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Announcements
T
Start reading Chapter 7 (the term reliability 1s now often used instead of
security)
Homework 2 1s due today

Homework 3 1s due on Thursday Sept 29



Sparse Factorization Example

For a second example, again consider the same system, except with the

nodes renumbered

—4 -3 -2
50 0
0 4 0
0 0 3

A] ¥



Sparse Factorization Examples, Cont.

With i=2, load SWR = [-4 5 0 0]

_ p2=B[2,1] 10 —4 -3 =2
- pl =BJ[1,1] B —4 5 0 0
- SWR[1]=-4/pl.value=-4/10=-0.4 -3 0 4 0
~ pl =BJ[1,2] -2 0 0 3
- SWR[2]=5-(-0.4)*(-4)=1.6

- pl =BJ[1,3]

- SWR[3]=0-(-0.4)*(-3)=-1.2

- pl =BJ[1,4]

There are no elements 1n

- SWR[4]=0 — (-0.9)*(-2) =-0.8 row 2 for columns 3 and 4!

— p2=p2.next=diag so done
— UnloadSWR and we have a problem!



Fills
A] ¥

When doing a factorization of a sparse matrix some values that were
originally zero can become nonzero during the factorization process

These new values are called “fills”
(some call them fill-ins)

For a structurally symmetric matrix the fill occurs for both the element and
its transpose value (1.e., A;; and A ;)

How many fills are required depends on how the matrix is ordered

— For a power system case this depends on the bus ordering



Fills

There are two key issues associated with fills
— Adding the fills
— Ordering the matrix elements (buses in our case) to reduce the number of fills

The amount of computation required to factor a sparse matrix depends
upon the number of nonzeros in the original matrix, and the number of

fills added

How the matrix 1s ordered can have a dramatic impact on the number of
fills, and hence the required computation

Usually a matrix cannot be ordered to totally eliminate fills



Fill Examples

5 4]
0 4 0 -3
A =
0 0 3 -2
4 -3 -2 10|

No Fills Required

—4 -3 -2]
4 5 0 0
B =
3 0 4 0
2 0 0 3

Fills Required (matrix becomes full)



E

xample: 7 by 7 Matrix

Consider the 7 x 7 matrix A with the zero-nonzero pattern shown on the
left: of the 49 possible elements there are only 31 that are nonzero

If elimination proceeds with the given ordering, all but two of the 18
originally zero entries, will fill 1n, as seen in the right image

X1234567 XI234567
The 1| X|X|X|X|X|X 1lx|x|x|x|x|x
original 2 | x| x| x X|x s I x I x I x| FlFlxlx The post-
7ero- 3| x| x|x X|Xx s lx I xIxl Flrl x| x elimination
nonzero 41X X | X 4A|X|F|F|X|X|F|F Z€ro NONZEro
structure S | X XXX s|xX|F|F|X|X|X|F pattern
6| x| x|Xx K| X 6| xX|X|X|F|Xx|Xx|F
7 X|Xx % g X|X|F|F|F|Xx

A] ¥



Example: 7 by 7 Matrix Reordering

We next reorder the rows and the columns of A so as to result in the
pattern shown in (c)

For this reordering, we obtain no fills, as shown 1n the table of factors
given in (d ) N

als|1)e]7]3 )2 N|4|5|1]6]|7]3]2
In this way, we 4|x|x|x a|x|x|x
preserve the original > [*|*[*|X S|¥|X X)X
. x| x|x|x| [x|x] 1|x|x|x|x| |x|x
sparsity of A
6 XXX X | X 6 XXX XX
7 x|x|x| 7 X|x|x
3 x| x|x|x|x| 3 X|x|x|x|x
2 x|x|x|x|x| 2 X|x|x|x|x
The reordered system The post- elimination

reordered system

A] ¥



Graph (Grid) Insights

For electric grids 1t can be helpful to relate the sparse matrix back to
an associated electric grid

