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Announcements

• Read Chapter 8

• Read the Chapter 3 appendices (3A covers optimization with constraints, 
3B covers linear programming, 3D covers dynamic programming, and 3E 
convex optimization

• An excellent book on optimization is Linear and Nonlinear Programming 
by Luenberger and Ye (the 5th edition came out in 2021)  

• Homework 6 is now due on Thursday Nov 17 but it counts as two regular 
homeworks.

1



Power System Economic Dispatch 

• Generators can have vastly different incremental operational costs
– Some are essentially free or low cost (wind, solar, hydro, nuclear)

– Because of the large amount of natural gas generation, electricity prices are 
very dependent on natural gas prices 

• Economic dispatch is concerned with determining the best dispatch 
for generators without changing their commitment

• Unit commitment focuses on optimization over several days.  It is 
discussed in Chapter 4 of the book, but will just be briefly covered 
here
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Variation in Natural Gas Prices and Generation 
Sources

Source: 
www.eia.gov/dnav/ng/h
ist/rngwhhdm.htm
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Power System Economic Dispatch 

• Economic dispatch is formulated as a constrained minimization
– The cost function is often total generation cost in an area

– Single equality constraint is the real power balance equation

• Solved by setting up the Lagrangian (with PD the load and PL the losses, 
which are a function the generation) 

• A necessary condition for a minimum is that the gradient is zero.  Without 
losses this occurs when all generators are dispatched at the same marginal 
cost (except when they hit a limit)    
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Power System Economic Dispatch 

• If losses are neglected then there is a single marginal cost (lambda); if 
losses are included then each bus could have a different marginal cost
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Economic Dispatch Penalty Factors
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Economic Dispatch Example

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

MW Losses: 

slack

1

2

3 4

5

1.00 pu

0.96 pu1.04 pu

0.99 pu1.05 pu

 60%
A

MVA

 53%
A

MVA
 46%

A

MVA

 48%
A

MVA

 39%
A

MVA
 21%

A

MVA

 38%
A

MVA

 72 MW

 71 MW

 58 MW  56 MW  39 MW  39 MW

 54 MW

 52 MW

112 MW 107 MW

 46 MW

47 MW
 20 MW

5916.04 $/h

392.0 MW

 0.00 $/MWh

1.00

12.44 MW

0.0000

-0.0825

-0.0274

MW130.0

MW181.9

147 MW
 39 Mvar

 78 MW
 29 Mvar

127 MW
 39 Mvar

 39 MW
 20 Mvar

MW92.5

AGC ON

AGC ON

AGC ON

Case is GOS_Example6_22; use Power Flow Solution 
Options, Advanced Options to set Penalty Factors 7



Optimal Power Flow (OPF)

• OPF functionally combines the power flow with economic dispatch

• SCOPF adds in contingency analysis 

• Goal of OPF and SCOPF is to minimize a cost function, such as operating 
cost, taking into account realistic equality and inequality constraints

• Equality constraints
– bus real and reactive power balance

– generator voltage setpoints

– area MW interchange 
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OPF, cont.

• Inequality constraints
– transmission line/transformer/interface flow limits

– generator MW limits

– generator reactive power capability curves

– bus voltage magnitudes (not yet implemented in Simulator OPF)

• Available Controls
– generator MW outputs

– transformer taps and phase angles

– reactive power controls



Two Example OPF Solution Methods

• Non-linear approach using Newton’s method
– handles marginal losses well, but is relatively slow and has problems 

determining binding constraints

– Generation costs (and other costs) represented by quadratic or cubic 
functions 

• Linear Programming 
– fast and efficient in determining binding constraints, but can have 

difficulty with marginal losses.

– used in PowerWorld Simulator

– generation costs (and other costs) represented by piecewise linear 
functions

• Both can be implemented using an ac or dc power flow
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OPF and SCOPF Current Status

• OPF (really SCOPF) is currently an area of active  research, with ARPA-E 
having an SCOPF competition (see gocompetition.energy.gov)

• A 2016 National Academies Press report, titled “Analytic Research 
Foundations for the Next-Generation Electric Grid,” recommended 
improved AC OPF models
– I would recommend reading this report; it provides good background on power 

systems include OPF

– It is available for free at www.nap.edu/catalog/21919/analytic-research-foundations-
for-the-next-generation-electric-grid
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OPF and SCOPF History

• A nice OPF history from Dec 2012 is provided by the below link, and 
briefly summarized here 

• Prior to digital computers economic dispatch was solved by hand and the 
power flow with network analyzers

• Digital power flow developed in late 50’s to early 60’s

• First OPF formulations in the 1960’s
– J. Carpienterm, “Contribution e l’étude do Dispatching Economique,” Bulletin 

Society Francaise Electriciens, 1962

– H.W. Dommel, W.F. Tinney, “Optimal power flow solutions,” IEEE Trans. Power 
App. and Systems, Oct. 1968

• “Only a small extension of the power flow program is required” 

www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers/acopf-1-history-formulation-testing.pdf (by M Cain, R. O’Neill, A. Castillo)
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OPF and SCOPF History

• A linear programming (LP) approach was presented by Stott and Hobson 
in 1978
– B. Stott, E. Hobson, “Power System Security Control Calculations using Linear 

Programming,” (Parts 1 and 2) IEEE Trans. Power App and Syst., Sept/Oct 1978

• Optimal Power Flow By Newton’s Method
– D.I. Sun, B. Ashley, B. Brewer, B.A. Hughes, and W.F. Tinney, "Optimal Power 

