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Announcements

• Read Chapter 9

• Homework 5 is due on Tuesday Nov 1, 2022 
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Forward and Inverse Problems

• In science and engineering analysis we are often dealing with two classes 
of problems
– Forward or direct problems; we’re using a model with inputs to determine a set of 

outputs; power flow is an example of a forward problem 

– Inverse problems are the opposite: we’re using a set of outputs, perhaps coupled 
with a model, to determine a set of inputs; power system state estimation is an 
example of an inverse problem

• Both forward and inverse problems can be linear or nonlinear

• Inverse problems can present many challenges including whether there are 
enough observations of sufficient quality to obtain an answer 
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Least Squares

• So far we have considered the solution of Ax = b in which A is a square 
matrix; as long as A is nonsingular there is a single solution
– That is, we have the same number of equations (m) as unknowns (n)

– This is a forward problem

• Many problems are overdetermined in which there more equations than 
unknowns (m > n) 
– Overdetermined systems are usually inconsistent, in which no value of x exactly 

solves all the equations

• Underdetermined systems have more unknowns than equations (m < n); 
they never have a unique solution but are usually consistent
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Method of Least Squares

• The least squares method is a solution approach for determining an 
approximate solution for an overdetermined system

• If the system is inconsistent, then not all of the equations can be 
exactly satisfied

• The difference for each equation between its exact solution and the 
estimated solution is known as the error

• Least squares seeks to minimize the sum of the squares of the errors

• Weighted least squares allows differ weights for the equations 

4



Least Squares Solution History

• The method of least squares developed from trying to estimate actual 
values from a number of measurements

• Several persons in the 1700's, starting with Roger Cotes in 1722, 
presented methods for trying to decrease model errors from using 
multiple measurements

• Legendre presented a formal description of the method in 1805; 
evidently Gauss claimed he did it in 1795

• Method is widely used in power systems, with state estimation the best 
known application, dating from Fred Schweppe's work around 1970
– Fred also did a lot of work associated with locational marginal prices (LMPs)

– He was a professor at MIT who died in 1988 at age 54
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Initial State Estimation Paper
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It was a three 
part paper with 
part two 
focused on an 
approximate 
model and part 
three on 
implementation



Least Squares and Sparsity

• In many contexts least squares is applied to problems that are not 
sparse.  For example, using a number of measurements to optimally 
determine a few values
– Regression analysis is a common example, in which a line or other curve is fit to 

potentially many points)

– Each measurement impacts each model value

• In the classic power system application of state estimation the system is 
sparse, with measurements only directly influencing a few states
– Power system analysis classes have tended to focus on solution methods aimed at 

sparse systems; we'll consider both sparse and nonsparse solution methods
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Least Squares Problem

• Consider 
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Least Squares Solution

• We write (ai)T for the row i of A and ai is a column vector 

• Here, m ≥ n and the solution we are seeking is that which minimizes 
Ax - bp, where  p denotes some norm 

• Since usually an overdetermined system has no exact solution, the best 
we can do is determine an x that minimizes the desired norm.
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Choice of p

• We discuss the choice of p in terms of a specific example 

• Consider the equation Ax = b with

(hence three equations and one unknown)

• We consider three possible choices for p:
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Choice of p
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The Least Squares Problem

• In general,                    is not differentiable for p = 1 
or p = ∞

• The choice of p = 2 (Euclidean norm) has become well 
established given its least-squares fit interpretation

• The problem is tractable for two major 
reasons
– First, the function is differentiable 
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The Least Squares Problem, cont.

– Second, the Euclidean norm is preserved under orthogonal transformations:

with Q an arbitrary orthogonal matrix; that is, Q satisfies

   
22

Q A x Q b Ax bT T =

QQ Q Q I QT T n × n= =  ¡
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The Least Squares Problem, cont.

• We introduce next the basic underlying assumption: A is full rank, i.e., the 
columns of A constitute a set of linearly independent vectors

• This assumption implies that the rank of A is n
because n ≤ m since we are dealing with an overdetermined system

• Fact: The least squares solution x* satisfies 

A A x A bT T=
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Implications

• This underlying assumption implies that 

• Therefore, the fact that ATA is positive definite (p.d.)  follows from 
considering any x ≠ 0 and evaluating

which is the definition of a p.d. matrix

• We use the shorthand ATA > 0 for ATA being a symmetric, positive 
definite matrix

 is full rank   x 0A Ax 0  

2

2
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Implications

• The underlying assumption that A is full rank and therefore ATA is 
p.d. implies that  there exists a unique least squares solution 

• Note: we use the inverse in a conceptual, rather than a computational, 
sense

• The below formulation is known as the normal equations, with the 
solution conceptually straightforward

