1 2B , , , Ldiag b b b @

1

2

a

a
A

a
L

T

T

T

 
 
 
 
 
  


@

where the component j of ai is nonzero 
whenever line i is coincident with node j. 
Hence A is quite sparse, with at most two 
nonzeros per row
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Linearized Active Power Flow Model

• Under these assumptions the change in the real power line flows 
are given as

• The constant matrix  
is called the injection shift factor matrix (ISF)

 
1

1
B 0 I

f B A 0 p B A B p Ψ p
0 B 0




   

     =  =            
 



  1Ψ B A B @
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Injection Shift Factors (ISFs)

• The element       in row  and column n of   is called the injection 
shift factor (ISF) of line  with respect to the injection at node n
– Absorbed at the slack bus, so it is slack bus dependent

• Terms generation shift factor (GSF) and load shift factor (LSF) are 
also used (such as by NERC)
– Same concept, just a variation in the sign whether it is a generator or a load

– Sometimes the associated element is not a single line, but rather a combination 
of lines (an interface)

• Terms used in North America are defined in the NERC glossary 
(http://www.nerc.com/files/glossary_of_terms.pdf) 

n 
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line 

np

n nf  

i j

slackbusp

ISF Interpretation

is the fraction of the additional 1 MW injection at
node n that goes though line 

+ 1

n 

slack 
node

1
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ISF Properties

• By definition,       depends on the location of the slack bus
• By definition,                      for             since the injection and  

withdrawal buses are identical in this case and, consequently, no 
flow arises on any line 

• The magnitude of       is at most 1 since

n 

1 1n  

slackbus 0 
  L

n 

Note, this is strictly true only for the linear (lossless) case. In the nonlinear 
case, it is possible that a transaction decreases losses.  Hence a 1 MW 
injection could change a line flow by more than 1 MW.
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Five Bus Example Reference

Line 1

Line 2

Line 3

Line 6

Line 5

Line 4
slack

 1.050 pu

 42 MW

 67 MW

100 MW

118 MW

 1.040 pu

1.042 pu

A

MVA

A

MVA

A

MVA

1.042 pu

A

MVA

1.044 pu

 33 MW

MW200

258 MW

MW118

260 MW

100 MW

MW100

A

MVA

One Two

Three

Four

Five
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Five Bus ISF, Line 4, Bus 2 (to Slack) 

Line 1

Line 2

Line 3

Line 6

Line 5

Line 4
slack

 1.050 pu

 52 MW

 63 MW

100 MW

128 MW

 1.040 pu

1.042 pu

A

MVA

A

MVA

1.042 pu

A

MVA

1.044 pu

 37 MW

MW200

238 MW

MW118

280 MW

100 MW

MW100

A

MVA

One Two

Three

Four

Five

 86%
A

MVA

4

2 128 118

20
0.5

 


=

l
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Five Bus Example

-1 0 0 0

0 -1 0 0

0 0 -1 0
A

1 -1 0 0

0 1 -1 0

0 0 1 -1

  =  

 
 
 
 
 
 
 
 
 
 
  

The row of A correspond to  the lines 
and transformers,  the columns 
correspond to the non-slack buses 
(buses 2 to 5); for each line there
is a 1 at one end, a -1 at the other end 
(hence an assumed sign convention!).   
Here we put a 1 for the lower 
numbered bus, so positive flow is 
assumed from the lower numbered bus 
to the higher number

 B 6.25, 12.5, 12.5, 12.5, 12.5, 10= diag
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Five Bus Example

18.75 12.5

12.5 37.5 12.5
B A B A

12.5 35 10

10 10

T

0 0

0
= =

0

0 0

 
  

 
  



  1

-0.4545 -0.1818 -0.0909 -0.0909

-0.3636 -0.5455 -0.2727 -0.2727

-0.1818 -0.2727 -0.6364 -0.6364

0.5455 -0.1818 -0.0909 -0.0909

0.1818 0.2727 -0.3636 -0.3636

-1.0000

B A B

0 0 0

  