Flow by Newton Approach", IEEE Trans. Power App and Syst., October 1984

• Follow-up LP OPF paper in 1990
– O. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments in LP-based Optimal 

Power Flow,” IEEE Trans. Power Systems, August 1990
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OPF and SCOPF History

• Critique of OPF Algorithms
– W.F. Tinney, J.M. Bright, K.D. Demaree, B.A. Hughes, “Some Deficiencies in 

Optimal Power Flow,” IEEE Trans. Power Systems, May 1988

• Hundreds of other papers on OPF

• Comparison of ac and dc optimal power flow methods
– T.J. Overbye, X. Cheng, Y. San, “A Comparison of the AC and DC Power Flow 

Models for LMP Calculations,” Proc. 37th Hawaii International Conf. on System 
Sciences, 2004
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Key SCOPF Application: Locational Marginal 
Prices (LMPs)

• The locational marginal price (LMP) tells the cost of providing electricity 
to a given location (bus) in the system

• Concept introduced by Schweppe in 1985
– F.C. Schweppe, M. Caramanis, R. Tabors, “Evaluation of Spot Price Based 

Electricity Rates,” IEEE Trans. Power App and Syst., July 1985 

• LMPs are a direct result of an SCOPF, and are widely used in many 
electricity markets worldwide
–
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Example MISO LMP Contour, 11/11/2022

[1] T.J. Overbye, R.P. Klump, J.D. Weber, “A 
Virtual Environment for Interactive Visualization 
of Power System Economic and Security 
Information,” IEEE PES 1999 Summer Meeting, 
Edmonton, AB, Canada, July 1999

LMPs are now widely visualized
using color contours; the first use 
of LMP color contours was 
presented in [1]
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Example LMP Contour: 10/27/2020

Note the 
wide range
in LMPs
including 
some negative
values!

This is just
the real-time
market; most
electricity
is not traded
here.  
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ERCOT LMPs, Nov 11, 2022 at 4:25 pm
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OPF Problem Formulation

• The OPF is usually formulated as a minimization with equality and 
inequality constraints

where x is a vector of dependent variables (such as the bus voltage 
magnitudes and angles), u is a vector of the control variables, F(x,u) is 
the scalar objective function, g is a set of equality constraints (e.g., the 
power balance equations) and h is a set of inequality
constraints (such as line flows) 

min max

min max

Minimize F( , )

( , )

( , )


 

 

x u

g x u 0

h h x u h

u u u
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slack

Total Hourly Cost :
Area Lambda :

Bus A Bus B

8459 $/h
13.02 $/MWh

13.02 $/MWh 13.02 $/MWh

MW203.0

AGC ON AGC ON

MW397.0

MW300.0 MW300.0

 81%
A

MVA

Two Bus with Unconstrained Line

Transmission line is 
not overloaded

With no overloads 
the OPF matches
the economic
dispatch

Marginal cost of supplying power to each bus 
(locational marginal costs)
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slack

Total Hourly Cost :
Area Lambda :

Bus A Bus B

9514 $/h
13.26 $/MWh

13.43 $/MWh 13.08 $/MWh

MW260.9

AGC ON AGC ON

MW419.1

MW380.0 MW300.0

100%
A

MVA

Two Bus with Constrained Line

With the line loaded to its limit, additional load at Bus A must 
be supplied locally, causing the marginal costs to diverge.  
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Three Bus (B3) Example

• Consider a three bus case (Bus 1 is system slack), with all buses 
connected through 0.1 pu reactance lines, each with a 100 MVA limit

• Let the generator marginal costs be 
– Bus 1: 10 $ / MWhr; Range = 0 to 400 MW

– Bus 2: 12 $ / MWhr; Range = 0 to 400 MW

– Bus 3: 20 $ / MWhr; Range = 0 to 400 MW

• Assume a single 180 MW load at bus 2
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Bus 2 Bus 1

Bus 3

Total Cost

0.0 MW

  0 MW

180 MW

10.00 $/MWh

 60 MW  60 MW

 60 MW

 60 MW
120 MW

120 MW

10.00 $/MWh

10.00 $/MWh

180.0 MW

  0 MW

1800 $/hr 

120%

120%

B3 with Line Limits NOT Enforced

Line between 
Bus 1and Bus 3 
is overloaded; 
all buses have 
the same 
marginal cost
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B3 with Line Limits Enforced

Bus 2 Bus 1

Bus 3

Total Cost

60.0 MW

  0 MW

180 MW

12.00 $/MWh

 20 MW  20 MW

 80 MW

 80 MW
100 MW

100 MW

10.00 $/MWh

14.00 $/MWh

120.0 MW

  0 MW

1920 $/hr 

100%

100% LP OPF changes 
generation to 
remove violation.
Bus marginal
costs are now
different.  
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Bus 2 Bus 1

Bus 3

Total Cost

62.0 MW

  0 MW

181 MW

12.00 $/MWh

 19 MW  19 MW

 81 MW

 81 MW
100 MW

100 MW

10.00 $/MWh

14.00 $/MWh

119.0 MW

  0 MW

1934 $/hr 

 81%

 81%

100%

100%

Verify Bus 3 Marginal Cost

One additional MW
of load at bus 3 
raised total cost by
14 $/hr, as G2 went
up by 2 MW and G1
went down by 1MW 
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Why is bus 3 LMP = $14 /MWh

• All lines have equal impedance.  Power flow in a simple network 
distributes inversely to impedance of path.  
– For bus 1 to supply 1 MW to bus 3, 2/3 MW would take direct path from 1 to 3, 

while 1/3 MW would “loop around” from 1 to 2 to 3.  