   1
x A A A bT T=

 A A x A bT T=
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Example: Curve Fitting

• Say we wish to fit five points to a polynomial curve of the form

• This can be written as 
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Example: Curve Fitting

• Say the points are t =[0,1,2,3,4] and y = [0,2,4,5,4].  Then 
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Implications

• An important implication of positive definiteness is that we can factor 
ATA since ATA >  0

• The expression ATA = GTG is called the Cholesky factorization of the 
symmetric positive definite matrix ATA

1/2 1/2 Α Α U D U U D D U G GT T T T= =
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A Least Squares Solution Algorithm

Step 1: Compute the lower triangular part of ATA

Step 2: Obtain the Cholesky Factorization 

Step 3: Compute 

Step 4:  Solve for y using forward substitution in

and for x using backward substitution in

ˆG y b T =

Α Α G GT T

ˆΑ b bT =

G x y =

Note, our standard LU factorization approach would work; we can just solve 
it twice as fast by taking advantage of  it being a symmetric matrix
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Practical Considerations

• The two key problems that arise in practice with the triangularization
procedure are:
– First, while A maybe sparse, ATA is much less sparse and consequently requires more 

computing resources for the solution
• In particular, with ATA second neighbors are now connected! Large networks are still sparse, just 

not as sparse

– Second, ATA may actually be numerically less well-conditioned than A
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Loss of Sparsity Example

• Assume the B matrix for a network is

• Then BTB is

• Second neighbors are now connected! 
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Singular Value Decomposition

• Traditionally power system analysis has mostly been focused on the sparse 
matrices associated with the electric grid; there was not much signal 
analysis

• This is rapidly changing as the power industry get more signals and need 
to extract information from them, with PMUs one example

• This data is often presented in the form of a matrix, for example with the 
rows being sample points

• A key technique for extracting information from matrices is known as the 
singular value decomposition
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Matrix Singular Value Decomposition (SVD) 

• The SVD is a factorization of a matrix that generalizes the 
eigendecomposition to any m by n matrix to produce

where S is a diagonal matrix of the singular values, and U and V are 
orthogonal matrices 

• The singular values are non-negative real numbers that can be used to 
indicate the major components of a matrix (the gist is they provide a way 
to decrease the rank of a matrix

• A key application is image compression

 TY UΣV The original concept is more than 100 years old, 
but has founds lots of recent applications
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Aside: SVD Image Compression Example

Image Source: www.math.utah.edu/~goller/F15_M2270/BradyMathews_SVDImage.pdf

Images can be represented 
with matrices.  When an 
SVD is applied and only the 
largest singular values are 
retained the image is
compressed.   
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An SVD Application, the Pseudoinverse of a Matrix

• The pseudoinverse of a matrix generalizes concept of a matrix 
inverse to an m by n matrix, m >= n
– Specifically this is a Moore-Penrose Matrix Inverse

• Notation for the pseudoinverse of A is A+

• Satisfies AA+A = A

• If A is a square matrix, then A+ = A-1

• Quite useful for solving the least squares problem since the least 
squares solution of Ax = b is 
x = A+ b

• Can be calculated using an SVD

T

T 





A U Σ V

A V Σ U
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Pseudoinverse Least Squares Matrix Example

• Assume we wish to fit a line (mx + b = y) to three data points: (1,1), 
(2,4), (6,4)

• Two unknowns, m and b; hence x = [m  b]T

• Setup in form of Ax = b

1 1 1 1 1
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6 1 4 6 1

m

b

     
                       

A

28



Aside: Pseudoinverse Least Squares Matrix 
Example

• Doing an economy SVD

• Computing the pseudoinverse
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In an economy 
SVD the S matrix 
has dimensions 
of m by m if m < n 
or n by n if n < m
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Least Squares Matrix Pseudoinverse Example, 
cont.

• Computing x = [m b]T gives

• With the pseudoinverse approach we immediately see the 
sensitivity of the elements of x to the elements of b
– New values of m and b can be readily calculated if y changes

• Computationally the SVD is order mn2+n3 

(with n < m)

1
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than m, so 
the result 
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scale linearly 
with m



SVD and Principal Component Analysis (PCA)

• The previous image compression example demonstrates PCA, which 
reduces dimensionality
– Extracting the principal components

• The principal components are associated with the largest singular values
– This helps to extract the key features of the data and removes redundancy

• PCA is a statistical method for reducing the dimensionality of a dataset
– One example of PCA is facial recognition; another is market research

• PCA is starting to be more widely used in power system analysis, 
particularly when doing signal analysis
– In electrical engineering a signal is defined as any time-varying quantity, which 

hopefully contains some information
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Numerical Conditioning

• To understand the point on numerical ill-conditioning, we need to introduce 
terminology 

• We define the norm of a matrix                 to be 

• This is the maximum singular value of B

m nB ¡
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B x
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x
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max
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
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Numerical Conditioning Example

• Say we have the matrix

• What value of x with a norm of 1 that maximizes        ? 

