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Announcements

A] ¥

Read Chapter 8

Read the Chapter 3 appendices (3A covers optimization with constraints,
3B covers linear programming, 3D covers dynamic programming, and 3E
convex optimization

An excellent book on optimization 1s Linear and Nonlinear Programming
by Luenberger and Ye (the 5% edition came out in 2021)

Homework 6 1s now due on Thursday Nov 17 but it counts as two regular
homeworks.



Power System Economic Dispatch

Generators can have vastly different incremental operational costs
— Some are essentially free or low cost (wind, solar, hydro, nuclear)

— Because of the large amount of natural gas generation, electricity prices are
very dependent on natural gas prices

Economic dispatch is concerned with determining the best dispatch
for generators without changing their commitment

Unit commitment focuses on optimization over several days. It is
discussed in Chapter 4 of the book, but will just be briefly covered
here



Variation in Natural Gas Prices and Generation
Sources
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Power System Economic Dispatch
T
Economic dispatch is formulated as a constrained minimization
— The cost function 1s often total generation cost in an area

— Single equality constraint 1s the real power balance equation

Solved by setting up the Lagrangian (with P, the load and P; the losses,
which are a function the generation)

LB d) = 3 C(Pyy)+ APy + P, (Py)~ 3 By
i=1 i=1

A necessary condition for a minimum is that the gradient 1s zero. Without
losses this occurs when all generators are dispatched at the same marginal
cost (except when they hit a limit)



Power System Economic Dispatch

L(P;,A) = iq(PGi)M(PD +PL(PG)—iPGl-)
i=1 i=1
aL(PGa/D dci(PGi) _8PL(PG)):O

= — A1
oP,, dP,, oP,,

Pp+ P (Fs)— 2 F5: =0
i=1

* If losses are neglected then there 1s a single marginal cost (lambda); 1f
losses are included then each bus could have a different marginal cost



Economic Dispatch Penalty Factors

Solving each equation for 4 we get

dC,(Fer) _ 5 0P _
dl OFg;
1 = 1 dC;(F;)
[1 ~op, <Pg>j dPy;
OF;

Define the penalty factor L, for the it generator

1

[1 . aPL(PG)j
OF;

The penalty factor
at the slack bus is
always unity!



Economic Dispatch Example

58 MW i 56 MW 39 MW 39 MW 78 MW
\ 00 \ DO 29 M
1.05 pu Sk o 99 p 2 < var
3 4
1.00 pu
130. oMW
72 MW 52 MW 147 MW 46 MW
0.0000 o 92 . 5HMW
var
HES o -0.0825
AGC ON

53% 46% A
38%

48% A
Y
71 MW 20
1.04 pu A T 60% > fo7 MW>TF¥ 0.96 pu
5

¥

39 MW 181. 9fMw AP
20 Mvar _0 0274 39 Mvar
AGC ON
Total Hourly Cost: 5916.04 $/h Load Scalar: 1.00%
Total Area Load: 392.0 MW MW Losses: 12.44 MW
Marginal Cost ($/MWh) : 0.00 $/MWh

Case 1s GOS Example6 22; use Power Flow Solution
Options, Advanced Options to set Penalty Factors



Optimal Power Flow (OPF)
T
OPF functionally combines the power flow with economic dispatch
SCOPF adds 1n contingency analysis
Goal of OPF and SCOPF i1s to minimize a cost function, such as operating
cost, taking into account realistic equality and inequality constraints

Equality constraints

~ bus real and reactive power balance
— generator voltage setpoints

— area MW interchange



OPF, cont.

Inequality constraints

— transmission line/transformer/interface flow limits
— generator MW limits

— generator reactive power capability curves

— bus voltage magnitudes (not yet implemented in Simulator OPF)

Available Controls
— generator MW outputs
— transformer taps and phase angles

— reactive power controls



Two Example OPF Solution Methods

Non-linear approach using Newton’s method

— handles marginal losses well, but is relatively slow and has problems
determining binding constraints

— Generation costs (and other costs) represented by quadratic or cubic
functions

Linear Programming

— fast and efficient in determining binding constraints, but can have
difficulty with marginal losses.

— used in PowerWorld Simulator

— generation costs (and other costs) represented by piecewise linear
functions

Both can be implemented using an ac or dc power flow

10



OPF and SCOPF Current Status
A]M
OPF (really SCOPF) 1s currently an area of active research, with ARPA-E
having an SCOPF competition (see gocompetition.energy.gov)

A 2016 National Academies Press report, titled “Analytic Research
Foundations for the Next-Generation Electric Grid,” recommended
improved AC OPF models

— I would recommend reading this report; it provides good background on power
systems include OPF

— It is available for free at www.nap.edu/catalog/21919/analytic-research-foundations-
for-the-next-generation-electric-grid

11



OPF and SCOPF History
Am

* A nice OPF history from Dec 2012 1s provided by the below link, and
briefly summarized here

* Prior to digital computers economic dispatch was solved by hand and the
power flow with network analyzers

* Digital power flow developed 1n late 50°s to early 60’s
* First OPF formulations in the 1960°s

— J. Carpienterm, “Contribution e I’¢tude do Dispatching Economique,” Bulletin
Society Francaise Electriciens, 1962

- H.W. Dommel, W.F. Tinney, “Optimal power flow solutions,” IEEE Trans. Power
App. and Systems, Oct. 1968

“Only a small extension of the power flow program is required”

www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers/acopf-1-history-formulation-testing.pdf (by M Cain, R. O’Neill, A. Castillo)

12



OPF and SCOPF History
o

A linear programming (LP) approach was presented by Stott and Hobson
in 1978

— B. Stott, E. Hobson, “Power System Security Control Calculations using Linear
Programming,” (Parts 1 and 2) IEEE Trans. Power App and Syst., Sept/Oct 1978

Optimal Power Flow By Newton’s Method

—- D.I. Sun, B. Ashley, B. Brewer, B.A. Hughes, and W.F. Tinney, "Optimal Power
Flow by Newton Approach", IEEE Trans. Power App and Syst., October 1984

Follow-up LP OPF paper in 1990

— 0. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments in LP-based Optimal
Power Flow,” IEEE Trans. Power Systems, August 1990

13



OPF and SCOPF History
o

Critique of OPF Algorithms

- W.F. Tinney, J.M. Bright, K.D. Demaree, B.A. Hughes, “Some Deficiencies in
Optimal Power Flow,” IEEE Trans. Power Systems, May 1988

Hundreds of other papers on OPF

Comparison of ac and dc optimal power flow methods

—- T.J. Overbye, X. Cheng, Y. San, “A Comparison of the AC and DC Power Flow
Models for LMP Calculations,” Proc. 37" Hawaii International Conf. on System
Sciences, 2004

14



Key SCOPF Application: Locational Marginal
Pri LMPs
ces ( ) T
* The locational marginal price (LMP) tells the cost of providing electricity
to a given location (bus) in the system