– Likewise, for bus 2 to supply 1 MW to bus 3, 2/3MW would go from 2 to 3, while 
1/3 MW would go from 2 to 1to 3.
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Why is bus 3 LMP $ 14 / MWh, cont’d

• With the line from 1 to 3 limited, no additional power flows are 
allowed on it.

• To supply 1 more MW to bus 3 we need 
– PG1 + PG2 = 1 MW

– 2/3  PG1 + 1/3  PG2 = 0;  (no more flow on 1-3)

• Solving requires we up PG2 by 2 MW and drop PG1 by 1 MW -- a net 
increase of $24 – $10 = $14.
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Both lines into Bus 3 Congested

Bus 2 Bus 1

Bus 3

Total Cost

100.0 MW

  4 MW

204 MW

12.00 $/MWh

  0 MW   0 MW

100 MW

100 MW
100 MW

100 MW

10.00 $/MWh

20.00 $/MWh

100.0 MW

  0 MW

2280 $/hr 

100% 100%

100% 100%
For bus 3 loads
above 200 MW,
the load must be
supplied locally.
Then what if the
bus 3 generator 
opens? 
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Both lines into Bus 3 Congested

An infeasible example can be created by opening the generator 
at Bus 3 with the Bus 3 load above 200 MW.  There is no way 
to serve the load without overloading a transmission line.   
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LP OPF Solution Method

• There are different OPF solution techniques.  One common approach uses 
linear programming (LP)

• The LP approach iterates between
– solving a full ac or dc power flow solution

• enforces real/reactive power balance at each bus

• enforces generator reactive limits

• system controls are assumed fixed 

• takes into account non-linearities

– solving a primal LP

• changes system controls to enforce linearized constraints while minimizing cost
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Quick Coverage of Linear Programming

• LP is probably the most widely used mathematical programming 
technique

• It is used to solve linear, constrained minimization (or maximization) 
problems in which the objective function and the constraints can be 
written as linear functions
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Example Problem 1

• Assume that you operate a lumber mill which makes both construction-
grade and finish-grade boards from the logs it receives.  Suppose it takes 
2 hours to rough-saw and 3 hours to plane each 1000 board feet of 
construction-grade boards.  Finish-grade boards take 2 hours to rough-
saw and 5 hours to plane for each 1000 board feet.  Assume that the saw 
is available 8 hours per day, while the plane is available 15 hours per 
day.  If the profit per 1000 board feet is $100 for construction-grade and 
$120 for finish-grade, how many board feet of each should you make 
per day to maximize your profit?
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Problem 1 Setup

1 2

1 2

1 2

1 2

1 2

Let x =amount of cg, x = amount of fg

Maximize    100 120

s.t.                2 2 8

                     3 5 15

                     , 0

x x

x x

x x

x x


 
 


Notice that all of the equations are linear, but they are 
inequality, as opposed to equality, constraints; we are 
seeking to determine the values of x1 and x2
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Example Problem 2 (Nutritionist Problem)

• A nutritionist is planning a meal with 2 foods: A and B.  Each ounce of A 
costs $ 0.20, and has 2 units of fat, 1 of carbohydrate, and 4 of protein. 
Each ounce of B costs $0.25, and has 3 units of fat, 3 of carbohydrate, and 
3 of protein.  Provide the least cost meal which has no more than 20 units 
of fat, but with at least 12 units of carbohydrates and 24 units of protein. 
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Problem 2 Setup

1 2

1 2

1 2

1 2

1 2

1 2

Let x =ounces of A, x = ounces of B

Minimize    0.20 0.25

s.t.                2 3 20

                     3 12

                     4 3 24

                     , 0

x x

x x

x x

x x

x x


 
 
 


Again all of the equations are linear, but they are inequality, as opposed 
to equality, constraints; we are again seeking to determine the values of 
x1 and x2; notice there are also more constraints than solution variables 
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Three Bus Case Formulation

• For the earlier three bus system given the initial condition of an 
overloaded transmission line, minimize the cost of generation such that 
the change in generation 
is zero, and the flow 
on the line between
buses 1 and 3 is not 
violating its limit

• Can be setup consider-
ing the change in
generation, (PG1, PG2, PG3) 

Bus 2 Bus 1

Bus 3

Total Cost

0.0 MW

  0 MW

180 MW

10.00 $/MWh

 60 MW  60 MW

 60 MW

 60 MW
120 MW

120 MW

10.00 $/MWh

10.00 $/MWh

180.0 MW

  0 MW

1800 $/hr 

120%

120%

36



Three Bus Case Problem Setup

1 G1 2 G2 3 G3

1 2 3

1 2

1 2 3

1 2 3

Let x = P , x = P , x = P

Minimize    10 12 20

2 1
s.t.                20

3 3
                     0

                     enforcing limits on ,  ,  

x x x

x x

x x x

x x x

  

 

  

  

Line flow constraint

Power balance constraint
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LP Standard Form

The standard form of the LP problem is 

Minimize    

s.t.               

                     

where         n-dimensional column vector

                   n-dimensional row vector

            






cx

Ax b

x 0

x

c

       m-dimensional column vector

                   m×n matrix

For the LP problem usually n>> m




b

A

Maximum problems can be treated as 
minimizing the negative

The previous examples were not in this form!
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Replacing Inequality Constraints with Equality 
Constraints

• The LP standard form does not allow inequality constraints

• Inequality constraints can be replaced with equality constraints 
through the introduction of slack variables, each of which must 
be greater than or equal to zero

• Slack variables have no cost associated with them; they merely 
tell how far a constraint is from being binding, which will occur 
when its slack variable is zero 

  with 0

  with 0
i i i i

i i i i

b y b y

b y b y

    

    

 

 
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Lumber Mill Example with Slack Variables

• Let the slack variables be x3 and x4, so

1 2

1 2 3

1 2 4

1 2 3 4

Minimize    -(100 120 )

s.t.                2 2 8

                     3 5 15

                     , , , 0

x x

x x x

x x x

x x x x


  

  


Minimize the negative
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LP Definitions

A vector  is said to be basic if 

1.  

