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Announcements

• Start reading Chapter 7 (the term reliability is now often used instead of 
security)

• Homework 2 is due today

• Homework 3 is due on Thursday Sept 29
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Sparse Factorization Example

• For a second example, again consider the same system, except with the 
nodes renumbered

10 4 3 2

4 5 0 0

3 0 4 0

2 0 0 3

   
  
 
  

B
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Sparse Factorization Examples, Cont.

• With i=2, load SWR = [-4 5 0 0]
– p2 = B[2,1]

– p1 = B[1,1]

– SWR[1]=-4/p1.value=-4/10 = -0.4

– p1 = B[1,2]

– SWR[2]=5 – (-0.4)*(-4) = 1.6

– p1 = B[1,3]

– SWR[3]= 0 – (-0.4)*(-3) = -1.2

– p1 = B[1,4]

– SWR[4]=0 – (-0.4)*(-2) = -0.8

– p2=p2.next=diag so done

– UnloadSWR and we have a problem!

10 4 3 2

4 5 0 0

3 0 4 0

2 0 0 3

   
  
 
  

B

There are no elements in
row 2 for columns 3 and 4!
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Fills

• When doing a factorization of a sparse matrix some values that were 
originally zero can become nonzero during the factorization process

• These new values are called “fills” 
(some call them fill-ins)

• For a structurally symmetric matrix the fill occurs for both the element and 
its transpose value (i.e., Aij and Aji)

• How many fills are required depends on how the matrix is ordered
– For a power system case this depends on the bus ordering
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Fills

• There are two key issues associated with fills
– Adding the fills

– Ordering the matrix elements (buses in our case) to reduce the number of fills

• The amount of computation required to factor a sparse matrix depends 
upon the number of nonzeros in the original matrix, and the number of 
fills added

• How the matrix is ordered can have a dramatic impact on the number of 
fills, and hence the required computation 

• Usually a matrix cannot be ordered to totally eliminate fills
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Fill Examples

4

1 2 3

1

2 3 4

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

 
  

 
    

A

10 4 3 2

4 5 0 0

3 0 4 0

2 0 0 3

   
  
 
  

B

No Fills Required Fills Required (matrix becomes full)  
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Example: 7 by 7 Matrix

• Consider the 7 x 7 matrix A with the zero-nonzero pattern shown on the 
left: of the 49 possible elements there are only 31 that are nonzero

• If elimination proceeds with the given ordering, all but two of the 18 
originally zero entries, will fill in, as seen in the right image

7

The 
original 
zero-
nonzero 
structure

The post-
elimination  
zero nonzero 
pattern



• We next reorder the rows and the columns of A so as to result in the 
pattern shown in (c)

• For this reordering, we obtain no fills, as shown in the table of factors 
given in (d )

• In this way, we 
preserve the original 
sparsity of A

Example: 7 by 7 Matrix Reordering
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The reordered system The post- elimination 
reordered system



• For electric grids it can be helpful to relate the sparse matrix back to 
an associated electric grid

• Assume an n by n matrix A

• All the diagonals are non-zeros

• If there is a connection between two buses (nodes), say at position j 
and k, then the associated matrix entries, Ajk and Akj are nonzero

Graph (Grid) Insights
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Example: 5 by 5 System

• Suppose that A has the zero-nonzero pattern 

1 2 3 4 5

1 X X X X

2 X X X

3 X X X

4 X X X X

5 X X X

r
c
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Example: 5 by 5 System

• Then, the associated graph G is 

1 2

34

5

We could also go from the graph to the matrix
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• The graph-theoretic interpretation for the ordering and fill addition  of the 
node (bus) j is as follows

• As bus j is ordered it is deleted from the graph.

• The deletion of the bus j involves all its incident branches 

• In the pre-elimination graph of the eliminated bus j, the elimination of 
the branches ( j, k) and (l, j) results in the addition of the new branch 
(k, l), if one does not already exist

Graph-Theoretic Interpretation
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• If we decide to order bus 1, then it is deleted from the graph, with 
conditions added between its incident buses (2, 4, 5) 

Here new lines are 
added between 2 and 4, 

and between 2 and 5

1 2 3 4 5

1 X X X X

2 X X X F F

3 X X X

4 X F X X X

5 X F X X

r
c

Example: 5 by 5 System



Graph G1

• We obtain the graph G1 from G by removing Bus 1 with the new 
added branches (2, 4) and (2, 5) corresponding to the fills

5 2

4 3

new branch

Example: 5 by 5 System
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• The elimination of Bus 2 results in the submatrix shown below 