* Concept mntroduced by Schweppe 1n 1985

— F.C. Schweppe, M. Caramanis, R. Tabors, “Evaluation of Spot Price Based
Electricity Rates,” IEEE Trans. Power App and Syst., July 1985

* LMPs are a direct result of an SCOPF, and are widely used in many
electricity markets worldwide

15
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Example MISO LMP Contour, 11/11/2022
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LMPs are now widely visualized
using color contours; the first use
of LMP color contours was
presented in [1]
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Example LMP Contour: 10/27/2020
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Last Updated: Mov 11, 2022 16:25

Real-Time Price Adders
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OPF Problem Formulation
T
* The OPF 1s usually formulated as a minimization with equality and
inequality constraints

Minimize F(x,u)
g(x,u)=0
h . <h(x,u)<h__

u. <usu__

m

where x 1s a vector of dependent variables (such as the bus voltage
magnitudes and angles), u 1s a vector of the control variables, F(x,u) 1s
the scalar objective function, g is a set of equality constraints (e.g., the
power balance equations) and h is a set of 1nequality

constraints (such as line flows)
19



Two Bus with Unconstrained Line

A] ¥

With no overloads

Total Hourly Cost : 8459 $/h Transmission line 1s
the OPF matches Area Lambda : 13,02 $/Mih
. el __ not overloaded
the economic 2
" 81°/o
dispatch N
Bus A 13.02 $/MWh

é %300 OfgMwW

203.05MW

AGC ON

Marginal cost of supplying power to each bus
(locational marginal costs)

20



Two Bus with Constrained Line

Total Hourly Cost : 9514 $/h
Area Lambda : 13.26 $/Mwh

)4
Bus A 13.43 $/Mwh 13.08 $/Mwh
@ isso.o@mw 300. OyMW
260 . 9 MW 419 . 1jMW
AGC ON AGC ON

With the line loaded to 1ts limit, additional load at Bus A must
be supplied locally, causing the marginal costs to diverge.

21



Three Bus (B3) Example
A]M

Consider a three bus case (Bus 1 1s system slack), with all buses
connected through 0.1 pu reactance lines, each with a 100 MV A limit

Let the generator marginal costs be

~ Bus 1: 10 $ / MWhr; Range = 0 to 400 MW
— Bus 2: 12 $ / MWhr; Range = 0 to 400 MW
— Bus 3: 20 $ / MWhr; Range = 0 to 400 MW

Assume a single 180 MW load at bus 2

22



B3 with Line Limits NOT Enforced

60 MW 60 MW
Bus 2 Bus 1

@+4‘—QJ—<1—<1—<1—<1—<1—<1—<1—Q—.— 10.00 $/MWh
0.0 MW [10.00 $/MWh @

180.0 MW

Line between
120 MW Bus land Bus 3

60 MW

Total Cost

60 MW o
1800 $/hr - V- 10.00 $/Mwh 1s overloaded;
all buses have
the same
U b marginal cost

23



B3 with Line Limits Enforced

20 MW 20 MW
Bus 2 Bus 1

: 1_@<<< <<q—@—r|110.00$/MWh

60.0 MW|12.00 $/MWh

A

120.0 MW

0MW
80 MW

LP OPF changes

100 MW

Total Cost

50 M generation to
1920 $/hx . 14.00 $/MWh remove violation.
é 180gMW Bus marginal
o costs are now
different.

24



Verify Bus 3 Marginal Cost

19 MW 19 MW
Bus 2 Bus 1

: 1_@ L 10.00 $/MWh
62.0 MW|12.00 $/MWh @

119.0 MW
<" 81%
04MW \
81 MW One additional MW
Total Cost, .. & 100 MW of load at bus 3
1934 $/bx . 14.00 &/MWh raised total cost by
@ 181/Mw 14 $/hr, as G2 went
up by 2 MW and G1
0 MA went down by IMW

25



Why is bus 3 LMP = $14 /MWh
AJ
All lines have equal impedance. Power flow 1n a simple network

distributes inversely to impedance of path.

~ For bus 1 to supply 1 MW to bus 3, 2/3 MW would take direct path from 1 to 3,
while 1/3 MW would “loop around” from 1 to 2 to 3.

— Likewise, for bus 2 to supply 1 MW to bus 3, 2/3MW would go from 2 to 3, while
1/3 MW would go from 2 to 1to 3.

26



Why is bus 3 LMP $ 14 / MWh, cont’d
A] ¥

With the line from 1 to 3 limited, no additional power flows are
allowed on it.

To supply 1 more MW to bus 3 we need
_ AP, +APg, =1 MW
- 2/3APg +1/3APg =0; (no more flow on 1-3)

Solving requires we up P, by 2 MW and drop P, by 1| MW -- a net
increase of $24 — $10 = $14.

27



Both lines into Bus 3 Congested

0 MW

*{)

100.0 Mp12.00 $/MWh

0MW
100 MW

Total Cost , .o

(=

100 MW

A] ¥

Bus 1

10.00 $/MwWh

@

100.0 Mw

100 MW

2280 $/hr
Bus 3 ?

4 MW

20.00 $/MWh
% 2043Mw

For bus 3 loads
above 200 MW,
the load must be
supplied locally.
Then what 1f the
bus 3 generator

opens?
28



Both lines into Bus 3 Congested

A] ¥

An infeasible example can be created by opening the generator
at Bus 3 with the Bus 3 load above 200 MW. There is no way
to serve the load without overloading a transmission line.

Bus 2 4 M 2 A Bus 1

10.00 $/Mw

Total Cost

2232 $/h 1008.00 $/MWh

(i:) .. 2045MW

29



LP OPF Solution Method
T

There are different OPF solution techniques. One common approach uses
linear programming (LP)
The LP approach iterates between
— solving a full ac or dc power flow solution

 enforces real/reactive power balance at each bus

 enforces generator reactive limits

 system controls are assumed fixed

« takes into account non-linearities
— solving a primal LP

 changes system controls to enforce linearized constraints while minimizing cost

30



Quick Coverage of Linear Programming

A]M
e LP 1s probably the most widely used mathematical programming
technique

* Itisused to solve linear, constrained minimization (or maximization)
problems 1in which the objective function and the constraints can be
written as linear functions

31



Example Problem 1
T
* Assume that you operate a lumber mill which makes both construction-
grade and finish-grade boards from the logs it receives. Suppose it takes
2 hours to rough-saw and 3 hours to plane each 1000 board feet of
construction-grade boards. Finish-grade boards take 2 hours to rough-
saw and 5 hours to plane for each 1000 board feet. Assume that the saw
1s available 8 hours per day, while the plane is available 15 hours per
day. Ifthe profit per 1000 board feet is $100 for construction-grade and

$120 for finish-grade, how many board feet of each should you make
per day to maximize your profit?