Assume an n by n matrix A
All the diagonals are non-zeros

If there 1s a connection between two buses (nodes), say at position |

and k, then the associated matrix entries, A, and A,; are nonzero



Example: 5 by 5 System

Suppose that A has the zero-nonzero pattern

[\®)
S
< | | <

A] ¥
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Example: 5 by 5 System

* Then, the associated graph G 1s

1 2

5 ® ®
®

4 3

We could also go from the graph to the matrix

11



Graph-Theoretic Interpretation

AT
* The graph-theoretic interpretation for the ordering and fill addition of the
node (bus) j 1s as follows

* Asbusjis ordered it 1s deleted from the graph.
* The deletion of the bus j involves all its incident branches

* In the pre-elimination graph of the eliminated bus j, the elimination of
the branches ( j, k) and (1, j) results 1n the addition of the new branch
(k, 1), 1f one does not already exist

12



Example: 5 by 5 System

If we decide to order bus 1, then it 1s deleted from the graph, with

conditions added between its incident buses (2, 4, 5)

1

9

X 12345
1| X | X X | X
2 [xix|x F|F
3 X | X | X

4| X F|IX | X|X
s|x . F X | X

Here new lines are
added between 2 and 4,
and between 2 and 5

W

A] ¥



Example: 5 by 5 System

Graph G1

4

3

* We obtain the graph G1 from G by removing Bus 1 with the new
added branches (2, 4) and (2, 5) corresponding to the fills

14



Example: 5 by 5 System

The elimination of Bus 2 results in the submatrix shown below

AN

Now a new branch i1s
added between buses 3
and 5

3
4
S

3

X
X
F

< || <&

< <@

A] ¥
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Example: 5 by 5 System

with the corresponding graph G2

4

* The elimination of Bus 3 yields

c
N45

4

S
S

S

S
S




Example: 5 by 5 System

with the corresponding graph G3
*5

® 4
* Finally, upon Bus 4 we have

r

S1X

 and the corresponding G4 is simply the point
35

17



Reording the Rows/Columns

A] ¥

We next examine how we may reorder the rows and columns of A to
preserve its sparsity, 1.e., to minimize the number of fills

Eventually we’ll introduce an algorithm to try to minimize the fills

This 1s motivated by revisiting the graph G

S ® °

18



Reording Motivating Example
AJf

e To minimize the number of fills, 1.e., the number of new branches 1n G,
we eliminate first the node which upon deletion introduces the least

number of new branches

* This 1s node 5 and upon deletion no new branches are added and the
resulting graph G1 1s

|

RWOe—Oo N

19



Reording Motivating Example
AJf

The structure of G1 1s such that any one of the remaining nodes may be
chosen as the next node to be eliminated since each of the 4 remaining

nodes introduces a new branch after its elimination
We arbitrarily pick node 1 and we obtain the graph G2
We continue with the next three choices arbitrary, resulting in no new fills

2

-

new branch.--"~

20



Reording Motivating Example
AJf

We may relabel the original graph in such a way that the label of the
node refers to the order in which it 1s eliminated

Thus we renumber the nodes as shown below

N
® W

21



Reording Motivating Example

* C(learly, relabeling the nodes corresponds to reordering the
rows and columns of A

* For the reordered system, the zero-nonzero pattern of A 1s

C
Nl

S
s | b | > |
< | e
S

S

1
2
3
4
5




Reording Motivating Example

and of its table of factors has the zero-nonzero structure

C
R 1
X
X

3|4

s | 3 | 3 [ o

AT
< | e
SFIEINIEIE

1
2
3
4
5

X

<

Compared to the original ordering scheme, the new ordering scheme has
saved us 4 fill-ins



General Findings

AJf
* The associated graph of the structurally symmetric matrix A 1s useful in
gaining insights into the factorization process

* We make the following observations

* If A is originally structurally symmetric, then it remains so 1n all the
steps of the factorization;

* A good ordering scheme is independent of the values of the elements
of A and depends only on its the zero-nonzero pattern

24



Permutation Vectors

T
Often the matrix itself 1s not physically reorded when it 1s renumbered.
Rather we can make use of what is known as a permutation vector, and
(if needed) an inverse permutation vector
These vectors implement the following functions
~ 1oy = New(igyg)
~ i,,=0ld3
For an n by n matrix the permutation vector 1s an n-sized integer vector

new)

If ordered lists are needed, then the linked lists do need to be reordered,
but this can be done quickly

25



Permutation Vectors, cont.

