ECEN 615 Methods of Electric Power Systems Analysis

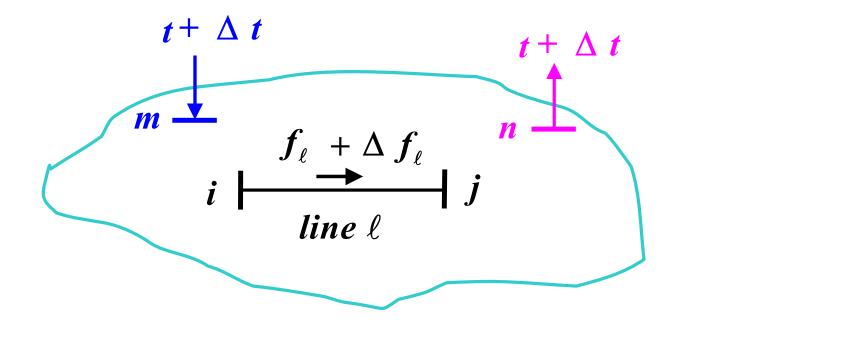
Lecture 14: Power Flow Sensitivities, August 14, 2003 Blackout

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University <u>overbye@tamu.edu</u>

Announcements

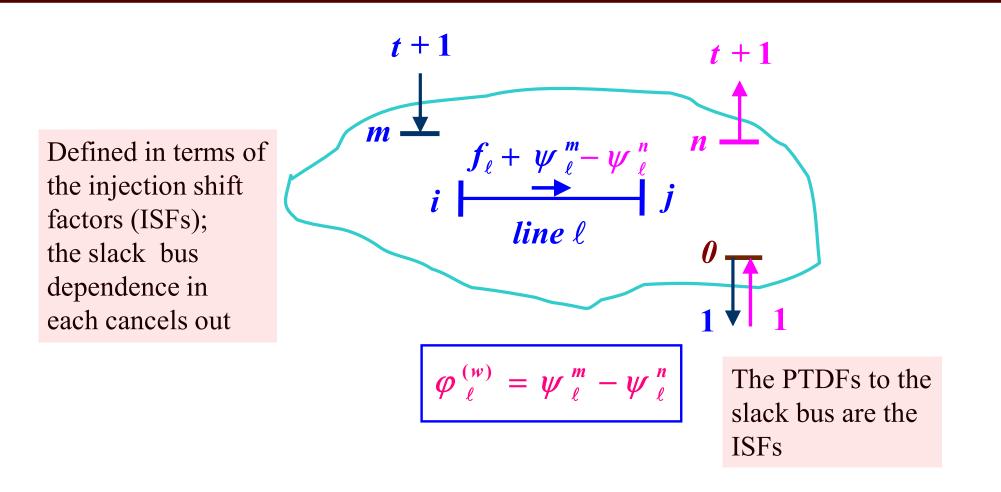
• Read Chapter 7

1


Definition: PTDF

- NERC defines a PTDF as
 - "In the pre-contingency configuration of a system under study, a measure of the responsiveness or change in electrical loadings on transmission system Facilities due to a change in electric power transfer from one area to another, expressed in percent (up to 100%) of the change in power transfer"
 - Transaction dependent
- We'll use the notation $\varphi_{\ell}^{(w)}$ to indicate the PTDF on line \mathbb{P} with respect to basic transaction w
- In the lossless formulation presented here (and commonly used) it is slack bus independent

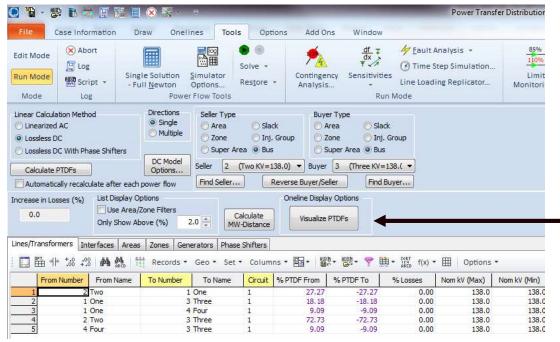
PTDFs



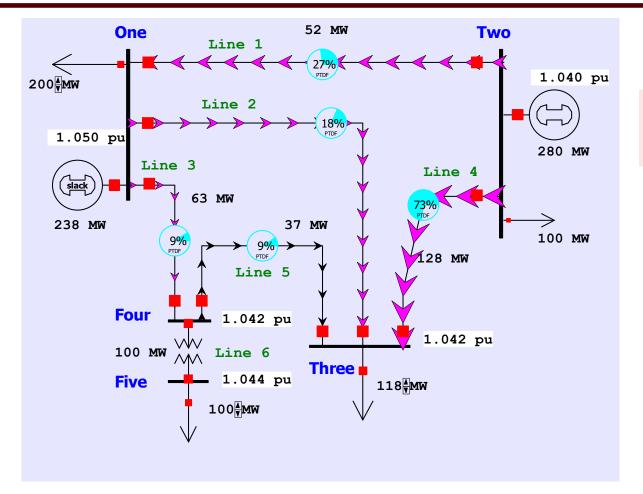
$$\varphi_{\ell}^{(w)} \otimes \frac{\Delta f_{\ell}}{\Delta t}$$

Note, the PTDF is independent of the amount Δt ; which is often expressed as a percent

PTDF Evaluation



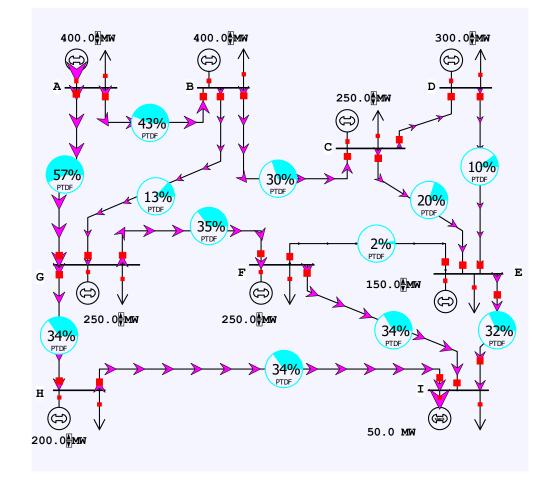
Calculating PTDFs in PowerWorld


- PowerWorld provides a number of options for calculating and visualizing PTDFs
 - Select Tools, Sensitivities, Power Transfer Distribution Factors (PTDFs)

Results are shown for the five bus case for the Bus 2 to Bus 3 transaction

There is a button to visualize the PTDFs

Five Bus PTDF Visualization

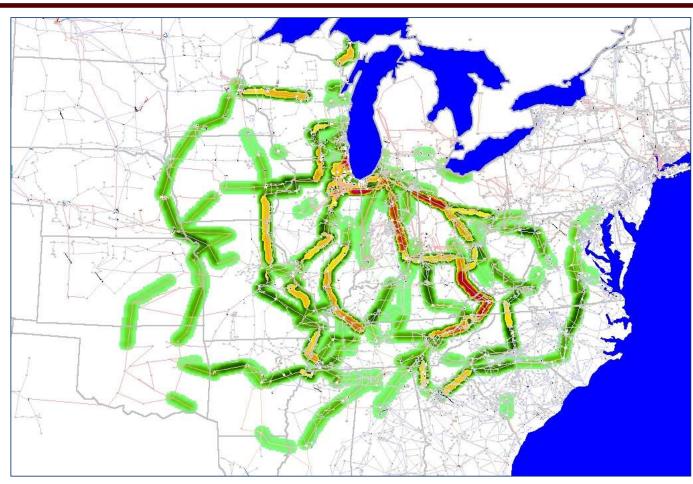


PowerWorld Case: B5_DistFact_PTDF

М

6

Nine Bus PTDF Example


Display shows the PTDFs for a basic transaction from Bus A to Bus I. Note that 100% of the transaction leaves Bus A and 100% arrives at Bus I