32



Problem 1 Setup

Let x,=amount of c¢g, X,= amount of {g
Maximize 100x; +120x,
S.t. 2x;+2x, <8

3x; +5x, <15

Xi,Xy 20

Notice that all of the equations are linear, but they are

inequality, as opposed to equality, constraints; we are
seeking to determine the values of x, and x,

33



Example Problem 2 (Nutritionist Problem)
T
* A nutritionist 1s planning a meal with 2 foods: A and B. Each ounce of A
costs $ 0.20, and has 2 units of fat, 1 of carbohydrate, and 4 of protein.
Each ounce of B costs $0.25, and has 3 units of fat, 3 of carbohydrate, and
3 of protein. Provide the least cost meal which has no more than 20 units
of fat, but with at least 12 units of carbohydrates and 24 units of protein.

34



Problem 2 Setup

Let x,=ounces of A, x,= ounces of B
Minimize 0.20x; +0.25x,
S.t. 2x;+3x, <20

x| +3x, 212

4x, +3x, =24

Xi,Xy 20

Again all of the equations are linear, but they are inequality, as opposed
to equality, constraints; we are again seeking to determine the values of
X, and X,; notice there are also more constraints than solution variables

35



Three Bus Case Formulation

AJf
* For the earlier three bus system given the initial condition of an
overloaded transmission line, minimize the cost of generation such that

the change 1n generation Bus 2 60 M 6omw Lo

IS ZGI’O, and the ﬂOW @_F—.J—Qa—q—q—q—q—q—q—q—e—.— 10.00 $/Mwh
on the line betyveen o 5w |10 00 s mmm @
buses 1 and 3 1s not 180.0 MW
violating its limit ofgnw

60 MW

120 MW

* Can be setup consider- S— ,
. . 60 MW
ing the change in o B V- 10.00 $/Mwh
generation, (APg,, APg,, APg5) v B

36



Three Bus Case Problem Setup

Minimize 10x; +12x, + 20x;

2 1
S.t. 3X1 + 3x2 <—20  Line flow constraint

X +Xy +x3=0 Power balance constraint

enforcing limits on x;, x,, X,

37



LP Standard Form

The standard form of the LP problem is

Minimize e¢x Maximum problems can be treated as
St Ax=Db minimizing the negative

x>0
where X = n-dimensional column vector

¢ = n-dimensional row vector
b = m-dimensional column vector
A = mXxn matrix

For the LP problem usually n>>m

The previous examples were not in this form!

38



Replacing Inequality Constraints with Equality
Constraints

A] ¥

* The LP standard form does not allow 1nequality constraints
* Inequality constraints can be replaced with equality constraints
through the introduction of slack variables, each of which must
be greater than or equal to zero
.<b—>...+y;=b withy =20

* Slack variables have no cost associated with them; they merely
tell how far a constraint 1s from being binding, which will occur
when its slack variable 1s zero

39



Lumber Mill Example with Slack Variables

Let the slack variables be x; and x,, so

Minimize the negative

Minimize -(100x; +120x,)
S.t. 2x;+2xy +x3=38

X{>Xy,X3,X4 20

40



LP Definitions

A vector x 1s said to be basic if
1. Ax=Db

2. At most m components of x are non-zero; these

This 1s a key LP concept!

are called the basic variables; the rest are non basic

variables; if there are less than m non-zeros then

x 1s called degenerate Ag 1s called the basis matrix

Define x = {XB} (with x basic)and A=[A; A,]
AN

With [Ag AN]{XB}zb so0 xg=Ayz (b—Ayxy)
AN

41



Fundamental LP Theorem

Given an LP in standard form with A of rank m then
—  If there 1s a feasible solution, there is a basic feasible solution

—  If there is an optimal, feasible solution, then there is an optimal, basic feasible
solution

Note, there could be a LARGE number of basic, feasible solutions

—  Simplex algorithm determines the optimal,
basic feasible solution usually very quickly

42



LP Graphical Interpretation

A] ¥

* The LP constraints define a polyhedron in the solution space

— This 1s a polytope if the polyhedron is bounded and nonempty

— The basic, feasible
solutions are
vertices of this
polyhedron

— With the linear cost
function the solution
will be at one of
vertices

Image: Figure 3.26 from course text

APPENDIX 3B: LINEAR PROGRAMMING (LP) 1

ior | A polyhedron can be
unbounded

- T~ -\_\.
g ~ ~/ ~J{4.%)

~ - L ~O\ \ [
N R - ]

‘ Objective function contours |

'\\#\‘?(\‘4,-;\1 L B e

FIGURE 3.26 x,,x, plane with cost contours and the optimal solution shown.
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Simplex Algorithm
A]M

* The key 1s to move intelligently from one basic feasible solution (1.e., a
vertex) to another, with the goal of continually decreasing the cost

function

* The algorithm does this by determining the “best” variable to bring into
the basis; this requires that another variable exit the basis, while always
retaining a basic, feasible solution

* This 1s called pivoting

44



Determination of Variable to Enter the Basis
A]M
To determine which non-basic variable should enter the basis (1.e.,

one which currently 0), look at how the cost function changes w.r.t.
to a change 1n a non-basic variable (1.e., one that 1s currently zero)

Xp
Definez=cx=[cp c¢,]

X Elements of x,

are all zero, but

With xi = Al_31 (b A NXN) we are looking
| | to change one
Thenz=czAzb+ (CN —CpA AN)XN to decrease the
cost

45



Determination of Variable to Enter the Basis, cont.
A]M
Define the reduced (or relative) cost coefficients as

r 1s an n-m dimensional

—1
r=Ccy—CprA, A
N “B"“B N row vector

Elements of this vector tell how the cost function will change for
a change 1n a currently non-basic variable

The variable to enter the basis is usually the one with the most
negative relative cost

If all the relative costs are nonnegative then we are at an optimal
solution

46



Determination of Variable to Exit Basis

The new variable entering the basis, say a position j, causes the
values of all the other basic variables to change. In order to retain a
basic, feasible solution, we need to insure no basic variables
become negative. The change 1n the basic variables 1s given by

where ¢ 1s the value of the variable entering the

basis, and a i 1S 1ts associated column in A

47



Determination of Variable to Exit Basis, cont.

A] ¥

We find the largest value ¢ such
If no such ¢ exists then the problem is unbounded;

otherwise at least one component of X 5 equals zero.

The associated variable exits the basis.