For the previous five bus example, in which the buses are to be
reordered to (5,1,2,3,4), the permutation vector would be
rowPerm=[5,1,2,3,4]

— That 1s, the first row to consider is row 5, then row 1, ...

If needed, the inverse permutation vector 1s invRowPerm = [2,3,4,5,1]

— That 1s, with the reordering the first element is in position 2, the second element in
position 2, ....

Hence 1 = invRowPerm[rowPerm|i]]

26



Sparse Factorization using a Permutation Vector

A] ¥

Fori:=1 ton Do Begin
k =rowPerm[i]; // this is the only change, except using k

LoadSWRbyCol(K,SWR); // Load Sparse Working Row }
p2 :=rowHead[K]; // the row needs to be ordered correctly!

While p2 <> rowDiag[k] Do Begin

pl :=rowDiag[p2.col];

SWR[p2.col] := SWR[p2.col] / pl.value;

pl :=pl.next;

While pl <> nil Do Begin // Go to the end of the row
SWR[pl.col] := SWR[pl.col] - SWR[p2.col] *pl.value;
pl :=pl.next;

End;

p2 = p2.next;

End;

UnloadSWRByCol(k,SWR);
End;

27



Sparse Matrix Reordering
T
There 1s no computationally efficient way to optimally reorder a
sparse matrix; however there are very efficient algorithms to
greatly reduce the fills

Two steps here: 1) order the matrix, 2) add fills

A quite common algorithm combines ordering the matrix with
adding the fills

The two methods discussed here were presented in the 1963 paper
by Sato and Tinney from BPA; known as Tinney Scheme 1 and
Tinney Scheme 2 since they are more explicitly described in
Tinney’s 1967 paper
— 1967 paper also has Tinney Scheme 3 (briefly covered)
28



Tinney Scheme 1

Easy to describe, but not really used since the number of fills, while
reduced, is still quite high

In graph theory the degree (or valence or valency) of a vertex 1s the
number of edges incident to the vertex

Order the nodes (buses) by the number of incident branches (1.¢., its
valence) those with the lowest valence are ordered first
— Nodes with just one incident line result in no new fills

— Obviously 1n a large system many nodes will have the same number of
incident branches; ties can be handled arbitrarily

29



Tinney Scheme 1, Cont.

Once the nodes are reordered, the fills are added

— Common approach to ties 1s to take the lower numbered node first

A shortcoming of this method 1s as the fills are added
the valence of the adjacent nodes changes

\V 8N7 Nc;de Valince
6

4 5
Tinney 1 order s 1,2,3,7,5,6,8.4

0o ~NO O WDN
WNWWRAr -2

Number of new branches is 2 (4-8, 4-6)



Tinney Scheme 2

AJf
The Tinney Scheme 2 usually combines adding the fills with the
ordering in order to update the valence on-the-fly as the fills are added

As before the nodes are chosen based on their valence, but now the
valence is the actual valence they have with the added lines (fills)

— This 1s also known as the Minimum Degree Algorithm (MDA)

— Ties are again broken using the lowest node number

This method 1s quite effective for power systems, and 1s highly

recommended; however i1t 1s certainly not guaranteed to result in the
fewest fills (i.e. not optimal)

31



Tinney Scheme 2 Example

Consider the previous network:

VN

4 5

Nodes 1,2,3 are chosen as before. But once these nodes are eliminated
the valence of 4 1s 1, so i1t 1s chosen next. Then 5 (with a new valence
of 2 tied with 7), followed by 6 (new valence of 2), 7 then 8.