2.  At most m components of  are non-zero; these

are called the basic variables; the rest are non basic 

variables; if there are less than m non-zeros then 

 i


x

Ax b

x

x

 

   

B
B

N

B 1
B N

N

s called degenerate

Define   (with  basic) and 

With    so    

B N

B N B N


 
  
 

 
   

 

x
x x A A A

x

x
A A b x A b A x

x

AB is called the basis matrix

This is a key LP concept!
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Fundamental LP Theorem

• Given an LP in standard form with A of rank m then
– If there is a feasible solution, there is a basic feasible solution

– If there is an optimal, feasible solution, then there is an optimal, basic feasible 
solution

• Note, there could be a LARGE number of basic, feasible solutions
– Simplex algorithm determines the optimal, 

basic feasible solution usually very quickly
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LP Graphical Interpretation 

• The LP constraints define a polyhedron in the solution space
– This is a polytope if the polyhedron is bounded and nonempty

– The basic, feasible 
solutions are
vertices of this
polyhedron

– With the linear cost
function the solution
will be at one of
vertices

Image: Figure 3.26 from course text

A polyhedron can be 
unbounded
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Simplex Algorithm

• The key is to move intelligently from one basic feasible solution (i.e., a 
vertex) to another, with the goal of continually decreasing the cost 
function

• The algorithm does this by determining the “best” variable to bring into 
the basis; this requires that another variable exit the basis, while always 
retaining a basic, feasible solution

• This is called pivoting
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Determination of Variable to Enter the Basis 

• To determine which non-basic variable should enter the basis (i.e., 
one which currently 0), look at how the cost function changes w.r.t. 
to a change in a non-basic variable (i.e., one that is currently zero)

 

 
1

B N

1 1
N

Define [ ]

With  

Then 

B
B N

N

B N

B B N B B N



 

 
   

 

 

  

x
z cx c c

x

x A b A x

z c A b c c A A x

Elements of xn

are all zero, but 
we are looking 
to change one 
to decrease the 
cost
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Determination of Variable to Enter the Basis, cont.

• Define the reduced (or relative) cost coefficients as

• Elements of this vector tell how the cost function will change for 
a change in a currently non-basic variable

• The variable to enter the basis is usually the one with the most 
negative relative cost

• If all the relative costs are nonnegative then we are at an optimal 
solution

1
N B B N

 r c c A A r is an n-m dimensional
row vector  
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Determination of Variable to Exit Basis

• The new variable entering the basis, say a position j, causes the 
values of all the other basic variables to change.  In order to retain a 
basic, feasible solution, we need to insure no basic variables 
become negative.  The change in the basic variables is given by 

1

where  is the value of the variable entering the

basis, and  is its associated column in 

B B B j

j





 x x A a

a A


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Determination of Variable to Exit Basis, cont.

1

We find the largest value  such 

If no such  exists then the problem is unbounded; 

otherwise at least one component of equals zero.

The associated variable exits the basis.  

B B B j

B







  x x A a 0

x




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Canonical Form

• The Simplex Method works by having the problem in what is 
known as canonical form

• Canonical form is defined as having the m basic variables with the 
property that each appears in only one equation, its coefficient in 
that equation is unity, and none of the other basic variables appear 
in the same equation

• Sometime canonical form is readily apparent 

1 2

1 2 3

1 2 4

1 2 3 4

Minimize    -(100 120 )

s.t.                2 2 8

                     3 5 15

                     , , , 0

x x

x x x

x x x

x x x x


  

  


Note that with x3 and x4 as 
basic variables AB is the 
identity matrix
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Canonical Form 

• Other times canonical form is achieved by initially adding artificial 
variables to get an initial solution

• Example of the nutrition problem in canonical form with slack and artificial 
variables (denoted as y) used to get an initial basic feasible solution

1 2

1 2 3

1 2 3 1

1 2 4 2

1 2 5 3

1 2 3 4 5

Let x =ounces of A, x = ounces of B

Minimize    y +y +y

s.t.                2 3 20

                     3 12

                     4 3 24

                     , , , , ,

x x x y

x x x y

x x x y

x x x x x

   

   
   

1 2 3, , 0y y y 

Note that with y1, y2, 
and y3 as basic 
variables AB is the 
identity matrix
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LP Tableau

• With the system in canonical form, the Simplex solution process 
can be illustrated by forming what is known as the LP tableau
– Initially this corresponds to the A matrix, with a column appended to 

include the b vector, and a row added to give the relative cost coefficients; 
the last element is the negative of the cost function value

– Define the tableau as Y, with elements Yij

– In canonical form the last column of the tableau gives the values of the 
basic variables

• During the solution the tableau is updated by pivoting
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LP Tableau for the Nutrition Problem with Artificial 
Variables

• When in canonical form the relative costs vector is

• The initial tableau for the artificial problem is then

 

1

0 7

2 3 1 0 00 9

1 1 1 1 3 0 1 00 1

4 3 0 0 10 1

0 1

N B B N B N

T T

  

   
                        
      

r c c A A c A

r

1 2 3 4 5 1 2 3

2 3 1 0 0 1 0 0 20

1 3 0 1 0 0 1 0 12

4 3 0 0 1 0 0 1 24

7 9 1 1 1 0 0 0 56

x x x x x y y y




   

Note the last column 
gives the values of 
the basic variables
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LP Tableau Pivoting

• Pivoting is used to move from one basic feasible solution to another
– Select the pivot column (i.e., the variable coming into the basis, say q) as the 

one with the most negative relative cost

– Select the pivot row (i.e., the variable going out of the basis) as the one with 
the smallest ratio of xi/Yiq for Yiq >0; define this as row p (xi is given in the 
last column)

1

That is, we find the largest value  such 

If no such  exists then the problem is unbounded; 

otherwise at least one component of equals zero.