48



Canonical Form

The Simplex Method works by having the problem 1in what 1s
known as canonical form

Canonical form 1s defined as having the m basic variables with the
property that each appears in only one equation, its coefficient in
that equation is unity, and none of the other basic variables appear
in the same equation

Sometime canonical form is readily apparent

Minimize -(100x, +120 .
g (100x, *2) Note that with x; and x, as
S.1. 2x+2x) +x3 =38 basic variables Ay 1s the
3x, +5x, + x4 =15 identity matrix

X(5X,X3,X4 20 40



Canonical Form

AJ
Other times canonical form 1s achieved by 1nitially adding artificial
variables to get an 1nitial solution

Example of the nutrition problem in canonical form with slack and artificial
variables (denoted as y) used to get an 1nitial basic feasible solution

Let x,=ounces of A, x,= ounces of B

Minimize y;+y,+y; Note that with y,, y,,
and y; as basic
variables Ay 1s the
Xp+3x, = x4+, =12 identity matrix

X5 X0, X3,X4,X5, V1, V2,¥3 20

S.t. 2x;+3x, + x53+y; =20

50



LP Tableau
T
With the system in canonical form, the Simplex solution process
can be 1llustrated by forming what 1s known as the LP tableau

— Initially this corresponds to the A matrix, with a column appended to
include the b vector, and a row added to give the relative cost coefficients;
the last element 1s the negative of the cost function value

~ Define the tableau as Y, with elements Y;;

— In canonical form the last column of the tableau gives the values of the
basic variables

During the solution the tableau 1s updated by pivoting

51



LP Tableau for the Nutrition Problem with Artificial
Variables
- Km

e When 1n canonical form the relative costs vector 1s

_ -1 _

X Xy Xy Xy Xg o Y Vo )

2 3 1 0 0 1 0 0 20 Note the last column
1 3 0 -1 0 0 1 0 12 gives the values of

4 3 0 0 -1 0 0 1 24 the basic variables
-7 -9 -1 1 1 0 0 0 =56

52



LP Tableau Pivoting
AJ
* Pivoting is used to move from one basic feasible solution to another

— Select the pivot column (i.e., the variable coming into the basis, say q) as the
one with the most negative relative cost

— Select the pivot row (i.e., the variable going out of the basis) as the one with
the smallest ratio of x;/Y;, for Y, >0; define this as row p (x; is given in the
last column)

That is, we find the largest value ¢ such

Xz =Xp —A;laqg >0

If no such ¢ exists then the problem is unbounded;
otherwise at least one component of X ; equals zero.
The associated variable exits the basis.
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LP Tableau Pivoting for Nutrition Problem

Starting at

X Xy Xy Xy Xg V) Vo W3

2 3 1 0 o0 1 0 0 20

l1 3 0 -1 0 O 1 0 12

4 3 0 0 -1 0 O 1 24
-7 -9 -1 1 1 O O O =56

Pivot on column q=2; for row get minimum of
{20/3, 12/3, 24/3), which 1s row p=2
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LP Tableau Pivoting
i
Pivoting on element Y . 1s done by
- First dividing row p by Y, to change the pivot element to unity.
~ Then subtracting from the k™ row Y, /Y, times the p™ row for all rows with Y, <> 0

X Xy Xy Xy X YV, W

2 3 1 0 o0 T O 0o 20 .
[’m only showing

1 3 0 -1 0 0 1 0 12 , .

4 3 0 0 -1 0 0 1 24 fractions with two
) ROD digits

7 -9 -1 1 1 0 0 0 -56

X1 X X Xy Xs N Vo N

0 1 1 O 1 -1 0 8

Pivoting gives 033 1 0 -033 0 0 033 0 4

3 0 O 1 -1 0 -1 1 12

-4 0 -1 =2 1 0 3 0 -20 55



LP Tableau Pivoting, Example, cont.

* Next pivot on column 1, row 3

X Xy Xy Xy Xs Vi Vo W

1 0 1 1 0O 1 -1 0 8
033 1 0 -033 0 O 033 0 4
3 0 0 1 -1 0 -1 1 12
-4 0 -1 =2 1 0 3 0 -20
*  Which gives
X X X Xy Xs M V2 Vs

0O 1 067 033 1 -067 -033 4

1 0 -044 011 0 044 -0.11 2.67
0 0 033 -033 0 -033 033 4.0
0 -1 -0.67 -033 0 1.67 133 -4

S = O O



LP Tableau Pivoting, Example, cont.
A]M
* Next pivot on column 3, row 1

X Xy X Xy Xs by Vs V3 . .
0 0 1 067 033 1 -067 -033 4 negative relative

0 1 0 —044 011 0 044 -011 267  Costswearedone (with
1 0 0 033 -033 0 -033 033 4 getting a starting solution)

0O 0 -1 -0.67 -033 0 167 133 4
*  Which gives

Since there are no

XXy Xy Xy Xs N W Vs

O 0 1 067 033 1 -067 -033 4
o 1 0 -044 0.11 0 044 -0.11 2.67
1 0 0 033 -033 0 -033 0.33 -4
0O 0 O 0 0 1 1 1 0
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LP Tableau Full Problem
A]M
* The tableau from the end of the artificial problem 1s used as the starting

point for the actual solution

~ Remove the artificial variables

— Update the relative costs with the costs from the original problem and update the
bottom right-hand corner value

¢=[02 025 0 0 O]

_ -1 _

, 0.67 033 .
0 0.04
r=| | -[0 025 02] -044 0.11 |=
0 0.04
0.33 —0.33

* Since none of the relative costs are negative we are done with x,=4,
X,=2.7 and x;=4 58



Marginal Costs of Constraint Enforcement in LP

A] ¥

If we would like to determine how the cost function

will change for changes in b, assuming the set

of basic variables does not change The marginal costs will be
used to determine the OPF
then we need to calculate locational marginal costs
_ LMP
oz _O(epxp) _O(ezAgb) (L)
cb ob ob

So the values of A tell the marginal cost of enforcing

each constraint.
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Nutrition Problem Marginal Costs

In this problem we had basic variables 1, 2, 3;
nonbasic variables of 4 and 5

> 3 1T'T201 T 4 7  Thereis no marginal
| B B cost with the first
Xg = A, (b—Ayxy)=|1 3 0 12/=|2.67 constraint since it is
4 3 0] (24 | 4 | not binding; values
_ 1 . _ tell how cost changes

if the b values were

2 3 1
h=cgA'=[02 025 0]]1 3 0| =|0.044| changed
4 30
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Lumber Mill Example Solution

A] ¥

Minimize -(100x; +120x,)
S.t. 2x;+2xy +x;=38

An 1nitial basic feasible solution

X, Xy, X2,%X4 =0 . :
1542543574 Economic interpretation of A

The solution 1s X = 2.5,)62 — 1.5,)63 — O,x4 =0 is the profit 1s increased by
35 for every hour we up the

—1
_ 2 2 35 first constraint (the saw) and
Then 4 _[100 120]{3 5} - LO} by 10 for every hour we up the

second constraint (plane)
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Complications

Often variables are not limited to being > 0

— Variables with just a single limit can be handled by substitution; for
example i1f x > 5 then x-5=z2 >0

— Bounded variables, high > x > 0 can be handled with a slack variable so x +
y = high, and x,y = 0
Unbounded conditions need to be detected (1.e., unable to pivot);
also the solution set could be null
Minimize x;—x, s.t. x; +x, =8
— X +x, — ¥, =8 = x, =8 1s a basic feasible solution
oY N
1 1 -1 8
2 0 -1 8 62