32



Coding Tinney 2
A]M

The following slides show how to code Tinney 2 for an n by n sparse

matrix A
First we setup linked lists grouping all the nodes by their original valence

vcHead 1s a pointer vector [0..mvValence]

— If a node has no connections its incidence is 0

— Theoretically mvValence should be n-1, but in practice a much smaller number can
be used, putting nodes with valence values above this into the vcHead[mvValence]

1S

33



Coding Tinney 2, cont.
A]Mm

Setup a boolean vectors chosenNode[ 1..n] to indicate which nodes are
chosen and BSWR[1..n] as a sparse working row; initialize both to all

false

Setup an integer vector rowPerm[1..n] to hold the permuted rows;
initialize to all zeros

For1:=1 ton Do Begin

— Choose node from valence data structure with the lowest current valence; let this be
node k

Go through vcHead from lastchosen level (last chosen level may need to be reduced by one
during the following elimination process;

— Set rowPerm|[1] = k; set chosenNode[k] = true

34



Coding Tinney 2, cont.
A]M
— Modify sparse matrix A to add fills between all of k’s adjacent nodes provided

1. abranch doesn’t already exist
2. both nodes have not already been chosen (their chosenNode entries are false)

»  These fills are added by going through each element in row k; for each element set the BSWR
clements to true for the incident nodes; add fills if a connection does not already exist (this requires
adding two new elements to A)

— Again go through row k updating the valence data structure for those nodes that have
not yet been chosen
«  These values can either increase or go down by one (because of the elimination of node k)

This continues through all the nodes; free all vectors except for rowPerm
At this point in the algorithm the rowPerm vector contains the new ordering
and matrix A has been modified so that all the fills have been added

— The order of the rows in A has not been changed, and its columns are no longer sortesgi
5



Coding Tinney 2, cont.

Alm
Sort the rows of A to match the order in rowPerm

— Surprising sorting A 1s of computational order equal to the number of elements in A
« Go through A putting its elements into column linked lists; these columns will be ordered by row
« Then through the columns linked lists in reverse order given by rowPerm

— That 1s For 1 :=n downto 1 Do Begin
pl := TSparmatLL(colHead[rowPerm[i]).Head;

That’s 1t — the matrix A 1s now readying for factoring
Pivoting may be required, but usually 1sn’t needed in the power flow

36



Some Example Values for Tinney 2

Number of Nonzeros

Total Percent

buses before fills nonzeros nonzeros
37 63 72 135 9.86%
118 478 168 646 4.64%
18,190 64,948 31,478 96,426 0.029%
62,605 228,513 201,546 430,059 0.011%

37



Tinney Scheme 3

“Number the rows so that at each step of the process the next row
to be operated upon 1s the one that will introduce the fewest new
nonzero terms.”

“If more than one row meets this criterion, select any one. This
involves a trial simulation of every feasible alternative of the
elimination process at each step. Input information 1s the same as
for scheme 2).”

Tinney 3 takes more computation and in general does not give
fewer fills than the quicker Tinney 2

Tinney got into the NAE 1n 1998

These are direct quotes from the Tinney-Walker 1967 IEEE Proceedings Paper

38



Sparse Forward Substitution with a Permutation
Vector

A] ¥

Pass in b 1in bvector

For1:=1 ton Do Begin
k =rowPerm|[1]; //this 1s the only change, except using k
pl :=rowHead[k]; // the row needs to be ordered correctly!
While pl <> rowDiag[k] Do Begin
bvector[k] = bvector[k] — pl.value*bvector[pl.col];
pl :=pl.next;
End;
End;

39



Sparse Backward Substitution with Permutation
Vector

A] ¥

Pass in b in bvector
For 1 :=n downto 1 Do Begin
k = rowPerm[i];
pl :=rowDiag[k].next;
While pl <> nil Do Begin
bvector[k] = bvector[k] — p1.value*bvector[pl.col];

pl :=pl.next;
End;
bvector[k] := bvector[k]/rowDiag[k].value;
End;

* Note, numeric problems such as matrix singularity are indicated with

rowDiag[k].value being zero! 40



Sparse Vector Methods
T
Sparse vector methods are useful for cases in solving Ax=b in which
— A 1s sparse, b 1s sparse, only certain elements of x are needed

In these right circumstances sparse vector methods can result in extremely
fast solutions!