 
 
 
 

= =  
 
 
 
 



With bus 1 as the slack, the buses (columns) go for 2 to 5
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Five Bus Example Comments

• At first glance the numerically determined value of (128-118)/20=0.5 
does not match closely with the analytic value of 0.5455; however, in 
doing the subtraction we are losing numeric accuracy
– Adding more digits helps (128.40 – 117.55)/20 = 0.5425

• The previous matrix derivation isn’t intended for actual computation; 
is a full matrix so we would seldom compute all of its values

• Sparse vector methods can be used if we are only interested in the ISFs 
for certain lines and certain buses
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Distribution Factors and Basic Transactions

• Various additional distribution factors may be defined 
– power transfer distribution factor (PTDF)

– line outage distribution factor (LODF)

– line addition distribution factor (LADF)
– outage transfer distribution factor (OTDF)

• These factors may be derived from the ISFs making judicious use of 
the superposition principle 

• A basic transaction involves the 
transfer of a specified amount of 
power t from an injection node m 
to a withdrawal node n

• A basic transaction: w = (m,n,t)
35
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Definition: PTDF

• NERC defines a PTDF as 
– “In the pre-contingency configuration of a system under study, a measure of the 

responsiveness or change in electrical loadings on transmission system Facilities due 
to a change in electric power transfer from one area to another, expressed in percent 
(up to 100%) of the change in power transfer”

– Transaction dependent

• We’ll use the notation          to indicate the PTDF on line  with respect to 
basic transaction w

• In the lossless formulation presented here (and commonly used) it is slack 
bus independent

( )w 

36



PTDFs

line 

nf
i j

t

m

t

f  

t+ t+

( )w f

t






 @ Note, the PTDF is independent of the amount t; 

which is often expressed as a percent
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line 

nf
i j

t

m

t

0

PTDF Evaluation

+ 1 + 1

m 
n 

1 1

( )w m n  =   

Defined in terms of
the injection shift
factors (ISFs); 
the slack  bus 
dependence in
each cancels out

The PTDFs to the
slack bus are the 
ISFs
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Calculating PTDFs in PowerWorld

• PowerWorld provides a number of options for calculating and 
visualizing PTDFs
– Select Tools, Sensitivities, Power Transfer Distribution Factors (PTDFs)

Results are shown for the 
five bus case for the 
Bus 2 to Bus 3 transaction

There is a button to 
visualize the PTDFs
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Five Bus PTDF Visualization

Line 1

Line 2

Line 3

Line 6

Line 5

Line 4
slack

 1.050 pu

 52 MW

 63 MW

100 MW

128 MW

 1.040 pu

1.042 pu

  9%
PTDF

 27%
PTDF

 73%
PTDF

1.042 pu

  9%
PTDF

1.044 pu

 37 MW

MW200

238 MW

MW118

280 MW

100 MW

MW100

 18%
PTDF

One Two

Three

Four

Five

PowerWorld Case: 
B5_DistFact_PTDF
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Nine Bus PTDF Example

s lack

 43%
PTDF

 57%
PTDF

 13%
PTDF

 30%
PTDF

 35%
PTDF

 20%
PTDF

 10%
PTDF

  2%
PTDF

 34%
PTDF

 34%
PTDF

 32%
PTDF

A

G

B

C

D

E

I

F

H

 34%
PTDF

MW 400.0 MW 400.0 MW 300.0

MW 250.0

MW 250.0

MW 200.0

MW 250.0

MW 150.0

  50.0 MW

PowerWorld Case: 
B9_PTDF

Display shows the PTDFs
for a basic transaction
from Bus A to Bus I.  
Note that 100% of the 
transaction leaves Bus A
and 100% arrives at Bus I
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Eastern Interconnect Example: Wisconsin Utility 
to TVA PTDFs

In this example 
multiple generators
contribute for both 
the seller and the buyer 

Contours show lines 
that would carry at 
least 2% of a power 
transfer from 
Wisconsin to TVA
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