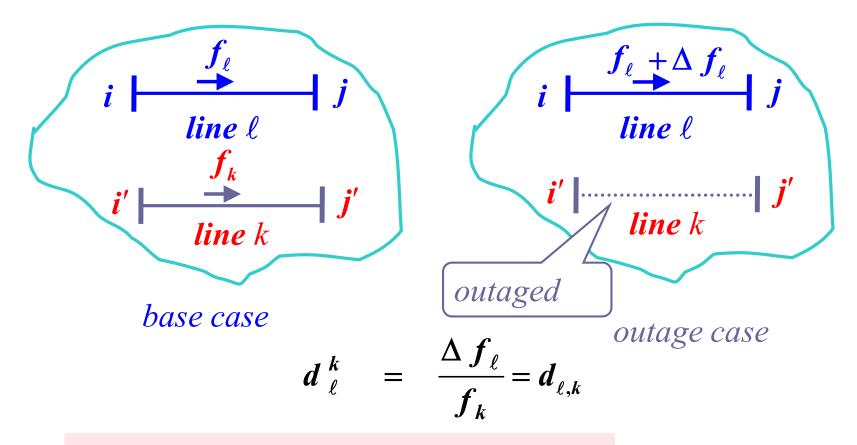
PowerWorld Case: **B9_PTDF**

7

Eastern Interconnect Example: Wisconsin Utility to TVA PTDFs

In this example multiple generators contribute for both the seller and the buyer

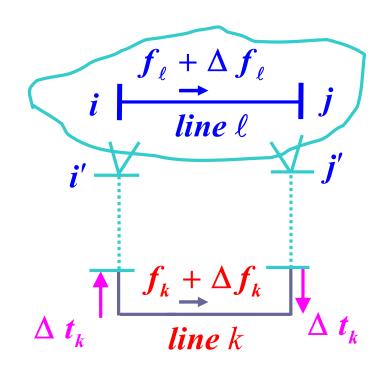
Contours show lines that would carry at least 2% of a power transfer from Wisconsin to TVA ĀМ


Line Outage Distribution Factors (LODFs)

- Power system operation is practically always limited by contingencies, with line outages comprising a large number of the contingencies
- Desire is to determine the impact of a line outage (either a transmission line or a transformer) on other system real power flows without having to explicitly solve the power flow for the contingency
- These values are provided by the LODFs
- The LODF d_{ℓ}^{k} is the percentage of the pre-outage real power line flow on line k that is redistributed to line \mathbb{P} as a result of the outage of line k

LODFs

Best reference is Chapter 7 of the course book


10

LODF Evaluation

11

We simulate the impact of the outage of line k by adding the basic transaction $w_k = \{i', j', \Delta t_k\}$

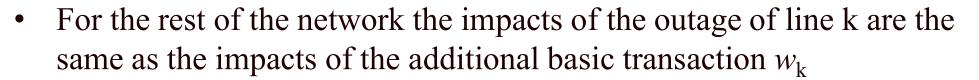
and selecting Δt_k in such a way that the flows on the dashed lines become exactly zero

In general this Δt_k is not equal to the original line flow

LODF Evaluation

$$f_k + \Delta f_k - \Delta t_k = \theta$$

where Δf_k is the active power flow change on the line k due to the transaction w_k


• The line k flow from basic transaction w_k depends on its PTDF

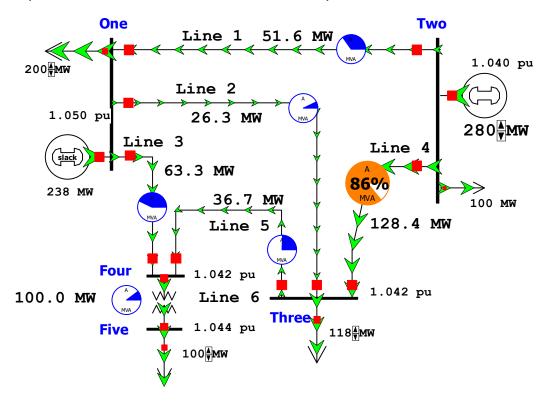
 $\Delta f_k = \varphi \, {}^{(w_k)}_k \Delta t_k$

$$\Delta t_{k} = \frac{f_{k}}{1 - \varphi_{k}^{(w_{k})}} = \frac{f_{k}}{1 - (\psi_{k}^{i'} - \psi_{k}^{j'})}$$

LODF Evaluation

$$\Rightarrow \Delta f_{\ell} = \varphi_{\ell}^{(w_k)} \Delta t_k = \frac{\varphi_{\ell}^{(w_k)}}{1 - \varphi_k^{(w_k)}} f_k$$

• Therefore, by definition the LODF is


$$d_{\ell}^{k} = \frac{\Delta f_{\ell}}{f_{k}} = \frac{\varphi_{\ell}^{(w_{k})}}{1 - \varphi_{k}^{(w_{k})}} \qquad \begin{array}{l} \text{Recall that } k \text{ is the line} \\ \text{being outaged} \end{array}$$

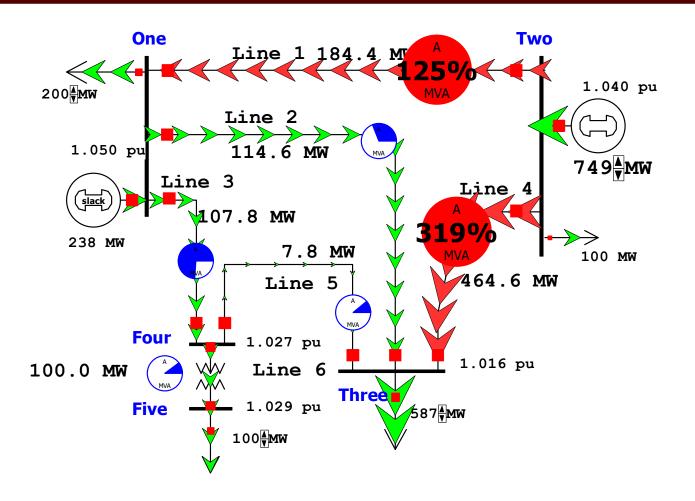
Five Bus Example

• Assume we wish to calculate the values for the outage of line 4 (between buses 2 and 3); this is line *k*

Say we wish to know the change in flow on the line 3 (Buses 3 to 4). PTDFs for a transaction from 2 to 3 are 0.7273 on line 4 and 0.0909 on line 3

PowerWorld Case: B5_DistFact_LODF

Five Bus Example


• Hence we get

$$\Delta t_{k} = \frac{f_{k}}{1 - \varphi_{k}^{(w_{k})}} = \frac{128}{1 - 0.7273} = 469.4$$