Complications
T
* Degenerate Solutions
— Occur when there are less than m basic variables > 0
— When this occurs the variable entering the basis could also have a value of zero; it
1s possible to cycle, anti-cycling techniques could be used
* Nonlinear cost functions
— Nonlinear cost functions could be approximated by assuming a piecewise linear
cost function
* Integer variables

~- Sometimes some variables must be integers; known as integer programming;
we’ll discuss after some power examples
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LP Optimal Power Flow

e LP OPF was introduced in

- B. Stott, E. Hobson, “Power System Security Control
Calculations using Linear Programming,” (Parts 1 and 2) /[EEE
Trans. Power App and Syst., Sept/Oct 1978

— 0. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments
in LP-based Optimal Power Flow,” IEEE Trans. Power
Systems, August 1990

* It 1s a widely used technique, particularly for real power
optimization; it 1s the technique used in PowerWorld

64



LP Optimal Power Flow

* Idea 1s to iterate between solving the power flow, and
solving an LP with just a selected number of
constraints enforced

* The power flow (which could be ac or dc) enforces
the standard power flow constraints

* The LP equality constraints include enforcing area
interchange, while the inequality constraints include
enforcing line limits; controls include changes in
generator outputs

* LP results are transferred to the power flow, which 1s
then resolved
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LP OPF Introductory Example

In PowerWorld load the B3LP case and then
display the LP OPF Dialog (select Add-Ons, OPF
Case Info, OPF Options and Results)

Use Solve LP OPF to
solve the OPF, initially ‘ e
with no line limits
enforced; this 1s similar
to economic dispatch
with a single power
balance equality constraint

The LP results are available from various pages on
the dialog



LP OPF Introductory Example, cont

[®] Lr OPF Dialog - o IEEH

w  Options LP Solution Details
- Common Options

- Constraint Options
~ Control Options D =2 R LR ?&D Records * Set = Columns =
- Advanced Options

v Results Constraint 1D Contingency ID RHS b value | Lambda
- Solution Summary

- Bus MW Marginal Price Details
- Bus Mvar Marginal Price Details
- Bus Marginal Controls

v LP Solution Details

- 4l LP Variables

- LP Basic Variables

- LP* Basis Matrix

- Inverse of LP Basis

- Trace Solution

AllLP Variables  LP Basic Variables LP Basis Matrix  Inverse of LP Basis = Trace Solution

AU L) SORT p— R
o - e B ww fpg - B options -

Slack Pos Gen 1#1 MW
Control

10.004 4 D00

oy

Area 1 MW Constraint Base Case

LP OFF Dialog

~ - Options LP Solution Details
i - Common Options

- Constraint Cptions

- Control Options D = % Al %58 ;%8 | 34 ?&n Records ~ Set~ Columns -

- Advanced Options

“ -Results =

[ i Soltion Summary _ Cen 1 =1 1V Contral 7

- Bus MW Margln.al Pr\c.e Detall§ Gen 2 =1 MW Control

- Bus Mvar Marginal Price Details Gen 3 #1 MW Contral

i - Bus Marginal Controls Stack-Area Home

“ - LP Solution Details

- AllLP Variables

- LP Basic Variables

- LP Basis Matrix

-Inverse of LP Basis

1 i Trace Solution

AllLP Variables  LP Basic Variables ' LP Basis Matrix  Inverse of LP Basis  Trace Solution

W - B 55 - B | Options-

Drelta Value BasicVar MonBasicar | CostiDown) Cost{Up) Down Range | Up Range |Reduced Cost Up| Reduced Cost

Drown

0.001

Org. Value ‘ Value

@

coad

@

SEins

[=R=N-N-]

10.00 1
At Min 1
At Min Y
At Min At

). 20.000 &0
At Min 0.
At Min 0.
At Min AL M

P

-k
S a s
=
oo
e
S8

[0

S o a0
Saaa0
ER=-R-R-]
e

&

o0
00
00
00

£

= =]

1

&
=




LP OPF Introductory Example, cont

* On use Options, Constraint Options to enable the
enforcement of the Line/Transformer MV A limits

LP OPF Dialag

 -Options Oplions

- Common Options ; 7

o Common Options  Constraint Options  Control Options  Advanced Cptions

- Control Options Line/Transformer Constraints

wlehemend Dpiides [ ] Disable Line/Transformer MVA Limit Enforcement H;dcil?vIﬁgf_ﬁﬂ%ﬁ;ﬁ:?&?:;: perceniages,
» -Results -

. Solution Summary Percent Correction Tolerance | 2003

. i ? = Limit Monitoring Settings ...
- Bus MW Marginal Price Details MyA Auto Release Percentage | 75.0 - -

-

- Bus Mwar Marginal Price Details -
. Bus Marginal Controls Maxirmum Violation Cost ($MWhr) | 1000.0|2

Bus Constraints

~ -LP Solution Dgtenls [l enforce Line/Transformer M Flow Limits {not MVA) Disable Bus Angle Enforcement
- All LP Yariables ———x
2 f ¢ f
.. LP Basic Variables Inter facs Constaints Maximum Violation Cost ($/deg-h) 1000.0|=
- LP Basis Matrix
) - _
- Inverse of LP Basis [ pisable Interface MW Limit Enforcement D-FACTS Constraints
. Trace Solution Percent Correction Tolerance 2.00= []Enforce Limits on Mumber of D-FACTS Devices in OFF
MW Auto Release Percentage 75.00= Maximum Number of DFACTS Devices 1000 =
Maximum Violation Cost {$MWhr) 1uou.o| = Maximum Violation Cost ($fnum-h) 1000.0 i

Phase Shifting Transformer Regulation Limits
[ bisable Phase Shifter Regulation Limit Enforcement

In Range Cost ($/MWhr) 0.10[=

Maximum Violation Cost (§/MWhr) 1000.02




LP OPF Introductory Example, cont.

AlM

®

[®) Lp OPF Dialog

“  Options LP Solution Details

- Common Options
- Constraint Options
- Control Options AT Bk %8 5% ¢4 #  Records~ Set~ Columns -
i - Advanced Options
v Results
¢ -Solution Summary —

Bus MW Marginal Price Details 12 g:: 1 ;:: :‘ Jr:r E;::;g:
-~ Bug Mvar Marginal Price Details 3|Gen 3 #1 MW Control
i - Bus Marginal Controls 4|Slack-Area Home
~ LP Salution Details 5|Slack-line 1 TO 3 CKT1
-+ &ll LP Variables

LP Basic Variables
-~ LP Basis Matrix
-~ Inverse of LP Basis
- Trace Solution

AlILP Varizbles P Basic Variables  LP Basis Matrix Inverse of LP Basis Trace Solution

iy, SiRT
ﬁg, ngj;v = RN TR Bl | options ~

[ Org. Value Basicvar MonBasicVar | Cost{Down) Cost{Up) Down Range | UpRange |Reduced CostUp| Reduced Cost At
Down Breakpoint?