The associated variable exits the basis.

B B B q

B







  x x A a 0

x




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LP Tableau Pivoting for Nutrition Problem

• Starting at

• Pivot on column q=2; for row get minimum of 
{20/3, 12/3, 24/3), which is row p=2 

1 2 3 4 5 1 2 3

2 3 1 0 0 1 0 0 20

1 3 0 1 0 0 1 0 12

4 3 0 0 1 0 0 1 24

7 9 1 1 1 0 0 0 56

x x x x x y y y




   
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LP Tableau Pivoting

• Pivoting on element Ypq is done by 
– First dividing row p by Ypq to change the pivot element to unity.

– Then subtracting from the kth row Ykq/Ypq times the pth row for all rows with Ykq <> 0

1 2 3 4 5 1 2 3

2 3 1 0 0 1 0 0 20

1 0 1 0 0 1 0 12

4 3 0 0 1 0 0 1 24

7 9 1 1 1 0 0 0 56

x x x x x y y y




   

3

1 2 3 4 5 1 2 3

1 0 1 1 0 1 1 0 8

Pivoting gives   0.33 0 0.33 0 0 0.33 0 4

3 0 0 1 1 0 1 1 12

4 0 1 2 1 0 3 0 20

1

x x x x x y y y




 
   

I’m only showing
fractions with two
ROD digits
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LP Tableau Pivoting, Example, cont.

• Next pivot on column 1, row 3

• Which gives

1 2 3 4 5 1 2 3

1 0 1 1 0 1 1 0 8

0.33 0 0.33 0 0 0.33 0 4

0 0 1 1 0 1 1 12

4 0 1 2 1 0 3 0 20

1

x x x x x y y y




 
   
3

1 2 3 4 5 1 2 3

0 0 1 0.67 0.33 1 0.67 0.33 4

0 0 0.44 0.11 0 0.44 0.11 2.67

0 0 0.33 0.33 0 0.33 0.33 4.0

0 0 1 0.67 0.33 0 1.67 1.33 4

1
1

x x x x x y y y

 
 

 
   
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LP Tableau Pivoting, Example, cont.

• Next pivot on column 3, row 1

• Which gives

1 2 3 4 5 1 2 3

0 0 1 0.67 0.33 1 0.67 0.33 4

0 0 0.44 0.11 0 0.44 0.11 2.67

0 0 0.33 0.33 0 0.33 0.33 4

0 0 0 0 0 1 1 1 0

1
1

x x x x x y y y

 
 

 

Since there are no

negative relative 
costs we are done (with 
getting a starting solution)

1 2 3 4 5 1 2 3

0 0 0.67 0.33 1 0.67 0.33 4

0 0 0.44 0.11 0 0.44 0.11 2.67

0 0 0.33 0.33 0 0.33 0.33 4

0 0 1 0.67 0.33 0 1.67 1.33 4

1
1

x x x x x y y y

 
 

 
   

1
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LP Tableau Full Problem

• The tableau from the end of the artificial problem is used as the starting 
point for the actual solution
– Remove the artificial variables

– Update the relative costs with the costs from the original problem and update the 
bottom right-hand corner value 

• Since none of the relative costs are negative we are done with x1=4, 
x2=2.7 and x3=4

 

1

[0.2 0.25 0 0 0]

0.67 0.33
0 0.04

0 0.25 0.2 0.44 0.11
0 0.04

0.33 0.33

N B B N B N

T T





  

 
                

c

r c c A A c A

r
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Marginal Costs of Constraint Enforcement in LP

1
1

If we would like to determine how the cost function

will change for changes in , assuming the set

of basic variables does not change 

then we need to calculate 

( ) ( )

So the

B B B B
B B

z 
  

   
  

b

c x c A b
c A λ

b b b
 values of  tell the marginal cost of enforcing

each constraint. 

λ

The marginal costs will be 
used to determine the OPF 
locational marginal costs 
(LMPs)
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Nutrition Problem Marginal Costs

• In this problem we had basic variables 1, 2, 3; 
nonbasic variables of 4 and 5

 

 

B

B

1

1
B N N

1

1
B

2 3 1 20 4

1 3 0 12 2.67

4 3 0 24 4

2 3 1 0

0.2 0.25 0 1 3 0 0.044

4 3 0 0.039









     
             
          

   
        
      

x A b A x

λ c A

There is no marginal 
cost with the first 
constraint since it is 
not binding; values 
tell how cost changes 
if the b values were 
changed
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Lumber Mill Example Solution

 

1 2

1 2 3

1 2 4

1 2 3 4

1 2 3 4

1

Minimize    -(100 120 )

s.t.                2 2 8

                     3 5 15

                     , , , 0

The solution is  2.5, 1.5, 0, 0

2 2 35
Then  = 100 120

3 5 10

x x

x x x

x x x

x x x x

x x x x



  

  


   

  
    

λ



Economic interpretation of 
is the profit is increased by
35 for every hour we up the 
first constraint (the saw) and
by 10 for every hour we up the 
second constraint (plane)  