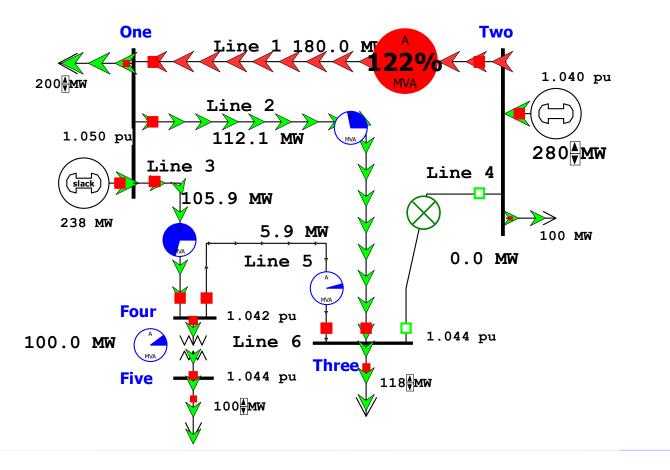
$$d_{3}^{4} = \frac{\Delta f_{3}}{f_{4}} = \frac{\varphi_{3}^{(w_{4})}}{1 - \varphi_{4}^{(w_{4})}} = \frac{0.0909}{1 - 0.7273} = 0.333$$

$$\Delta f_{3} = (0.333) f_{4} = 0.333 \times 128 = 42.66 \,\mathrm{MW}$$

Five Bus Example Compensated

Here is the system with the compensation added to Bus 2 and removed at Bus 3; we are canceling the impact of the Line 4 flow for the reset of the network.

Ă M


16

Five Bus Example

17

• Below is the network with the line actually outaged

The Line 3 flow changed from 63 MW to 106 MW, an increase of 43 MW, matching the LODF value

Developing a Critical Eye

• In looking at the below formula you need to be thinking about what conditions will cause the formula to fail

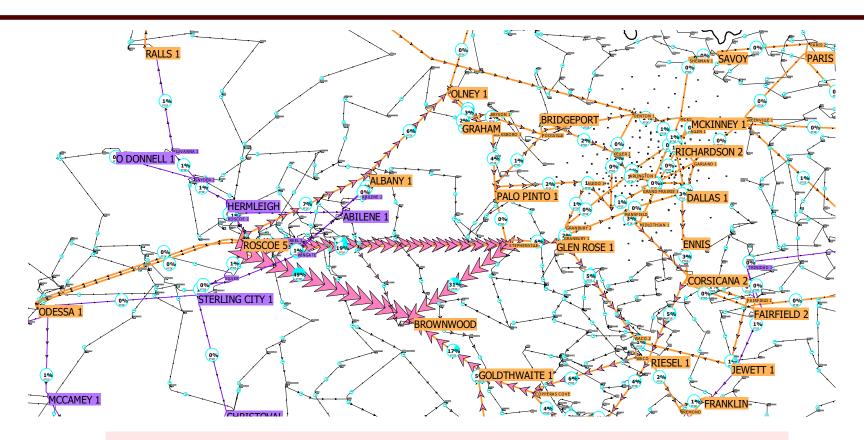
$$\Rightarrow \Delta f_{\ell} = \varphi_{\ell}^{(w_k)} \Delta t_k = \frac{\varphi_{\ell}^{(w_k)}}{1 - \varphi_k^{(w_k)}} f_k$$

Here the obvious situation is when the denominator is zero

- That corresponds to a situation in which the contingency causes system islanding
 - An example is line 6 (between buses 4 and 5)
 - Impact modeled by injections at the buses within each viable island

Calculating LODFs in PowerWorld

- Select Tools, Sensitivities, Line Outage Distribution Factors
 - Select the Line using the dialogs on the right, and click
 - Calculate LODFs;


the image shows
values for Line 4
for the
B5_DistFact_LODF
case

de 🔀 Abort Log Log Log	Solve Power Sim Flow - <u>N</u> ewton Op	Nulator Voltage otions Conditionir Power Flow Tools	Solve ~ Res <u>t</u> ore ~	Contingence Analysis	y CTG Combo Analysis	RAS + CTG Run Mode	🕜 Time St	ep Simulation	imit Difference nitoring Case ♥	Scale Case Other Tools
Line Outage Distr	ibution Factors (LOI	DFs)							- 🗆 X	
utput Option	Linear Calculat	tion Method	▼ Sort by	⊖Name ⊚	Number					
) Single LODF	◯ Linearized	AC								
LODF Matrix				Sea	arch For Near Bus			Select Far Bus, CKT	6	
ction Outage Sensitivities		1		1 (One) [138.0 kV] 1 (One) [138.0 kV] CKT 1						
Closure Sensitivities		2 With Phase Shifters		[138.0 kV]) [138.0 kV]		3	(Three) [138.0 k	V] CKT 1		
e Closure Options				[138.0 kV]						TA
ie Status			5 (Five)	[34.50 kV]						100
Calculate based on Calculate LODFs) .ODF Calculation del Options								
DFs Interface LODF	s	Records • Geo •	Set + Columns +			f(X) ▼ Ⅲ Options	•			
From Num	1	To Number	To Name	Circuit	% LODF	MW From	MW To	CTG MW From	CTG MW To	L
	2 Two	1	One	1	100.0	51.6	-51.6	180.0	-180.0	
1	1 One	3	Three	1	66.7	26.3	-26.3	111.9	-111.9	
1 2	1 One		Four	1	33.3	63.3	-63.3	106.1	-106.1	A
1 2 3	1 One	4				128.4	-128.4	0.0	0.0	
	1 One 2 Two	3	Three	1	-100.0					DGO
	1 One	3	Three Three Four	1	-100.0 33.3 0.0	-36.7	36.7	6.1 -100.0	-6.1 100.0	86%