Value ‘ Delta Value

40,000
60,000
At Min
At Min

At Min

10.00 1
12.00 1
At Min 20.0
At Min At I
At Min 0.0

&

555
A==l
ooB
e
RN

= oo R g

x

Sposs
EEE a8
cooamn
=]
skss8
BEs88
sksass

r
5]
5]
=)

=)

s

LP OPF Dialog

~ - Options LP Solution Details
Commaon Options

- Constraint Options
- Control Options i B ol %8 2% 8% 84 Records - Set+ Columns~ f
- Advanced Options

esults

- Solution Summary

- Bus MW Marginal Price Details
- Bus Myar Marginal Price Details
i “-Bus Marginal Controls

~ - LP Solution Details o 2 1)

- All LP Variables Bus 2 Bus 1

- LP Basic Variables

/P Basis Matrix @%

- Inverse of LP Basis

- Trace Solution 60.0 MW

All LP Variables  LP Basic Variables LP Basis Matrix  Inverse of LP Basis  Trace Solution

A Options =

Gen 2 #1 MW Gen 1 #1 MW

Control Control
10.002 4 1.000 1.000
5.995 o -0.333

Slack Pos

Constraint ID Contingency ID

RHS b value ‘ Lambda

1Jarea 1 MW Constraint Base Case
2|Linefrom 1to 3kt 1 Base Case

10.00 $/MWh

12.00 $/MWh

120.0 MW

Total Cost

1920 h
2 14.00 $/MWh

180w




Example 6 _23 Optimal Power Flow

X) 6_23_OPF.PWB Status: Initialized | Simulator 21
w  Onelines  Tools  Options  AddOns  Window L
® : o = i Lt lO n S
: 4 i n tne ’
L= Solve TR mulation... bt & Other ~
L Simulator Continger G Sensitivi Limit Dif Scale

= - It ’X)_E‘G % Model  Connections
[®] Example6 23 OPF EnVernment
62 MW 62 MW 28 MW . .
1.05 pu 2> v~ page the simulation can be
1 14.50 $/MWh

NL 14.50 $/Mv
LD 57 1’ m . settosolve an OPF when

AGC ON var . .
* ™ simulating
MW

.
519 //3?///;%y/,
VA 8%
wa

Y
o
57
16 MW
79 MW g 21t M ’ .
- 0y . -
1.04 p >—>—>p—— . 0.99 pu
5 i », = 14.50 $/MWh Rl 14.50 $/MwWh
39 MW £ 181w 127. 4fMW
20 Mvar AGC OR ly 39.2 Mvar
Total Hourly Cost: 5724.27 $/h Load Scalar: 1.00f
Total Area Load: 392.0 MW

AGC ON

Marginal Cost ($/MWh): 14.50 $/MWh

Viening Present.

the load 1s gradually increased



Locational Marginal Costs (LMPs)

* In an OPF solution, the bus LMPs tell the marginal
cost of supplying electricity to that bus

* The term “congestion” 1s used to indicate when there
are elements (such as transmission lines or
transformers) that are at their limits; that 1s, the
constraint 1s binding

* Without losses and without congestion, all the LMPs
would be the same

* Congestion or losses causes unequal LMPs

* LMPs are often shown using color contours; a
challenge is to select the right color range!



Example 6 23 Optimal Power Flow with Load
Scale =1.72

BE-LREER ®F--

Case Information Draw Onelines Toals Options

Example6_23 - Case: Example6_23.pwb Status: Initialized | Simulator 20

Add Ons Window

17.08 $/MWh
67 MW 252[gpw T 219, 1w
34 Mvar HEc O 67.4 Mvar
Total Hourly Cost: 10308.49 $/h Load Scalar: 1_72@
Total Area Load: 674.2 MW
19.46 $/MWh

Marginal Cost ($/MWh) :

| Viewing Present

Solution Animation Running



Example 6 23 Optimal Power Flow with Load
Scale =1.72

« LP SensmVlty Matrlx (A Matrlx)

® % -
[®) Lr oPF Dialo
v -Options
Common Options
onstraint Option: abl P Basic Variables LP jon
ol Opers DB M i & -
nced
Constraint ID | mbda |S|a(kF |
uuuuuuuuuuuuuu — ; = ool — — —
MW Marginal Price Details :‘L’»::ﬁol Sp f0541 S s S oG
Mvar ginal tails
Marginal Contr
tion Details
LP Variables
Basic Variables
Basis Matrix
verse of LP Basis
ce Solution

The first row 1s the power balance constraint, while
the second row i1s the line flow constraint. The matrix
only has the line flows that are being enforced.



Example 6 23 Optimal Power Flow with Load
Scale = 1.82

e This situation 1s infeasible, at least with available
controls. There is a solution because the OPF 1s
allowing one of the constraints to violate (at high
cost) e - S A




Generator Cost Curve Modeling

AJM
LP algorithms require linear cost curves, with piecewise linear curves used
to approximate a nonlinear cost function

Two common ways

Generator Information fo esen
.
- Z Status
of enterin g Co St sotumbe [ (% edsitiabe SO0
Bus Name |1 vl Find By Name (@) Closed
Energized
L] L] D |1
e il ) (OFf
Imrormation arc . o
Labels ... |no labels Fuel Type | Unknown
Generator MVA Base| 100.00 | UnitType | UN {Unknown)

- Quadratic function Power and Voltage Control  Costs  OPF  Faults  Owners, Area, etc.  Custom | Stability

Output Cost Model  Bid Scale/Shift  OPF Reserve Bids
Model Cubic Cost Model

— Piecewise linear curve S

A (Enter as Fixed Cost]

() Piecewise Linear
L |
The PO‘A 7erWOr1d O P F Unit Fuel Cost {$/MBtu) 10002 C  |0.00001
Varizble Q&M (gMwh) 0.000[2 D |0.00000

Fixed Costs {costs at zero MW output)

Supp Ort S b Oth typ e S Fuel Cost Independent Value (s4r) | 0.00] i et [ o

Fuel Cost Dependent Yalue (Mbtu/hr) 00005 | ConverttoLinear Cost
0.00

Total Fixed Costs ($/hr)




Security Constrained OPF
i
Security constrained optimal power flow (SCOPF) 1s similar to OPF
except 1t also includes contingency constraints

— Again the goal is to minimize some objective function, usually the current system
cost, subject to a variety of equality and inequality constraints

— This adds significantly more computation, but is required to simulate how the
system is actually operated (with N-1 reliability)

A common solution is to alternate between solving a power flow and
contingency analysis, and an LP



Security Constrained OPF, cont.
T
* With the inclusion of contingencies, there needs to be a distinction
between what control actions must be done pre-contingent, and which
ones can be done post-contingent

— The advantage of post-contingent control actions 1s they would only need to be done
in the unlikely event the contingency actually occurs
* Pre-contingent control actions are usually done for line overloads, while
post-contingent control actions are done for most reactive power control
and generator outage re-dispatch