1 2 3 4

An initial basic feasible solution

is 0, 0, 8, 15x x x x   
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Complications

• Often variables are not limited to being  0
– Variables with just a single limit can be handled by substitution;  for 

example if x  5 then x-5=z  0

– Bounded variables, high  x  0 can be handled with a slack variable so x + 
y = high, and x,y  0 

• Unbounded conditions need to be detected (i.e., unable to pivot); 
also the solution set could be null 

1 2 1 2

1 2 1 2

1 2 1

Minimize     s.t.  8

8 8 is a basic feasible solution

1 1 1 8

2 0 1 8

x x x x

x x y x

x x y

  
     



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Complications

• Degenerate Solutions
– Occur when there are less than m basic variables > 0

– When this occurs the variable entering the basis could also have a value of zero; it 
is possible to cycle, anti-cycling techniques could be used

• Nonlinear cost functions
– Nonlinear cost functions could be approximated by assuming a piecewise linear 

cost function 

• Integer variables
– Sometimes some variables must be integers; known as integer programming; 

we’ll discuss after some power examples 
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LP Optimal Power Flow

• LP OPF was introduced in 
– B. Stott, E. Hobson, “Power System Security Control 

Calculations using Linear Programming,” (Parts 1 and 2) IEEE 
Trans. Power App and Syst., Sept/Oct 1978

– O. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments 
in LP-based Optimal Power Flow,” IEEE Trans. Power 
Systems, August 1990

• It is a widely used technique, particularly for real power 
optimization; it is the technique used in PowerWorld
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LP Optimal Power Flow

• Idea is to iterate between solving the power flow, and 
solving an LP with just a selected number of 
constraints enforced

• The power flow (which could be ac or dc) enforces 
the standard power flow constraints

• The LP equality constraints include enforcing area 
interchange, while the inequality constraints include 
enforcing line limits; controls include changes in 
generator outputs

• LP results are transferred to the power flow, which is 
then resolved 
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LP OPF Introductory Example

• In PowerWorld load the B3LP case and then 
display the LP OPF Dialog (select Add-Ons, OPF 
Case Info, OPF Options and Results)

• Use Solve LP OPF to
solve the OPF, initially
with no line limits 
enforced; this is similar
to economic dispatch
with a single power 
balance equality constraint

• The LP results are available from various pages on 
the dialog

Bus 2 Bus 1

Bus 3

slack

Total Cost

10.00 $/MWh

 60 MW  60 MW

 60 MW

 60 MW
120 MW

120 MW

10.00 $/MWh

10.00 $/MWh
1800 $/h

0.0 MW

  0 MW

MW180

180.0 MW

MW  0
120%

120%



LP OPF Introductory Example, cont
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LP OPF Introductory Example, cont

• On use Options, Constraint Options to enable the 
enforcement of the Line/Transformer MVA limits 



LP OPF Introductory Example, cont.

Bus 2 Bus 1

Bus 3

slack

Total Cost

12.00 $/MWh

 20 MW  20 MW

 80 MW

 80 MW
100 MW

100 MW

10.00 $/MWh

14.00 $/MWh
1920 $/h

60.0 MW

  0 MW

MW180

120.0 MW

MW  0
100%

100%



Example 6_23 Optimal Power Flow

Open the case Example6_23_OPF. In this example

the load is gradually increased

On the Options, 
Environment
page the simulation can be 
set to solve an OPF when
simulating



Locational Marginal Costs (LMPs)

• In an OPF solution, the bus LMPs tell the marginal 
cost of supplying electricity to that bus

• The term “congestion” is used to indicate when there 
are elements (such as transmission lines or 
transformers) that are at their limits; that is, the 
constraint is binding

• Without losses and without congestion, all the LMPs 
would be the same

• Congestion or losses causes unequal LMPs

• LMPs are often shown using color contours; a 
challenge is to select the right color range!



Example 6_23 Optimal Power Flow with Load 
Scale = 1.72



• LP Sensitivity Matrix (A Matrix)

Example 6_23 Optimal Power Flow with Load 
Scale = 1.72

The first row is the power balance constraint, while
the second row is the line flow constraint.  The matrix
only has the line flows that are being enforced.  



Example 6_23 Optimal Power Flow with Load 
Scale = 1.82

• This situation is infeasible, at least with available 
controls.  There is a solution because the OPF is 
allowing one of the constraints to violate (at high 
cost)

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.95 pu1.04 pu

0.99 pu1.05 pu

 58%
A

MVA

 48%
A

MVA

 57%
A

MVA
 57%

A

MVA

133 MW

133 MW

 80 MW  80 MW 124 MW 124 MW

 64 MW

 64 MW

176 MW

176 MW

 42 MW

42 MW

 56 MW

11297.88 $/h

713.4 MW

235.47 $/MWh

1.82

16.82 $/MWh 20.74 $/MWh 22.07 $/MWh

15.91 $/MWh 1101.78 $/MWh

MW213

MW220

268 MW

 71 Mvar

143 MW
 54 Mvar

MW231.9

 71.3 Mvar

 71 MW

 36 Mvar

MW280

AGC ON

AGC ON

AGC ON
 89%

A

MV A

100%
A

MVA

100%
A

MVA



Generator Cost Curve Modeling

• LP algorithms require linear cost curves, with piecewise linear curves used 
to approximate a nonlinear cost function

• Two common ways
of entering cost 
information are 
– Quadratic function

– Piecewise linear curve

• The PowerWorld OPF
supports both types 



Security Constrained OPF

• Security constrained optimal power flow (SCOPF) is similar to OPF 
except it also includes contingency constraints
– Again the goal is to minimize some objective function, usually the current system 

cost, subject to a variety of equality and inequality constraints

– This adds significantly more computation, but is required to simulate how the 
system is actually operated (with N-1 reliability)

• A common solution is to alternate between solving a power flow and 
contingency analysis, and an LP



Security Constrained OPF, cont.