2000 Bus LODF Example

· 🍄 🖪 🛱 🖉 🛱	the second se				ECEN61	15_2K_HW2 - Case: ECEN6	i15_2K_HW2.pwb_Statu	us: Initialized Simulator a	22	
Log	Oraw Onelines Tools Ove Power Simulator Ove Newton Options Power Flow Tools		CTG Combo RAS - Analysis Case	+ CTG Sensi	fr ∓ 47 Eault Analysis itivities ↓ Line Loading Rep	nulation		Model Explorer cools	Other v Equivalencing Modify Case v Renumber v Edit Mode	
Line Outage Distrit	Dution Factors (LODFs)	▼ Sort I	oy 🔿 Name 🛛 💿 Numb	ar						
Single LODF	C Linearized AC	3048								
) LODF Matrix Action	Lossiess DC				Search Fo	or Near Bus		1000		St
Outage Sensitivities Closure Sensitivities	O Lossless DC With Phase Shit	fters 3042 ((SILVER 0) [230.0 kV] (SILVER 1) [115.0 kV] (SILVER 2) [13.80 kV]					^	1079 (ODESSA 1 8) [500.0 k/ 1079 (ODESSA 1 8) [500.0 k/ 3046 (ROSCOE 5 0) [230.0 k/) скт 2 V) скт 1
ine Closure Options			(SILVER 3) [13.80 kV] (SILVER 4) [13.80 kV]						3046 (ROSCOE 5 0) [230.0 kl 5045 (STEPHENVILLE 0) [500	
ine Status		3046	(ROSCOE 5 0) [230.0 kV (ROSCOE 5 1) [115.0 kV						5045 (STEPHENVILLE 0) [500 5120 (BROWNWOOD 0) [500	.(
Calculate based on pr Calculate based on pr Calculate LODFs		3049 (3050 (3051 ((ROSCOE 5 2) [500.0 kV (ANSON 0) [115.0 kV] (DEL RIO 0) [230.0 kV] (DEL RIO 1) [115.0 kV]						5394 (ALBANY 1 0) [500.0 kV	LODF is for line
	Auvanced CODF Calculation.		(HUNT 0) [115.0 kV]							batwaan 2018 and
	DC Model Options	3053						~		between 3048 and
	DC Model Options	3052 3053 3054	(HUNT 0) [115.0 kV] (WINGATE 0) [230.0 kV] (WINGATE 1) [115.0 kV]	► 6441 _ 508T				~		
8:*** 🖽 🗖 🛄	DC Model Options ce LODFs (filtered) +00 ∰ ∰ ==== Records ∓ Ge	00521 3053 3054 2054	(HUNT 0) [115.0 kV] (WINGATE 0) [230.0 kV] (WINGATE 1) [115.0 kV]	♥ ∰ • ﷺ		MW From	MW To	CTG MW/ From		5120; values will
	DC Model Options ce LODFs (filtered) +00 ∰ ∰ ==== Records ∓ Ge	3052 3053 3054	(HUNT 0) [115.0 kV] (WINGATE 0) [230.0 kV] (WINGATE 1) [115.0 kV]	❤ 曲 ≁ 瀧 Circuit	, f(i) • ⊞ Options • % LODF ▼	MW From	MW To	CTG MW From	CTG MW To	5120; values will
□ □ □ * ** ::8	DC Model Options ce LODFs (filtered) +00 ∰ ∰ ==== Records ∓ Ge	1007 Set 7 Columns	(HUNT 0) [115.0 kV] (WINGATE 0) [230.0 kV] (WINGATE 1) [115.0 kV]	Circuit		MW From -761.3	MW To 764.8	CTG MW From -666.7	CTG MW To 670.2	
□ □ □ * ** ::8	DC Model Options ce LODFs (filtered) 	3053 3053 3054 2057 Set + Columns To Number 5239	(HUNT 0) [115.0 KV] (WINGATE 0) [230.0 KV] (WINGATE 1) [115.0 KV] (WINGATE 1) [115.0 KV] (WINGATE 1) [115.0 KV] (WINGATE 1) [115.0 KV]	Circuit	% LODF				670.2 79.3	5120; values will be proportional to the
□ □ □ ** t:8	DC Model Options ce LODFs (filtered) 	3053 3053 3054 to * Set * Columns To Number 5239 5394 5388	(YUINGATE 0) [115.0 kV] (WINGATE 0) [230.0 kV] (WINGATE 1) [115.0 kV] (WINGATE 1) [115.0 kV] To Name GOLDTHWAITE 1 ALBANY 1 0 WACO 2 0	Circuit	% LODF ▼1 21.2 14.6 -12.3	-761.3 -144.5 535.0	764.8 144.7 -534.5	-666.7 -79.1 480.3	670.2 79.3 -479.7	5120; values will be proportional to the
	DC Model Options ce LODFs (filtered) 	3033 (3053) 3054 3054 To Number 5239 5394 5388 5394	(vuringarte 0) [230.0 kv] (wiringarte 0) [230.0 kv] (wiringarte 1) [115.0 kv] (wiringarte 1) [115.0 kv] To Name GOLDTHWAITE 1 ALBANY 1 0 WACO 2 0 ALBANY 1 0	Circuit 1 1 1 1 1	% LODF ▼ 21.2 14.6 -12.3 -12.2	-761.3 -144.5 535.0 -759.0	764.8 144.7 -534.5 765.7	-666.7 -79.1 480.3 -813.6	670.2 79.3 -479.7 820.3	5120; values will be proportional to the PTDF values; case is
■ ■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	DC Model Options ce LODFs (filtered)	0000 0000 00000 000	(vUINGATE 0) [230.0 kV] (VUINGATE 0) [230.0 kV] (VUINGATE 1) [115.0 kV] (VUINGATE 1) [115.0 kV] TO Name GOLDTHWAITE 1 ALBANY 1 0 WACO 2 0 ALBANY 1 0 COPPERAS COVE	Circuit 1 1 1 1 1 1 1 1	% LODF 21.2 14.6 -12.3 -12.2 12.0	-761.3 -144.5 535.0 -759.0 -679.5	764.8 144.7 -534.5 765.7 684.5	-666.7 -79.1 480.3 -813.6 -625.7	670.2 79.3 -479.7 820.3 630.7	5120; values will be proportional to the PTDF values; case is
E ■ H * * * * * * * * * * * * * * * * * *	DC Model Options ce LODFs (filtered) Ce LODFs (filtered) Ce LODFs (filtered) From Name S451 COPPERAS COVE 3048 ROSCOE 5 2 5137 WACO 1 0 5236 OLNEY 1 0 5137 WACO 1 0 5260 GLEN ROSE 1 0	0000 0053 0053 0054 0055	(WINGATE 0) [215.0 kV] (WINGATE 0) [230.0 kV] (WINGATE 1) [115.0 kV] (WINGATE 1) [115.0 kV] TO Name GOLDTHWAITE 1 ALBANY 1 0 WACO 2 0 ALBANY 1 0 COPPERAS COVE STEPHENVILLE 0 10	Circuit 1 1 1 1 1 1 1 1 1 1	% LODF ▼ 21.2 14.6 -12.3 -12.2 12.0 -11.5	-761.3 -144.5 535.0 -759.0 -679.5 -1646.6	764.8 144.7 -534.5 765.7 684.5 1659.6	-666.7 -79.1 480.3 -813.6 -625.7 -1698.2	670.2 79.3 -479.7 820.3 630.7 1711.1	5120; values will be proportional to the
E ■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	DC Model Options ce LODFs (filtered) +% ♣ +% ♣ # ♣ # ♣ # ♣ # ♣ # ♣ # ♣ # ♣ # ♣ # ₽ # ₽ # ♣ # ₽	3053 3053 3053 3054 To Number 5239 5394 5388 5394 5388 5394 5451 5045 6210	(WINGATE 0) [215.0 kV] (WINGATE 0) [230.0 kV] (WINGATE 1) [115.0 kV] (WINGATE 1) [115.0 kV] * 🖼 * (ﷺ * To Name GOLDTHWAITE 1 ALBANY 1 0 WACO 2 0 ALBANY 1 0 COPPERAS COVE STEPHENVILLE 0 MARBLE FALLS 2	Circuit 1 1 1 1 1 1 1 1 1 1 1 1 1	% LODF ▼ 21.2 14.6 -12.3 -12.2 12.0 -11.5 -10.5	-761.3 -144.5 535.0 -759.0 -679.5 -1646.6 -791.1	764.8 144.7 -534.5 765.7 684.5 1659.6 798.2	-666.7 -79.1 480.3 -813.6 -625.7 -1698.2 -837.8	670.2 79.3 -479.7 820.3 630.7 1711.1 844.9	5120; values will be proportional to the PTDF values; case is
■ ■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	DC Model Options ce LODFs (filtered) +% # #% # # #	5239 5394 5239 5394 5384 5384 5384 5384 5394 5451 5045 6210 5179	HUNT 0) [115.0 kV] (WINGATE 0) [230.0 kV] (WINGATE 1) [115.0 kV] WINGATE 1) [115.0 kV] TO Name GOLDTHWAITE 1 ALBANY 1 0 WACO 2 0 ALBANY 1 0 COPPERAS COVE STEPHENVILLE 0 MARBLE FALLS 2 CORSICANA 2 0 10	Circuit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% LODF ▼ 21.2 14.6 -12.3 -12.2 12.0 -11.5 -10.5 -10.1	-761.3 -144.5 535.0 -759.0 -679.5 -1646.6 -791.1 1317.1	764.8 144.7 -534.5 765.7 684.5 1659.6 798.2 -1308.4	-666.7 -79.1 480.3 -813.6 -625.7 -1698.2 -837.8 1271.8	670.2 79.3 -479.7 820.3 630.7 1711.1 844.9 -1263.1	5120; values will be proportional to the PTDF values; case is
6 7 8 9 10 11 12	DC Model Options ce LODFs (filtered) +% ♣ +% ♣ # ♣ # ♣ # ♣ # ♣ # ♣ # ♣ # ♣ # ♣ # ₽ # ₽ # ♣ # ₽	5239 5394 5394 5394 5394 5394 5394 5394 53	(WINGATE 0) [215.0 kV] (WINGATE 0) [230.0 kV] (WINGATE 1) [115.0 kV] (WINGATE 1) [115.0 kV] * 🖼 * (ﷺ * To Name GOLDTHWAITE 1 ALBANY 1 0 WACO 2 0 ALBANY 1 0 COPPERAS COVE STEPHENVILLE 0 MARBLE FALLS 2	Circuit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% LODF ▼ 21.2 14.6 -12.3 -12.2 12.0 -11.5 -10.5	-761.3 -144.5 535.0 -759.0 -679.5 -1646.6 -791.1	764.8 144.7 -534.5 765.7 684.5 1659.6 798.2	-666.7 -79.1 480.3 -813.6 -625.7 -1698.2 -837.8	670.2 79.3 -479.7 820.3 630.7 1711.1 844.9	5120; values will be proportional to the PTDF values; case is