A common example 1s to find selected elements of the inverse of A, such
as diagonal elements.

Often times multiple solutions with varying b values are required

— A only needs to be factored once, with its factored form used many times

Key reference 1s

W.F. Tinney, V. Brandwajn, and S.M. Chan, "Sparse Vector Methods", IEEE
Transactions on Power Apparatus and Systems, vol. PAS-104, no. 2, February 1985,
pp. 295-300 41



Sparse Vector Methods Introduced

AJf
Assume we are solving Ax = b with A factored so we solve LUx =b by
first doing the forward substitution to solve Ly = b and then the backward

substitution to solve Ux =y

A key 1nsight: In the solution of Ly = b 1f b 1s sparse then only certain
columns of L are required, and y is often sparse

\\ M1 b,

42



Fast Forward Substitution

A]Mm
If b is sparse, then the fast forward (FF) substitution takes advantage of
the fact that we only need certain columns of L

We define {FF} as the set of columns of L needed for the solution of Ly =
b; this 1s equal to the nonzero elements of y

In general the solution of Ux =y will NOT result in x being a sparse
vector

However, oftentimes only certain elements of x are desired

- E.g., the sensitivity of the flows on certain lines to a change in generation at a single
bus; or a diagonal of A-!

43



Fast Backward Substitution

AJf
* In the case in which only certain elements of x are desired, then we
only need to use certain rows in U below the desired elements of x;

define these columns as {FB}

* This is known as a fast backward substitution (FB), which 1s used to
replace the standard backward substitution

\\ xl y 1 4

X A %)
X . _ :

& Xn Vn

44



Factorization Paths

We observe that

~ {FF} depends on the sparsity structures of L and b
—- {FB} depends on the sparsity structures of U and x

The 1dea of the factorization path provides a systematic way to construct
these sets

A factorization path 1s an ordered set of nodes associated with the
structure of the matrix

For FF the factorization path provides an ordered list of the columns of L

For FB the factorization path provides an ordered list of the rows of U

45



Factorization Paths
T
* The factorization path is traversed in the forward direction for FF and in the
reverse direction for FB
—  Factorization paths should be built using doubly linked lists

* A singleton vector is a vector with just one nonzero element. If this value is
equal to one then it is a unit vector as well.

* With a sparse matrix structure ordered based upon the permutation vector
order the path for a singleton with a now zero at position arow is build using
the following code: pl:= rowDiag[arow];

While pl <> nil Do Begin
AddToPath(pl.col); // Setup a doubly linked list!

pl :=rowDiag[pl.col].next;

End; 16



Path Table and Path Graph
A]Mm

* The factorization path table 1s a vector that tells the next element in the
factorization path for each row in the matrix

* The factorization path graph shows a pictorial view of the path table

47



20 Bus Example

& 10 9 e 1
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14 19 I 13)\
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20 Bus Example
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20 Bus Example
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20 Bus Example
AJf
* Suppose we wish to evaluate a sparse vector with the nonzero elements

for components 2, 6, 7, and 12
* From the path table or path graph, we obtain the following factorization

paths (f.p.)
2 > fp. {2,11,12,15,17,18,19, 20}

6 > fp.{6,16,17,18,19, 20}
7 —> fp.{7,14,17,18,19, 20}
12 — f.p. already contained in that for node 2
* This gives the following path elements
{7,14,6,16,2,11,12,15,17,18,19, 20}
51



20 Bus Example

Full path

Desired subset

A] ¥
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