SCOPF Example

 We’ll again consider Example 6 23, except now it has
been enhanced to include contingencies and we’ve also
greatly increased the capacity on the line between buses
4 and 5; named Bus5 SCOPF DC

26 MW A 78 MW 82 MW 82 MW 26 MH 8 ]

82 MW 82 MW
Y 570, 29 . 29 M 2% > 10> < 29 M
1.05pu [ 2 A% 5 W00 P =Gy 4 V1.0 pu var 1.05 pu P 2 H 5-L1.00 Py 2 Y100 pu A ver
1 A 14.33 $/Mih ¥ 14.87 $/mwn 7" A 15.05 $/Mih 1 A\ 14.33 §/Mith ® 14.87 $/mwn " R 15.05 $/MWh
53 MW LA 1358 91 147 MW 96 MW, 53 MW Y 1358 o1 My 1 A
Y AGC ON v 39 Mvar AGC ON e
6 0% 84w 36% 0% L 84ffw
0 MW

36%
AGC ON - . AGC ON
91 MW 91 S>>
53 MW of i 53 MW
1.04 pu I ® 0 MW | | 0.82 pu .04 pu A . u
L 14.20 $/MWh 5 1540.19 $/MWh L 14.20 $/MWh 15.05 $/MWl

2
39 MW 173 \y 127 4w 39 MW 173w 127. 48MW
20 Mvar ACCHON 39.2 Mvar 20 Mvar ACCRON

39.2 Mvar
Total Hourly Cost: 5729.74 $/h Load Scalar: 1.00§ 11 Hourly Cost: 5729.74 $/h Load Scalar: 1.00
Total Area Load: 392.0 MW 11 Area Load: 392.0 MW
Marginal Cost ($/MWwh): 319.73 $/MWh jfinal Cost ($/MWh): 14.70 $/MWh

Original with line 4-5 limit Modified with line 4-5 limit
of 60 MW with 2-5 out of 200 MVA with 2-5 out



PowerWorld SCOPF Application

Just click the button to solve

EE - SRHEIME®
THR E NS & "™ O
Case Information

E Run Full Security Constrained OPF ; ﬂ Cloze ? Help Save Az Aux Load Aux

Security Constrained Optimal Power Flow Form - Case: Examplef_22

Number of times
to redo contingency
analysis

Onelines Toals Cptions Add Ons Window

SCOPF Status |SCOPF Solved Correctly

+ Options Options
. Results

SCOPF Results 5
Contingency Viclations esults Summary

SCOPF Spedific Options

Bus Marginal Price Details Maximum Mumber of Outer Loop Iterations 1= Mumber of Cuter Loop Iterations .
i Bus Marginal Controls Consider Binding Contingent Violations from Last SCOPF Solution Numnber of Contingent Violations 1
* - LP Solution Details
Al LP Variables Initialize SCOPF with Previously Binding Constraints SCOPE Start Time 11/1/2017 7:55:50 AM
LP Basic Variables Set Solution as Contingency Analysis Reference Case

SCOPF End Time

LP Basis Matrix

-

Maximum Mumber of Contingency Violations Allow Per Element 12)=

|
|
|
11/1/2017 7:55:50 AM |
|
|
|

Total Solution Time {Seconds) 0.138
Basecase Solution Method Total LP Iterations 24
(®) Solve base case using the power flow
(") Solve base case using optimal power flow Final Cost Function ($/Hr) 5301.54
Handling of Contingent Violations Due to Radial Load
(®) Flag violations but do notincude them in SCOPF Contingency Analysis Input
() Completely ignore these violations - 9 - View Contingency
MNumber of Active Contingendies: - :
() Include these violations in the SCOPF - Analysis Form
Contingency Analysis Results
Solving contingency L_000003Three-000004FourC1 -
DC 5COPF Options Applied:
: OPEM Line Three_138.0 (3) TO Four_138.0 (4) CKT 1| | CHECK | | Oper
Storage and Reuse of LODFs (when appropriate) Contingency L_000003Three-000004FourC 1 successfully salved.
(® MNone (used and disgarded) Clear Stored Solving contingency L_000004Four-000005FiveC
Corﬂ_mgency Applied:
O stored in memory only il b OPEN Line Four_138.0 (4) TO Five_138.0 (5) CKT 1| | CHECK | | Opene

Contingency L_000004Four-000005FiveC 1 successfully solved.

Stored in memory and case pwb file
O v Contingency Analysis finished at Movember 01, 2017 07:55:50

< >

®



LP OPF and SCOPF Issues

* The LP approach is widely used for the OPF and
SCOPF, particularly when implementing a dc power
flow approach

* A key issue 1s determining the number of binding
constraints to enforce in the LP tableau
— Enforcing too many is time-consuming, enforcing too few
results in excessive iterations
* The LP approach 1s limited by the degree of linearity
in the power system

— Real power constraints are fairly linear, reactive power
constraints much less so



OPF Solution by Newton’s Method

* An alternative to using the LP approach is to use
Newton’s method, in which all the equations are
solved simultaneously

* Key paper in area 1s

— D.I. Sun, B. Ashley, B. Brewer, B.A. Hughes, and W.F.
Tinney, "Optimal Power Flow by Newton Approach", /[EEE
Trans. Power App and Syst., October 1984

e Problem is For simplicity x represents
. all the variables and we can
Minimize f(x) use h to impose limits on
S.t. g(x)=0 individual variables

h(x)<0



OPF Solution by Newton’s Method

* During the solution the inequality constraints are
either binding (=0) or nonbinding (<0)
~ The nonbinding constraints do not impact the final
solution
We’ll modify the problem to split the h vector into
the binding constraints, h, and the nonbinding
constraints, h,

Minimize f (Xx)
s.t. g(x)=0
h (x)=0

h,(x)<0



OPF Solution by Newton’s Method

* To solve first define the Lagrangian

L(x, A, },) = f(X)+p' g(x)+2 h, (x)
Letz = [x n k]

* A necessary condition for a minimum is that the
gradient 1s zero

- - Both p and A are
OL(z) Lagrange Multipliers
0z,
OL(z)

VL(z)=0=
(2) -




OPF Solution by Newton’s Method

* Solve using Newton’s method. To do this we need
to define the Hessian matrix

0*L(z) *L(z) &°L(z)
Ox,0x,  Ox,0u; OX,04,
2 2
VL(z)=H(z)=| LHB) || CE@) 0
0z,0z Op,0x
2
0" L(z) 0 0
0Adx,,

 Because this is a second order method, as opposed
to a first order linearization, 1t can better handle

system nonlinearities



OPF Solution by Newton’s Method

e Solution 1s then via the standard Newton’s method.