2000 Bus LODF Example

ĀМ

21

Image visualizes the PTDFs between buses 3048 and 5120

- LODFs can also be used to represent multiple device contingencies, but it is usually more involved than just adding the effects of the single device LODFs
- Assume a simultaneous outage of lines k₁ and k₂
- Now setup two transactions, w_{k1} (with value Δt_{k1}) and w_{k2} (with value Δt_{k2}) so

$$f_{k1} + \Delta f_{k1} + \Delta f_{k2} - \Delta t_{k1} = 0$$

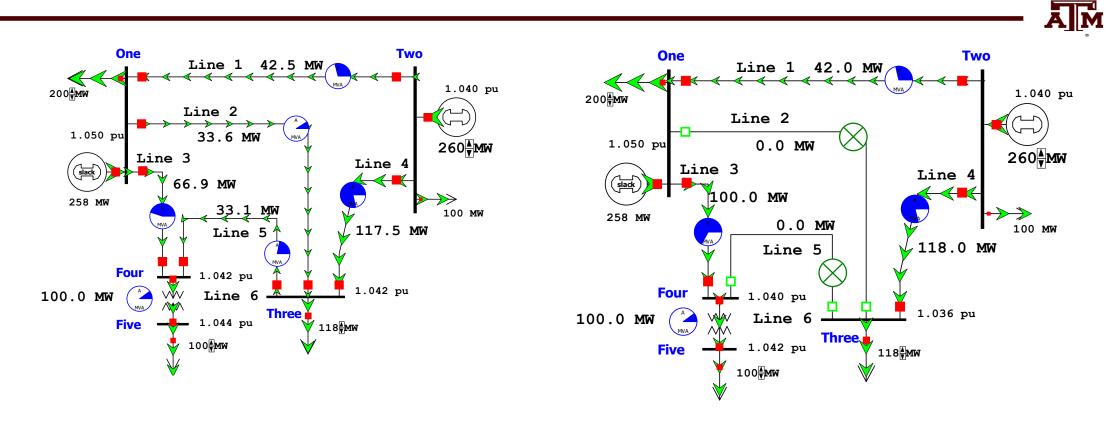
$$f_{k2} + \Delta f_{k1} + \Delta f_{k2} - \Delta t_{k2} = 0$$

$$f_{k1} + \varphi_{k1}^{(w_{k1})} \Delta t_{k1} + \varphi_{k1}^{(w_{k2})} \Delta t_{k2} - \Delta t_{k1} = 0$$

$$f_{k2} + \varphi_{k2}^{(w_{k1})} \Delta t_{k1} + \varphi_{k2}^{(w_{k2})} \Delta t_{k1} - \Delta t_{k2} = 0$$

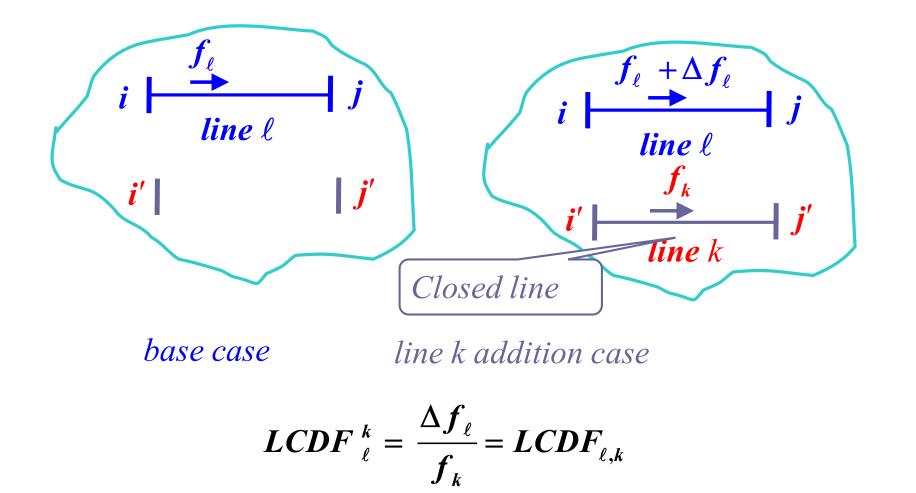
- Hence we can calculate the simultaneous impact of multiple outages; details for the derivation are given in
 C. Davis, T.J. Overbye, "Linear Analysis of Multiple Outage Interaction," *Proc. 42nd HICSS*, 2009
- Equation for the change in flow on line 🛛 for the outage of lines k₁ and k₂ is

$$\Delta f_{\ell} = \begin{bmatrix} d_{\ell}^{k_1} & d_{\ell}^{k_2} \end{bmatrix} \begin{bmatrix} 1 & -d_{k_1}^{k_2} \\ -d_{k_2}^{k_1} & 1 \end{bmatrix}^{-1} \begin{bmatrix} f_{k_1} \\ f_{k_2} \end{bmatrix}$$



• Example: Earlier five bus case, outage of Lines 2 and 5 to flow on Line 4.

$$\Delta f_{\ell} = \begin{bmatrix} d_{\ell}^{k_1} & d_{\ell}^{k_2} \end{bmatrix} \begin{bmatrix} 1 & -d_{k_1}^{k_2} \\ -d_{k_2}^{k_1} & 1 \end{bmatrix}^{-1} \begin{bmatrix} f_{k_1} \\ f_{k_2} \end{bmatrix}$$


$$\Delta f_{\ell} = \begin{bmatrix} 0.4 & 0.25 \end{bmatrix} \begin{bmatrix} 1 & -0.75 \\ -0.6 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.336 \\ -0.331 \end{bmatrix} = 0.005$$

A M

Line 4 flow goes from 117.5 MW to 118.0 MW

Line Closure Distribution Factors (LCDFs)