3 4 5

3 X X F

4 X X X

5 F X X

r
c

Example: 5 by 5 System

Now a new branch is 
added between buses 3 

and 5
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with the corresponding graph G2        

• The elimination of Bus 3 yields

5

4 3

4 5

4 X X

5 X X

r
c

Example: 5 by 5 System
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with the corresponding graph G3

• Finally, upon Bus 4 we have

• and the corresponding G4 is simply the point

5

5 X

5

4

5

r
c

Example: 5 by 5 System
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• We next examine how we may reorder the rows and columns of A to 
preserve its sparsity, i.e., to minimize the number of fills 

• Eventually we’ll introduce an algorithm to try to minimize the fills

• This is motivated by revisiting the graph G

1 2

34

5

Reording the Rows/Columns
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• To minimize the number of fills, i.e., the number of new branches in G, 
we eliminate first the node which upon deletion introduces the least 
number of new branches

• This is node 5 and upon deletion no new branches are added and the 
resulting graph G1 is

1

4

2

3

Reording Motivating Example
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• The structure of G1 is such that any one of the remaining nodes may be 
chosen as the next node to be eliminated since each of the 4 remaining 
nodes introduces a new branch after its elimination

• We arbitrarily pick node 1 and we obtain the graph G2

• We continue with the next three choices arbitrary, resulting in no new fills

2

34

new branch

Reording Motivating Example
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• We may relabel the original graph in such a way that the label of the 
node refers to the order in which it is eliminated

• Thus we renumber the nodes as shown below

1
2 3

45

Reording Motivating Example
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• Clearly, relabeling the nodes corresponds to reordering the 
rows and columns of A

• For the reordered system, the zero-nonzero pattern of A is

1 2 3 4 5

1 X X X

2 X X X X

3 X X X

4 X X X

5 X X X X

r
c

Reording Motivating Example
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and of its table of factors has the zero-nonzero structure

Compared to the original ordering scheme, the new ordering scheme has 
saved us 4 fill-ins 

1 2 3 4 5

1 X X X

2 X X X X

3 X X X F

4 X X X

5 X X F X X

r
c

Reording Motivating Example
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• The associated graph of the structurally symmetric matrix A is useful in 
gaining insights into the factorization process

• We make the following observations

• If A is originally structurally symmetric, then it remains so in all the 
steps of the factorization;

• A good ordering scheme is independent of the values of the elements 
of A and depends only on its the zero-nonzero pattern

General Findings
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Permutation Vectors

• Often the matrix itself is not physically reorded when it is renumbered.  
Rather we can make use of what is known as a permutation vector, and 
(if needed) an inverse permutation vector

• These vectors implement the following functions
– inew = New(iold)

– iold = Old(inew)

• For an n by n matrix the permutation vector is an n-sized integer vector

• If ordered lists are needed, then the linked lists do need to be reordered, 
but this can be done quickly
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Permutation Vectors, cont.

• For the previous five bus example, in which the buses are to be 
reordered to (5,1,2,3,4), the permutation vector would be 
rowPerm=[5,1,2,3,4]
– That is, the first row to consider is row 5, then row 1, …

• If needed, the inverse permutation vector is invRowPerm = [2,3,4,5,1]
– That is, with the reordering the first element is in position 2, the second element in 

position 2, ….

• Hence i = invRowPerm[rowPerm[i]]
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Sparse Factorization using a Permutation Vector
For i := 1 to n Do Begin 

k = rowPerm[i];  // this is the only change, except using k

LoadSWRbyCol(k,SWR);   // Load Sparse Working Row }

p2 := rowHead[k];  // the row needs to be ordered correctly!

While p2 <> rowDiag[k] Do Begin 

p1 := rowDiag[p2.col];

SWR[p2.col] := SWR[p2.col] / p1.value;

p1 := p1.next;

While p1 <> nil Do Begin   // Go to the end of the row

SWR[p1.col] := SWR[p1.col] - SWR[p2.col] *p1.value;

p1 := p1.next;

End;

p2 := p2.next;

End;

UnloadSWRByCol(k,SWR);

End;
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Sparse Matrix Reordering

• There is no computationally efficient way to optimally reorder a 
sparse matrix; however there are very efficient algorithms to 
greatly reduce the fills

• Two steps here: 1) order the matrix, 2) add fills

• A quite common algorithm combines ordering the matrix with 
adding the fills

• The two methods discussed here were presented in the 1963 paper 
by Sato and Tinney from BPA; known as Tinney Scheme 1 and 
Tinney Scheme 2 since they are more explicitly described in 
Tinney’s 1967 paper
– 1967 paper also has Tinney Scheme 3 (briefly covered)
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Tinney Scheme 1

• Easy to describe, but not really used since the number of fills, while 
reduced, is still quite high

• In graph theory the degree (or valence or valency) of a vertex is the 
number of edges incident to the vertex

• Order the nodes (buses) by the number of incident branches (i.e., its 
valence) those with the lowest valence are ordered first
– Nodes with just one incident line result in no new fills

– Obviously in a large system many nodes will have the same number of 
incident branches; ties can be handled arbitrarily
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Tinney Scheme 1, Cont.