• What value of x with a norm of 1 that minimizes         ? 

10 0

0 0.1

 
  
 

B

    
  x 0

B x
B

x

B

max

= maximum stretching of  the matrix



Bx

Bx

33



Numerical Conditioning

i.e., li is a root of the polynomial

• In other words, the 2 norm of B is the square root of the 
largest eigenvalue of BTB

  ,l l T
i

ii
= max ,  is an eigenvalue of  B B

  ( ) B B ITp λ = det λ

Keep in mind the eigenvalues 
of a p.d. matrix are positive
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Numerical Conditioning

• The conditioning number of a matrix B is defined as 

• A well–conditioned matrix has a small value of          close to 1; 
the larger the value of         , the more pronounced the ill-conditioning
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Power System State Estimation (SE)

• The need is because in power system operations there is a desire to do 
“what if” studies based upon the actual “state” of the electric grid
– An example is an online power flow or contingency analysis 

• Overall goal of SE is to come up with a power flow model for the present 
"state" of the power system based on the actual system measurements

• SE assumes the topology and parameters of the transmission network are 
mostly known

• Measurements from SCADA and increasingly PMUs

• Overview is given in ECEN 615; much more details are provided in 614
– Prof Ali Abur has done a lot of work in state estimation; he was at TAMU from 1985 

to 2005, and is now at Northeastern University
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Power System State Estimation

• Problem can be formulated in a nonlinear, weighted least squares 
form as

where J(x) is the scalar cost function, x are the state variables 
(primarily bus voltage magnitudes and angles), zi are the m 
measurements, f(x) relates the states to the measurements and i is 
the assumed standard deviation for each measurement
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Assumed Error

• Hence the goal is to decrease the error between the measurements and the 
assumed model states x

• The i term weighs the various measurements, recognizing that they can 
have vastly different assumed errors

• Measurement error is assumed Gaussian (whether it is or not is another 
question); outliers (bad measurements) are often removed
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State Estimation for Linear Functions

• First we’ll consider the linear problem.  That is where

• Let R be defined as the diagonal matrix of the variances (square 
of the standard deviations) for each of the measurements

meas meas  z f(x) z Hx
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State Estimation for Linear Functions

• We then differentiate J(x) w.r.t. x to determine the value of x that 
minimizes this function 
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1 1
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Simple DC System Example

• Say we have a two bus power system that we are solving using the 
dc approximation.  Say the line’s per unit reactance is j0.1.  Say we 
have power measurements at both ends of the line.  For simplicity 
assume R=I.  We would then like to estimate the bus angles.  Then

1 2 2 1
1 1 2 2
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2
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We have a problem since HTH is singular. 
This is because of lack of an angle reference.
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Simple DC System Example, cont.

• Say we directly measure 1 (with a PMU) to be zero; set this as the 
third measurement.  Then
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Nonlinear Formulation

• A regular ac power system is nonlinear, so we need to use an iterative 
solution approach.  This is similar to the Newton power flow.  Here assume 
m measurements and n state variables (usually bus voltage magnitudes and 
angles) Then the Jacobian is the H matrix

1 1

1

1

( )
( )

n

m m

n

f f

x x

f f

x x

  
 
 

   
    

  

f x
H x

x

K

M O M

K
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Measurement Example

• Assume we measure the real and reactive power flowing into one end of a 
transmission line; then the zi-fi(x) functions for these two are

– Two measurements for four unknowns

• Other measurements, such as the flow at the other end, and voltage 
magnitudes, add redundancy

    

    

2

2

cos sin

sin cos
2

meas

ij i ij i j ij i j ij i j

capmeas

ij i ij i j ij i j ij i j

P V G V V G B

B
Q V B V V G B

   

   

        

  
       

    
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SE Iterative Solution Algorithm

• We then make an initial guess of x, x(0) and iterate, calculating Dx each 
iteration

1 1
11 1

( 1) ( )

( )

( )

T T

m m

k k

z f

z f

 



 
 

 D    
  

  D

x

x H R H H R

x

x x x



This is exactly the least 
squares form developed 
earlier with HTR-1H an n 
by n matrix.  This could be 
solved with Gaussian 
elimination, but this isn't 
preferred because the 
problem is often ill-
conditionedKeep in mind that H is no longer constant, but 

varies as x changes, and is often ill-conditioned
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Nonlinear SE Solution Algorithm, 
Book Figure 9.11
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