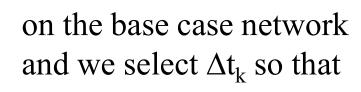
26

ĀМ

LCDF Definition

- The line closure distribution factor (LCDF), LCDF_{□,k}, for the closure of line k (or its addition if it does not already exist) is the portion of the line active power flow on line k that is distributed to line □ due to the closure of line k
- Since line k is currently open, the obvious question is, "what flow on line k?"
- Answer (in a dc power flow sense) is the flow that will occur when the line is closed (which we do not know)

LCDF Evaluation


• We simulate the impact of the closure of line k by imposing the additional basic transaction

 $w_k = \left\{ i', j', \Delta t_k \right\}$

i

 $f_{\ell} + \Delta \overline{f_{\ell}}$

line l

$$\Delta t_k = -f_k$$

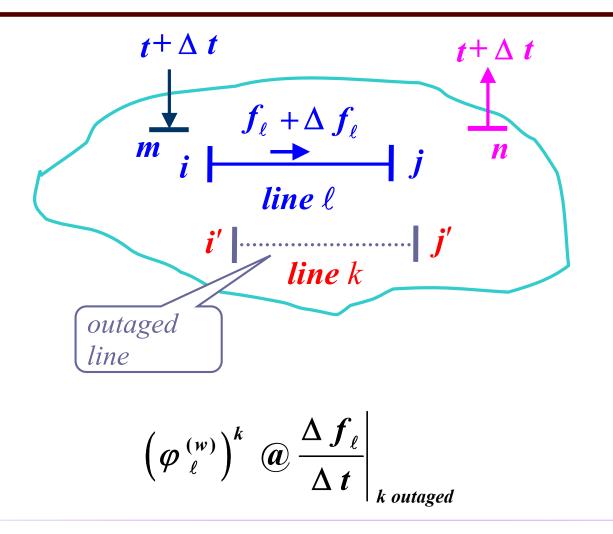
LCDF Evaluation

- For the other parts of the network, the impacts of the addition of line k are the same as the impacts of adding the basic transaction w_k $\Delta f_{\ell} = \varphi_{\ell}^{(w_k)} \Delta t_k = -\varphi_{\ell}^{(w_k)} f_k$
- Therefore, the definition is

$$LCDF_{\ell,k} = \frac{\Delta f_{\ell}}{f_k} = -\varphi_{\ell}^{(w_k)}$$

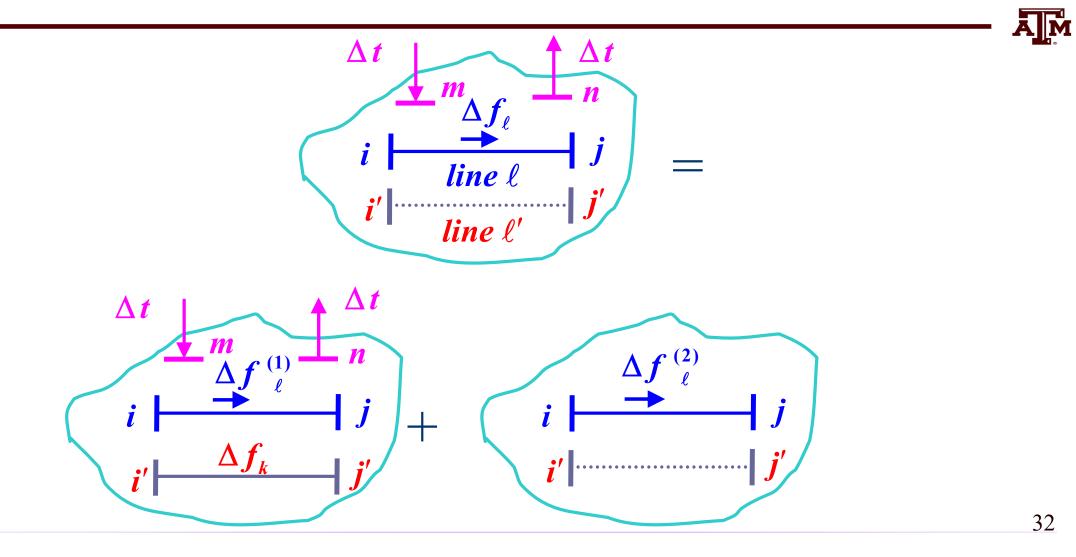
• The post-closure flow f_k is determined (in a dc power flow sense) as the flow that would occur from the angle difference divided by $(1 + \varphi_k^{(w_k)})$

Outage Transfer Distribution Factor



- The outage transfer distribution factor (OTDF) is defined as the PTDF with the line k outaged
- The OTDF applies only to the post-contingency configuration of the system since its evaluation explicitly considers the line k outage

$$\left(\varphi_{\ell}^{(w)} \right)^k$$


• This is a quite important value since power system operation is usually contingency constrained

Outage Transfer Distribution Factor (OTDF)

ĀM

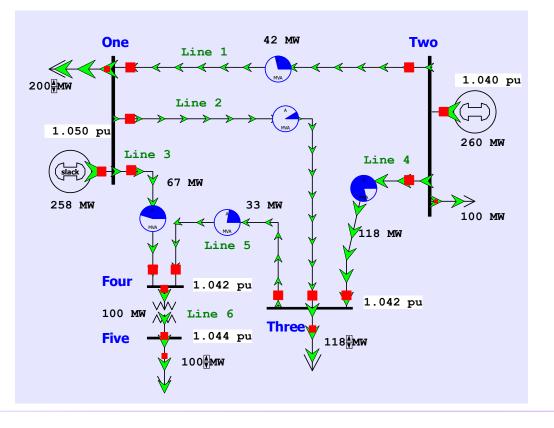
OTDF Evaluation

OTDF Evaluation

• Since $\Delta f_{\ell}^{(1)} = \varphi_{\ell}^{(w)} \Delta t$

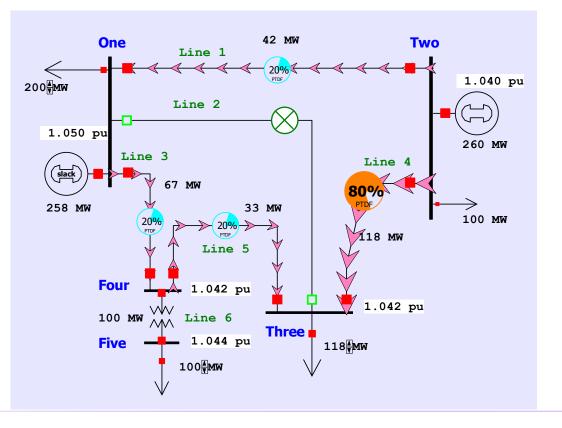
and
$$\Delta f_k = \varphi_k^{(w)} \Delta t$$

then $\Delta f_\ell^{(2)} = d_\ell^k \Delta f_k = d_\ell^k \varphi_k^{(w)} \Delta t$

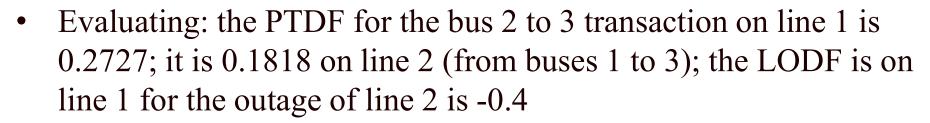

so that

$$\Delta f_{\ell} = \Delta f_{\ell}^{(1)} + \Delta f_{\ell}^{(2)} = \left[\varphi_{\ell}^{(w)} + d_{\ell}^{k} \varphi_{k}^{(w)} \right] \Delta t$$
$$\left(\varphi_{\ell}^{(w)} \right)^{k} = \varphi_{\ell}^{(w)} + d_{\ell}^{k} \varphi_{k}^{(w)}$$