• Once the nodes are reordered, the fills are added
– Common approach to ties is to take the lower numbered node first

• A shortcoming of this method is as the fills are added 
the valence of the adjacent nodes changes

1 2 3

4 5
6

78
Node Valence

1 1
2 1
3 1
4 4
5 3
6 3
7 2
8 3Tinney 1 order is 1,2,3,7,5,6,8,4

Number of new branches is 2 (4-8, 4-6)
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Tinney Scheme 2

• The Tinney Scheme 2 usually combines adding the fills with the 
ordering in order to update the valence on-the-fly as the fills are added

• As before the nodes are chosen based on their valence, but now the 
valence is the actual valence they have with the added lines (fills)
– This is also known as the Minimum Degree Algorithm (MDA)

– Ties are again broken using the lowest node number

• This method is quite effective for power systems, and is highly 
recommended; however it is certainly not guaranteed to result in the 
fewest fills (i.e. not optimal)
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Tinney Scheme 2 Example

• Consider the previous network:

• Nodes 1,2,3 are chosen as before.  But once these nodes are eliminated 
the valence of 4 is 1, so it is chosen next.  Then 5 (with a new valence 
of 2 tied with 7), followed by 6 (new valence of 2), 7 then 8.  

1 2 3

4 5
6

78
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Coding Tinney 2

• The following slides show how to code Tinney 2 for an n by n sparse 
matrix A

• First we setup linked lists grouping all the nodes by their original valence

• vcHead is a pointer vector [0..mvValence] 
– If a node has no connections its incidence is 0

– Theoretically mvValence should be n-1, but in practice a much smaller number can 
be used, putting nodes with valence values above this into the vcHead[mvValence] 
is
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Coding Tinney 2, cont.

• Setup a boolean vectors chosenNode[1..n] to indicate which nodes are 
chosen and BSWR[1..n] as a sparse working row; initialize both to all 
false

• Setup an integer vector rowPerm[1..n] to hold the permuted rows; 
initialize to all zeros

• For i := 1 to n Do Begin
– Choose node from valence data structure with the lowest current valence; let this be 

node k
• Go through vcHead from lastchosen level (last chosen level may need to be reduced by one 

during the following elimination process;

– Set rowPerm[i] = k; set chosenNode[k] = true
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Coding Tinney 2, cont.

– Modify sparse matrix A to add fills between all of k’s adjacent nodes provided 
1. a branch doesn’t already exist

2. both nodes have not already been chosen (their chosenNode entries are false)

• These fills are added by going through each element in row k; for each element set the BSWR 
elements to true for the incident nodes; add fills if a connection does not already exist (this requires 
adding two new elements to A)

– Again go through row k updating the valence data structure for those nodes that have 
not yet been chosen
• These values can either increase or go down by one (because of the elimination of node k)

• This continues through all the nodes; free all vectors except for rowPerm

• At this point in the algorithm the rowPerm vector contains the new ordering 
and matrix A has been modified so that all the fills have been added
– The order of the rows in A has not been changed, and its columns are no longer sorted 
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Coding Tinney 2, cont.

• Sort the rows of A to match the order in rowPerm
– Surprising sorting A is of computational order equal to the number of elements in A

• Go through A putting its elements into column linked lists; these columns will be ordered by row

• Then through the columns linked lists in reverse order given by rowPerm

– That is For i := n downto 1 Do Begin
p1 := TSparmatLL(colHead[rowPerm[i]).Head;
….

• That’s it – the matrix A is now readying for factoring

• Pivoting may be required, but usually isn’t needed in the power flow  
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Some Example Values for Tinney 2

Number of 
buses

Nonzeros
before fills

Fills Total 
nonzeros

Percent
nonzeros

37 63 72 135 9.86%

118 478 168 646 4.64%

18,190 64,948 31,478 96,426 0.029%

62,605 228,513 201,546 430,059 0.011%

37



Tinney Scheme 3

• “Number the rows so that at each step of the process the next row 
to be operated upon is the one that will introduce the fewest new 
nonzero terms.” 