That 1s

Set iteration counter k=0, setk

Set convergence tolerance &

Guess z®

While (||VL(z)|

Z &, ®

Z
k=k+1
End While

>¢) and (k<k,,)

~[H(z)] VL(z)

No iteration 1S
needed for a
quadratic function
with linear
constraints



Example

« Solve

Minimize x; +x; such that 3x, +x, =2 >0

Solve initially assuming the constraint is binding
L(x,4)=x]+x;+1(3x, +x,-2)

OL No 1teration 1s
0x, 2, +31 needed so any
VL(x,4)= S—L =| 2x,+4 “guess” is fine.
Y2 3. 4+ x. =2 Pick (1,1,0)
aL 1 2
o2 |
2 0 3] [x] [17 2 o 1727 [o.6
VL(x,2)=H(x,A)=|0 2 1|>|x |=[1]-[0 2 1| |2]=]02
3 1 0 A 0 1 1 O 2 04

Because A 1s positive the constraint 1s binding



Newton OPF Comments

A]M
The Newton OPF has the advantage of being better able to handle system
nonlinearities

There 1s still the 1ssue of having to deal with determining which
constraints are binding

The Newton OPF needs to implement second order derivatives plus all the
complexities of the power flow solution

— The power flow starts off simple, but can rapidly get complex when dealing with
actual systems

There 1s still the i1ssue of handling integer variables



Mixed-Integer Programming
A]M

* A mixed-integer program (MIP) 1s an optimization problem of the form

Minimize c¢Xx

S.t. Ax=Db
x>0
where X = n-dimensional column vector

¢ = n-dimensional row vector
b = m-dimensional column vector
A = mX*n matrix

some or all x; integer



Mixed-Integer Programming

* The advances in the algorithms have been substantial

Speedups 1991-2008

| -V Speedup  ==@s=Cumulative Speedup |

Mined Theoretical
Backlog: 1998

Mature Dual
Simplex: 1994

Version-to-Version Speedup

12-21 21-3 3—4 45 56 6—6.5 6.5-71 7.1-8 8—9 9—-10 10—11

CPLEX Version-to-Version Pairs

J il

-+ 100

100000

—1 29530x%

1000

Cumulative Speedup

Speedups
from 2009
to 2015 were

about a factor
of 30

Notes are partially based on a presentation at Feb 2015 US National Academies Analytic
Foundations of the Next Generation Grid by Robert Bixby from Gurobi Optimization titled
“Advances in Mixed-Integer Programming and the Impact on Managing Electrical Power Grids”



Mixed-Integer Programming

* Suppose you were given the following choices?

— Solve a MIP with today’s solution technology on a 1991
machine

— Solve a MIP with a 1991 solution on a machine from today?

* The answer is to choose option 1, by a factor of
approximately 300

* This leads to the current debate of whether the OPF
(and SCOPF) should be solved using generic solvers or
more customized code (which could also have quite
good solvers!)

Notes are partially based on a presentation at Feb 2015 US National Academies Analytic
Foundations of the Next Generation Grid by Robert Bixby from Gurobi Optimization titled
“Advances in Mixed-Integer Programming and the Impact on Managing Electrical Power Grids”



More General Solvers Overview

* OPF i1s currently an area of active research

* Many formulations and solution methods exist...
- As do many tools for highly complex, large-scale
computing!

* While many options exist, some may work better for

certain problems or with certain programs you already
use

* Consider experimenting with a new language/solver!



Gurobi and CPLEX

Gurobi and CPLEX are two well-known
commercial optimization solvers/packages for
linear programming (LP), quadratic programming
(QP), quadratically constrained programming
(QCP), and the mixed integer (MI) counterparts of
LP/QP/QCP

Gurobi and CPLEX are accessible through object-
oriented interfaces (C++, Java, Python, C), matrix-
oriented interfaces (MATLAB) and other modeling
languages (AMPL, GAMYS)



Solver Comparison

Algorithm Type LP/MILP | QP/MIQP | SOCP | SDP
Solver " ear program i o
CPLEX* X X X
GLPK X
Gurobi* X X X
IPOPT X
Mosek* X X X X
SDPT3/SeDuMi X X

Linear programming can be solved by quadratic programming,
which can be solved by second-order cone programming, which
can be solved by semidefinite programming.



DC OPF and SCOPF

* Solving a full ac OPF or SCOPF on a large system 1s
difficult, so most electricity markets actually use the
more approximate, but much simpler DCOPF, in which
a dc power flow 1s used

* PowerWorld includes this option in the Options,
Power Flow Solution, DC Options



Example 6 13 DC SCOPF Results: Load Scalar at

1.20 T
* Now there 1s not an unenforceable constraint on the line

between 4-5 (for the line 2-5 contingency) because the

reactive losses are 1ignored

63 MW . . ‘A\94 MW
42%, [ 0 Mvar

3 MVA 4
14.81 $/MWh 16.41 $/MWh

16.89 $/MWh

87 MW A 150§MW 55 My
AGC ON

176 MW 45

58% 46% 1364MW

45% '’ AGC ON
55 MW
B 124 MW 2 L
45 ¥6A%
1.00 pu % Al 124 MW 1.00 pu
) A - 14.63 $/MWh 5 16.89 $/MWh
47 MW 1843Mw 152 9EMW
0 Mvar AGC ON 0.0 Mvar
Total Hourly Cost: 6942.99 $/h Load Scalar: 1.200
Total Area Load: 470.4 MW

Marginal Cost ($/MWh): 15.92 $/Mwh



2000 Bus Texas Synthetic DC OPF Example

* This system does a DC OPF solution, with the

ablllty to change the load in the areas

HESRE® Lab8_Texas_DCOPF - Case: Lab8_Texas DCOPF.PWB Status: Paused | Simulator 20

opti AddOns  Window
B 5 TSPISISiit Uic icai 1 SAas giig

7,1 North Area

Load: 1105 MW

Load Scalar: 0.758]
Avg.): 21.92 $/MWh

[ > |
-100.00 $/MWh

North Central Area

Load: 16696 MW

Load Scalar: 0.75H

LMP (Avg.): 26.54 $/MWh

~50.00 $/MWh

B

RSN L
. s S

West Area
{Load: 1257 MW]
Load Scalar; 0. 7m|rk
LMP (Avg.):-28.67 $

East Area

. load: 2391 MW

<. Load Scalar: 0.75%

4 LMP (Avg.): 26.39 $/MWh

Coast Area
Load: 13642 MW
Load Scalar: 0.75[

South Central Area LMP (Avg.): 25.02 $/MWh

“Sload: 9197 MW
Load Scalar: 0.753] ¥
LMP (Avg.): 24.59 $/MWh ,

South Area

Load: 5063 MW

Load Scalar: 0.753]

LMP (Avg.): 24.21 $/MWh

Solution Arimation Stopped

The quite
low LMPs
are actually
due to a
constraint
on a single

230/115 kV
transformer

A] ¥



June 1998 Heat Storm: Two Constraints Caused a
Price Spike T

Al Price of
= electricity

in Central
Illinois went
to $7500
per MWh!

Colored areas could NOT sell into Midwest because of
constraints on a line in Northern Wisconsin and on a
Transformer in Ohio