Five Bus Example


• Say we would like to know the PTDF on line 1 for a transaction between buses 2 and 3 with line 2 out

Five Bus Example



• Hence we want to calculate these values without having to explicitly outage line 2

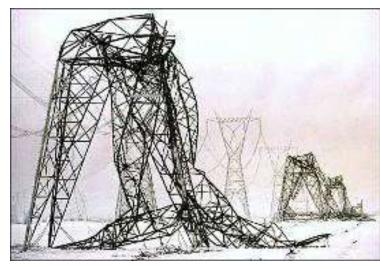
Hence the value we are looking for is 0.2 (20%)

Five Bus Example

• Hence

$$\left(\varphi_{\ell}^{(w)}\right)^{k} = \varphi_{\ell}^{(w)} + d_{\ell}^{k} \varphi_{k}^{(w)}$$

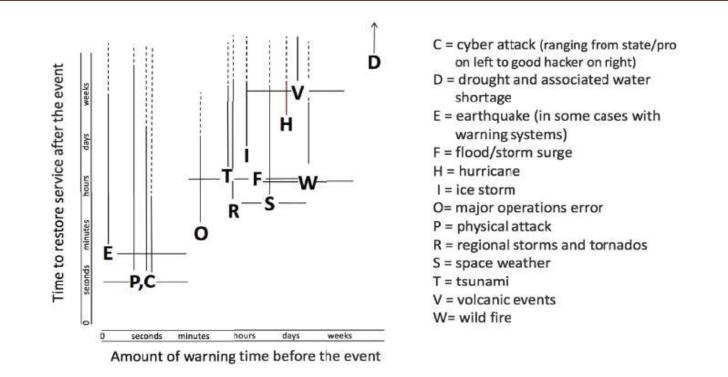
0.2727 + (-0.4)×(0.1818) = 0.200


• For line 4 (buses 2 to 3) the value is

 $0.7273 + (0.4) \times (0.1818) = 0.800$

Blackouts

- Blackouts are costly, with some estimates of costs above \$100 billion per year.
- But blackouts are not created equal. Some are unavoidable due to large scale system damage (hurricanes, tornados and ice storms). Most are local, distribution issues.



More than 200 transmission towers damaged or destroyed

Right image source: entergynewsroom.com (Hurricane Laura damage)

Some Electric Grid Risks

FIGURE 3.1 Mapping of events that can cause disruption of power systems. The horizontal placement provides some indication of how much warning time there may be before the event. The vertical axis provides some indication of how long it may take to recover after the event. Lines provide a representation

Image Source: Enhancing the Resilience of the Nation's Electricity System, US National Academies Press, 2017

The Real Cause of Most Blackouts!

ĀМ

Image source: publicpower.org

Photo source: http://save-the-squirrels.com

High-Impact, Low-Frequency Events

- In order to enhance electric grid resiliency, we need to consider the almost unthinkable events
- These include what the North American Electric Reliability Corporation (NERC) calls High-Impact, Low-Frequency Events
 (HILFs); others call them black sky days

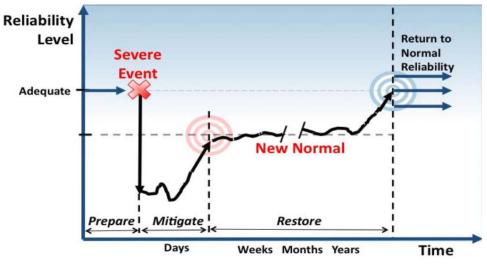


Image Source: NERC, 2012

- Large-scale, potentially long duration blackouts
- HILFs identified by NERC were 1) a coordinated cyber, physical or blended attacks,
 2) pandemics, 3) geomagnetic disturbances (GMDs), and 4) HEMPs

Avoidable Transmission Level Blackouts

- Many major blackouts can be prevented.
- Time frames of the blackouts, minutes to hours, allow for human intervention
 - Tokyo 1987 (20 minutes), WECC 1996 (six minutes), Eastern Interconnect 2003 (about an hour), Italy 2003 (25 minutes), India 2012 (affecting 600 million people), South America (2019)
- And of course many are prevented, and hence do not make the news. For example, near voltage collapse in Delmarva Peninsula, 1999.
- The 2021 Texas event, which we'll cover later, was caused by a generator capacity shortage not the transmission system

41

Going Back in Time

- The August 14th 2003 blackout is rapidly moving from being a "recent event" into history; yet it still has much to teach us
 - IEEE Power and Energy Magazine will have a special edition on blackouts in 2023 for the 20th year anniversary
- This talk is about the past and the future: what can we learn from the past to help us prepare for the future
 - But not so much about what are the immediate lessons from the Blackout since many recommendations have already been put into practice.
- The blackout final report is very readable and available by googling "August 14 2003 Blackout Report"

Blackout misery

50 million affected in Northeast and beyond as power grid fails

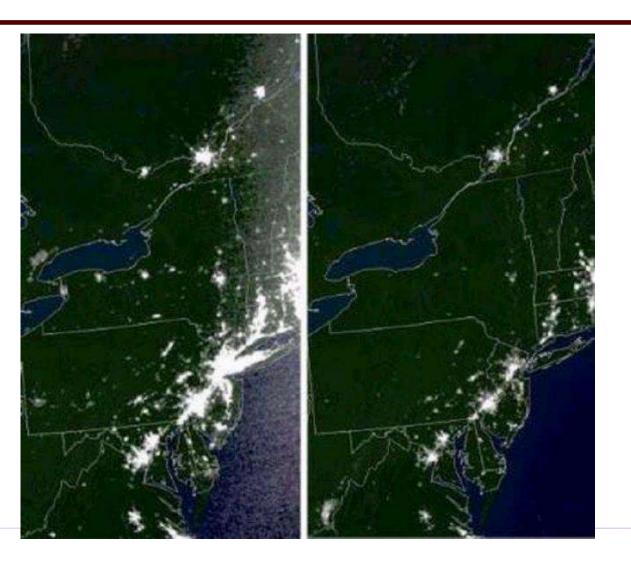
TransportationMany 'waitScenesMoms in labor, carsImpactOffices close, ATMsit out,' by air and land4Astuck in car washes5Aidle, cellphones jam1B

A M

In contrasting numbers, the August 14, 2003 Blackout hit about 50 million people, while Hurricane Ian (2022) caused power outages affecting perhaps 2.7 million. The 2021 Texas blackout affected more than 10 million people with at least some outages at a time when temperatures were quite low.

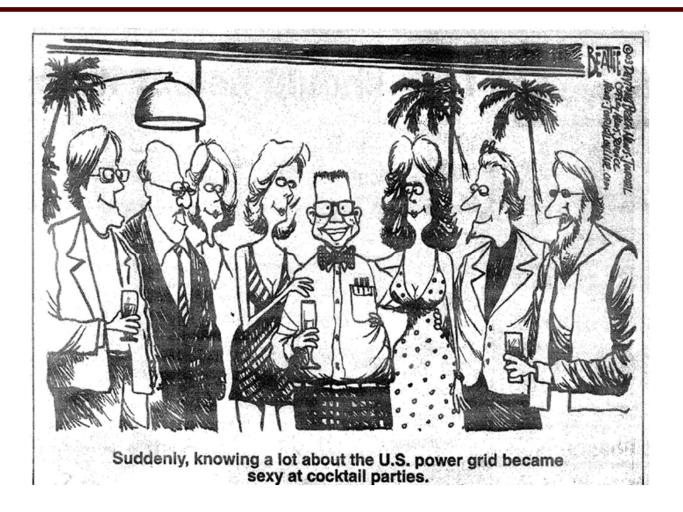
irooklyn Bridge: Thousands of commuters in New Yorktook to their feet Thursday evening after a major power outage hit the city and much of the Northeast.