• With the inclusion of contingencies, there needs to be a distinction 
between what control actions must be done pre-contingent, and which 
ones can be done post-contingent
– The advantage of post-contingent control actions is they would only need to be done 

in the unlikely event the contingency actually occurs

• Pre-contingent control actions are usually done for line overloads, while 
post-contingent control actions are done for most reactive power control 
and generator outage re-dispatch 



SCOPF Example

• We’ll again consider Example 6_23, except now it has 
been enhanced to include contingencies and we’ve also 
greatly increased the capacity on the line between buses 
4 and 5; named Bus5_SCOPF_DC

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.82 pu1.04 pu

1.00 pu1.05 pu

 36%
A

MVA
 80%

A

MVA

 57%
A

MVA
 12%

A

MVA

 53 MW

 53 MW

 82 MW  82 MW  26 MW  26 MW

 91 MW

 91 MW

  0 MW

  0 MW

 96 MW

96 MW
127 MW

5729.74 $/h

392.0 MW

14.70 $/MWh

1.00

14.33 $/MWh 14.87 $/MWh 15.05 $/MWh

14.20 $/MWh 15.05 $/MWh

MW135

MW173

147 MW
 39 Mvar

 78 MW
 29 Mvar

MW127.4
 39.2 Mvar

 39 MW
 20 Mvar

MW 84

AGC ON

AGC ON

AGC ON 80%
A

MVA100%
A

MVA

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.82 pu1.04 pu

1.00 pu1.05 pu

 36%
A

MVA
 80%

A

MVA

 57%
A

MVA
 12%

A

MVA

 53 MW

 53 MW

 82 MW  82 MW  26 MW  26 MW

 91 MW

 91 MW

  0 MW

  0 MW

 96 MW

96 MW
127 MW

5729.74 $/h

392.0 MW

319.73 $/MWh

1.00

14.33 $/MWh 14.87 $/MWh 15.05 $/MWh

14.20 $/MWh 1540.19 $/MWh

MW135

MW173

147 MW
 39 Mvar

 78 MW
 29 Mvar

MW127.4
 39.2 Mvar

 39 MW
 20 Mvar

MW 84

AGC ON

AGC ON

AGC ON100%
A

MVA

268%
A

MVA

Original with line 4-5 limit
of 60 MW with 2-5 out 

Modified with line 4-5 limit
of 200 MVA with 2-5 out 



PowerWorld SCOPF Application

Just click the button to solve

Number of times
to redo contingency
analysis



LP OPF and SCOPF Issues

• The LP approach is widely used for the OPF and 
SCOPF, particularly when implementing a dc power 
flow approach

• A key issue is determining the number of binding 
constraints to enforce in the LP tableau
– Enforcing too many is time-consuming, enforcing too few 

results in excessive iterations

• The LP approach is limited by the degree of linearity 
in the power system
– Real power constraints are fairly linear, reactive power 

constraints much less so  



OPF Solution by Newton’s Method

• An alternative to using the LP approach is to use 
Newton’s method, in which all the equations are 
solved simultaneously

• Key paper in area is
– D.I. Sun, B. Ashley, B. Brewer, B.A. Hughes, and W.F. 

Tinney, "Optimal Power Flow by Newton Approach", IEEE 
Trans. Power App and Syst., October 1984

• Problem is 

Minimize ( )

s.t.           ( )=

                ( )

f



x

g x 0

h x 0

For simplicity x represents 
all the variables and we can 
use h to impose limits on 
individual variables



OPF Solution by Newton’s Method

• During the solution the inequality constraints are 
either binding (=0) or nonbinding (<0)
– The nonbinding constraints do not impact the final 

solution

• We’ll modify the problem to split the h vector into 
the binding constraints, h1 and the nonbinding 
constraints, h2

1

2

Minimize ( )

s.t.           ( )=

                ( )

                ( )

f




x

g x 0

h x 0

h x 0



OPF Solution by Newton’s Method

• To solve first define the Lagrangian

• A necessary condition for a minimum is that the 
gradient is zero 

 
1 2 1( , , ) ( ) ( )+ ( )

Let  = 

T TL f x λ λ x μ g x λ h x

z x μ λ

1

2

( )

( )
( )

L

z

L
L

z

 
  
      
 
  

z

z
z 0



Both  and  are 
Lagrange Multipliers



OPF Solution by Newton’s Method

• Solve using Newton’s method.  To do this we need 
to define the Hessian matrix

• Because this is a second order method, as opposed 
to a first order linearization, it can better handle 
system nonlinearities 

2 2 2

2 2
2

2

( ) ( ) ( )

( ) ( )
( ) ( )

( )

i j i j i j

i i j

j i

L L L

x x x x

L L
L

z z x

L

x

 





   
 
      

             
 
 
   

z z z

z z
z H z 0 0

z
0 0



OPF Solution by Newton’s Method

• Solution is then via the standard Newton’s method.  
That is

   
 

max

(k)

max

1(k 1) (k)

Set iteration counter k=0, set k

Set convergence tolerance 

Guess 

While ( )  and k < k

    ( ) ( )

    k = k + 1

End While

L

L






 

  

z

z

z z H z z

No iteration is 
needed for a 
quadratic function 
with linear 
constraints



Example

• Solve 

   