• “If more than one row meets this criterion, select any one. This 
involves a trial simulation of every feasible alternative of the 
elimination process at each step. Input information is the same as 
for scheme 2).”

• Tinney 3 takes more computation and in general does not give 
fewer fills than the quicker Tinney 2

• Tinney got  into the NAE in 1998

These are direct quotes from the Tinney-Walker 1967 IEEE Proceedings Paper
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Sparse Forward Substitution with  a Permutation 
Vector

Pass in b in bvector

For i := 1 to n Do Begin 

k = rowPerm[i];  // this is the only change, except using k

p1 := rowHead[k];  // the row needs to be ordered correctly!

While p1 <> rowDiag[k] Do Begin 

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

End;
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Sparse Backward Substitution with Permutation 
Vector

Pass in b in bvector

For i := n downto 1 Do Begin 

k = rowPerm[i]; 

p1 := rowDiag[k].next;  

While p1 <> nil Do Begin 

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

bvector[k] := bvector[k]/rowDiag[k].value;

End;

• Note, numeric problems such as matrix singularity are indicated with 
rowDiag[k].value being zero! 40



Sparse Vector Methods

• Sparse vector methods are useful for cases in solving Ax=b in which
– A is sparse, b is sparse, only certain elements of x are needed

• In these right circumstances sparse vector methods can result in extremely 
fast solutions!

• A common example is to find selected elements of the inverse of A, such 
as diagonal elements. 

• Often times multiple solutions with varying b values are required
– A only needs to be factored once, with its factored form used many times 

• Key reference is 
W.F. Tinney, V. Brandwajn, and S.M. Chan, "Sparse Vector Methods", IEEE 
Transactions on Power Apparatus and Systems, vol. PAS-104, no. 2, February 1985, 
pp. 295-300 41



Sparse Vector Methods Introduced

• Assume we are solving Ax = b with A factored so we solve LUx = b by 
first doing the forward substitution to solve Ly = b and then the backward 
substitution to solve Ux = y

• A key insight: In the solution of Ly = b if b is sparse then only certain 
columns of L are required, and y is often sparse 

y1

.

.

.

yn

b1

.

.

.

bn

=x
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Fast Forward Substitution

• If b is sparse, then the fast forward (FF) substitution takes advantage of 
the fact that we only need certain columns of L

• We define {FF} as the set of columns of L needed for the solution of Ly = 
b; this is equal to the nonzero elements of y

• In general the solution of Ux = y will NOT result in x being a sparse 
vector 

• However, oftentimes only certain elements of x are desired
– E.g., the sensitivity of the flows on certain lines to a change in generation at a single 

bus; or a diagonal of A-1
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Fast Backward Substitution

• In the case in which only certain elements of x are desired, then we 
only need to use certain rows in U below the desired elements of x; 
define these columns as {FB}

• This is known as a fast backward substitution (FB), which is used to 
replace the standard backward substitution

x1

x2
.
.
.

xn

y1

y2
.
.
.

yn

=x
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Factorization Paths

• We observe that 
– {FF} depends on the sparsity structures of L and b

– {FB} depends on the sparsity structures of U and x

• The idea of the factorization path provides a systematic way to construct 
these sets

• A factorization path is an ordered set of nodes associated with the 
structure of the matrix

• For FF the factorization path provides an ordered list of the columns of L

• For FB the factorization path provides an ordered list of the rows of U
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Factorization Paths

• The factorization path is traversed in the forward direction for FF and in the 
reverse direction for FB
– Factorization paths should be built using doubly linked lists       

• A singleton vector is a vector with just one nonzero element.  If this value is 
equal to one then it is a unit vector as well..

• With a sparse matrix structure ordered based upon the permutation vector 
order the path for a singleton with  a now zero at position arow is build using 
the following code:
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Path Table and Path Graph

• The factorization path table is a vector that tells the next element in the 
factorization path for each row in the matrix

• The factorization path graph shows a pictorial view of the path table 
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20 Bus Example
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20 Bus Example

Only showing L
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20 Bus Example
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20 Bus Example

• Suppose we wish to evaluate a sparse vector with the nonzero elements 
for components 2, 6, 7, and 12

• From the path table or path graph, we obtain the following factorization 
paths (f.p.)

• This gives the following path elements

2 {2, 11, 12, 15, 17, 18, 19, 20}f.p. 

6 {6, 16, 17, 18, 19, 20}f.p. 

7 {7, 14, 17, 18, 19, 20}f.p. 
12  2f.p. already contained in that for node

{ }7,14, 6,16, 2,11,12,15,17,18,19, 20
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20 Bus Example

Full path Desired subset
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