August 14, 2003 Hoax Image

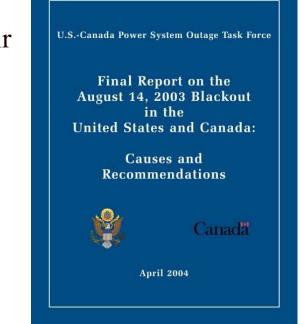


This image was widely circulated immediately after the blackout, even appearing for a time on a DOE website. It was quickly shown to be a hoax.

What might immediately give it away?


Actual Before and After Images

My Favorite August 14, 2003 Cartoon



46

Causes of the Blackout

- Blackout Final Report listed four causes
 - FirstEnergy (FE) did not understand inadequacies of their system, particularly with respect to voltage instability.
 - Inadequate situational awareness by FE
 - FE failed to adequately manage their tree growth
 - Failure of the grid reliability organizations (primarily MISO) to provide effective diagnostic support
- Human/cyber interactions played a key role

We've Come Quite a Ways Since 2003

- Report included 46 recommendations, many of which have dramatically changed the operation of the interconnected power grid
 - Thirteen were focused on physical and cyber security
- Focus here is what can 8/14/03 teach us to help with the grid in 2022 (and beyond)
- Need to keep in mind economic impact of 8/14/03 was above \$5 billion; yearly impact of blackouts could be above \$100 billion

First Energy Control Center, Recent (2013)

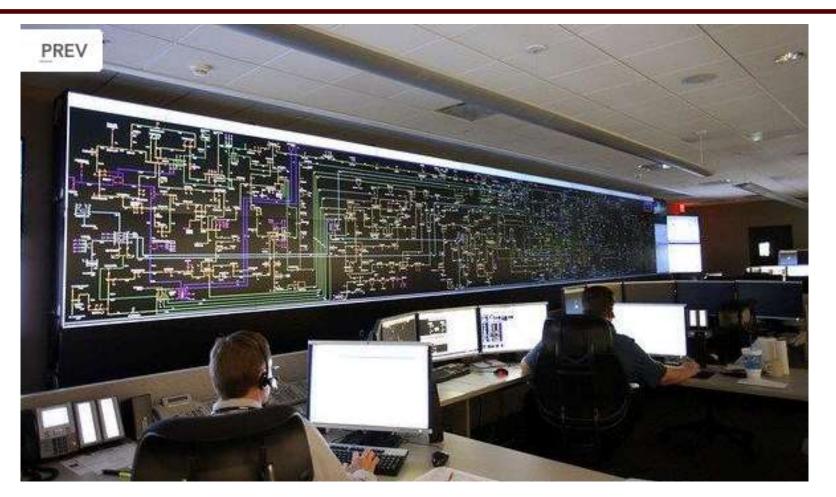
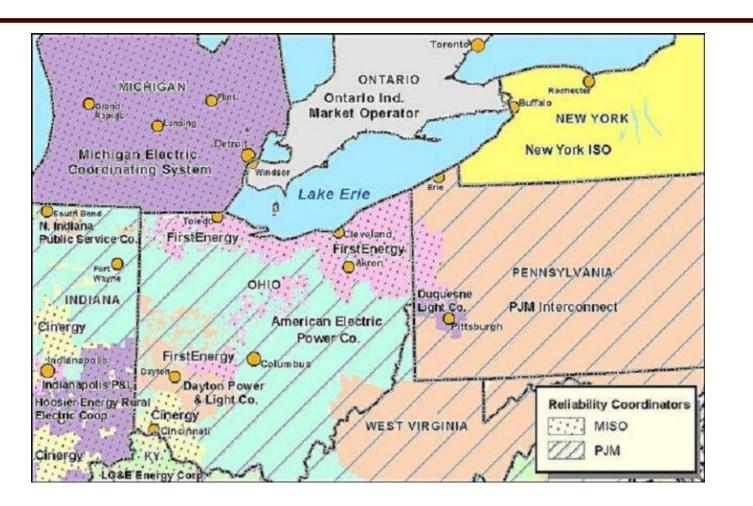
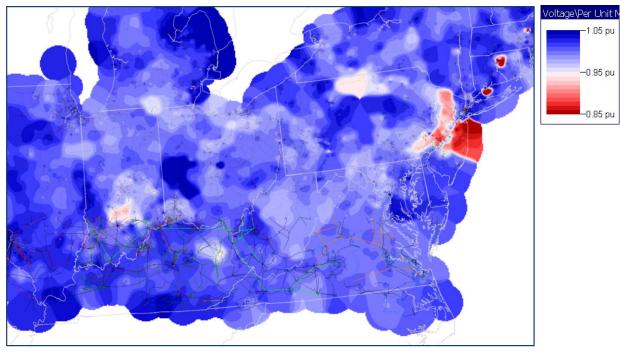


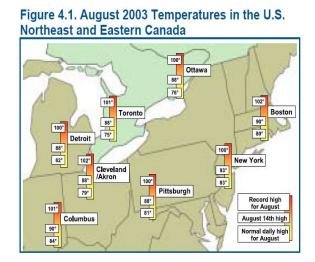
Image Source: www.wksu.org/news/story/365

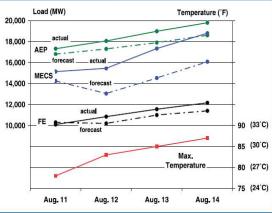

My Involvement in Blackout Investigation

- I spend a lot of time talking to reporters on 8/14 to 8/16, before I knew what happened
- Tasked by DOE to do onsite visit to FE on 8/19 to 8/21 with Doug Wiegmann; did a similar visit to MISO the next week (right as classes were starting for us at UIUC)
- Did return visit in Oct with many others involved in the investigation; we also then talked with Cinergy
- Many folks played far larger roles; I was only involved extensively early on


Footprints of Reliability Coordinators in Midwest

August 13, 2003


- It is important to realize that immediately before the blackout few people thought the system was on the verge of a catastrophe.
- NERC 2003 Summer Assessment did not list Ohio as an area of particular concern


NERC 2003 Summer Assessment is available at http://www.nerc.com/files/summer2003.pdf

August 14, 2003: Pre-blackout (before 14:30 EDT)

- It had mostly been a normal summer day at First Energy
 - Most generation was available though the 883 MW Davis-Besse Nuclear unit was on a long-term outage
 - At 13:31 EDT the Eastlake 5 unit (a 597 MW plant on Lake Erie) tripped when the operator tried to up is reactive output, but this was not seen as a severe event
- It had been a busy day at MISO, with their reliability coordinators dealing with a small outage in Indiana around noon
 - Their state estimator failed at 1215 EDT but no one knew

 \diamond U.S.-Canada Power System Outage Task Force \diamond August 14th Blackout: Causes and Recommendations \diamond

Cinergy Bedford-Columbus 345 kV Line Tree Contact at 12:08 EDT

Trees were Finally "Trimmed" Two Months Later