 

   

2 2
1 2 1 2

2 2
1 2 1 2

1
1

2
2

1 2

2

Minimize x x  such that 3x 2 0

Solve initially assuming the constraint is binding

L , x x 3x 2

2x 3

L , 2x     

3x 2

2 0 3

L , , 0 2 1

3

x

x

L

x

L

x
x

L

 


 



 

   

    

 
    
               

  

  

x

x

x H x

1

1

2

1 2 0 1 2 0.6

1 0 2 1 2 0.2

1 0 0 1 1 0 2 0.4

x

x




           
                         
                      

No iteration is 
needed so any 
“guess” is fine.  
Pick (1,1,0)

Because  is positive the constraint is binding



Newton OPF Comments

• The Newton OPF has the advantage of being better able to handle system 
nonlinearities

• There is still the issue of having to deal with determining which 
constraints are binding

• The Newton OPF needs to implement second order derivatives plus all the 
complexities of the power flow solution
– The power flow starts off simple, but can rapidly get complex when dealing with 

actual systems 

• There is still the issue of handling integer variables 



Mixed-Integer Programming

• A mixed-integer program (MIP) is an optimization problem of the form

Minimize    

s.t.               

                     

where         n-dimensional column vector

                   n-dimensional row vector

                   m-dimensional column vector

   







cx

Ax b

x 0

x

c

b

j

                m×n matrix

                   some or all x  integer

A



Mixed-Integer Programming

• The advances in the algorithms have been substantial  

Notes are partially based on a presentation at Feb 2015 US National Academies Analytic
Foundations of the Next Generation Grid by Robert Bixby from Gurobi Optimization titled
“Advances in Mixed-Integer Programming and the Impact on Managing Electrical Power Grids”

Speedups 
from 2009
to 2015 were
about a factor
of 30



Mixed-Integer Programming

• Suppose you were given the following choices?
– Solve a MIP with today’s solution technology on a 1991 

machine

– Solve a MIP with a 1991 solution on a machine from today?

• The answer is to choose option 1, by a factor of 
approximately 300

• This leads to the current debate of whether the OPF 
(and SCOPF) should be solved using generic solvers or 
more customized code (which could also have quite 
good solvers!)

Notes are partially based on a presentation at Feb 2015 US National Academies Analytic
Foundations of the Next Generation Grid by Robert Bixby from Gurobi Optimization titled
“Advances in Mixed-Integer Programming and the Impact on Managing Electrical Power Grids”



More General Solvers Overview

• OPF is currently an area of active research
• Many formulations and solution methods exist… 

– As do many tools for highly complex, large-scale 
computing!

• While many options exist, some may work better for 
certain problems or with certain programs you already 
use

• Consider experimenting with a new language/solver!



Gurobi and CPLEX

• Gurobi and CPLEX are two well-known 
commercial optimization solvers/packages for 
linear programming (LP), quadratic programming 
(QP), quadratically constrained programming 
(QCP), and the mixed integer (MI) counterparts of 
LP/QP/QCP

• Gurobi and CPLEX are accessible through object-
oriented interfaces (C++, Java, Python, C), matrix-
oriented interfaces (MATLAB) and other modeling 
languages (AMPL, GAMS)



Solver Comparison

Algorithm Type
------------------

Solver

LP/MILP
linear/mixed integer 

linear program

QP/MIQP
quadratic/mixed integer 

quadratic program

SOCP
second order cone 

program

SDP
semidefinite 

program

CPLEX* x x x

GLPK x

Gurobi* x x x

IPOPT x

Mosek* x x x x

SDPT3/SeDuMi x x

Linear programming can be solved by quadratic programming, 
which can be solved by second-order cone programming, which 
can be solved by semidefinite programming. 



DC OPF and SCOPF

• Solving a full ac OPF or SCOPF on a large system is 
difficult, so most electricity markets actually use the 
more approximate, but much simpler DCOPF, in which 
a dc power flow is used 

• PowerWorld includes this option in the Options, 
Power Flow Solution, DC Options 



Example 6_13 DC SCOPF Results: Load Scalar at 
1.20

• Now there is not an unenforceable constraint on the line 
between 4-5 (for the line 2-5 contingency) because the 
reactive losses are ignored

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

1.00 pu1.00 pu

1.00 pu1.00 pu

 62%
A

MVA

 58%
A

MVA
 46%

A

MVA

 45%
A

MVA

 42%
A

MVA
 26%

A

MVA

 14%
A

MVA

 87 MW

 87 MW

 63 MW  63 MW  59 MW  59 MW

 55 MW

 55 MW

124 MW

124 MW

 45 MW

45 MW
 28 MW

6942.99 $/h

470.4 MW

15.92 $/MWh

1.20

14.81 $/MWh 16.41 $/MWh 16.89 $/MWh

14.63 $/MWh 16.89 $/MWh

MW150

MW184

176 MW
  0 Mvar

 94 MW
  0 Mvar

MW152.9
  0.0 Mvar

 47 MW
  0 Mvar

MW136

AGC ON

AGC ON

AGC ON



2000 Bus Texas Synthetic DC OPF Example

• This system does a DC OPF solution, with the 
ability to change the load in the areas 

The quite
low LMPs
are actually
due to a 
constraint
on a single
230/115 kV
transformer



June 1998 Heat Storm: Two Constraints Caused a 
Price Spike

Colored areas could NOT sell into Midwest because of 
constraints on a line in Northern Wisconsin and on a 
Transformer in Ohio

Price of 
electricity
in Central
Illinois went
to $7500
per MWh!


