
ECEN 615
Methods of Electric Power

Systems Analysis

Lecture 9: Sparse System

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University

overbye@tamu.edu

Announcements

• Start reading Chapter 7 (the term reliability is now often used instead of
security)

• Homework 2 is due today

• Homework 3 is due on Thursday Sept 29

1

Sparse Factorization Example

• For a second example, again consider the same system, except with the
nodes renumbered

10 4 3 2

4 5 0 0

3 0 4 0

2 0 0 3

   
  
 
  

B

2

Sparse Factorization Examples, Cont.

• With i=2, load SWR = [-4 5 0 0]
– p2 = B[2,1]

– p1 = B[1,1]

– SWR[1]=-4/p1.value=-4/10 = -0.4

– p1 = B[1,2]

– SWR[2]=5 – (-0.4)*(-4) = 1.6

– p1 = B[1,3]

– SWR[3]= 0 – (-0.4)*(-3) = -1.2

– p1 = B[1,4]

– SWR[4]=0 – (-0.4)*(-2) = -0.8

– p2=p2.next=diag so done

– UnloadSWR and we have a problem!

10 4 3 2

4 5 0 0

3 0 4 0

2 0 0 3

   
  
 
  

B

There are no elements in
row 2 for columns 3 and 4!

3

Fills

• When doing a factorization of a sparse matrix some values that were
originally zero can become nonzero during the factorization process

• These new values are called “fills”
(some call them fill-ins)

• For a structurally symmetric matrix the fill occurs for both the element and
its transpose value (i.e., Aij and Aji)

• How many fills are required depends on how the matrix is ordered
– For a power system case this depends on the bus ordering

4

Fills

• There are two key issues associated with fills
– Adding the fills

– Ordering the matrix elements (buses in our case) to reduce the number of fills

• The amount of computation required to factor a sparse matrix depends
upon the number of nonzeros in the original matrix, and the number of
fills added

• How the matrix is ordered can have a dramatic impact on the number of
fills, and hence the required computation

• Usually a matrix cannot be ordered to totally eliminate fills

5

Fill Examples

4

1 2 3

1

2 3 4

5 0 0 4

0 4 0 3

0 0 3 2

4 3 2 10

 
  

 
    

A

10 4 3 2

4 5 0 0

3 0 4 0

2 0 0 3

   
  
 
  

B

No Fills Required Fills Required (matrix becomes full)
6

Example: 7 by 7 Matrix

• Consider the 7 x 7 matrix A with the zero-nonzero pattern shown on the
left: of the 49 possible elements there are only 31 that are nonzero

• If elimination proceeds with the given ordering, all but two of the 18
originally zero entries, will fill in, as seen in the right image

7

The
original
zero-
nonzero
structure

The post-
elimination
zero nonzero
pattern

• We next reorder the rows and the columns of A so as to result in the
pattern shown in (c)

• For this reordering, we obtain no fills, as shown in the table of factors
given in (d)

• In this way, we
preserve the original
sparsity of A

Example: 7 by 7 Matrix Reordering

8

The reordered system The post- elimination
reordered system

• For electric grids it can be helpful to relate the sparse matrix back to
an associated electric grid

• Assume an n by n matrix A

• All the diagonals are non-zeros

• If there is a connection between two buses (nodes), say at position j
and k, then the associated matrix entries, Ajk and Akj are nonzero

Graph (Grid) Insights

9

Example: 5 by 5 System

• Suppose that A has the zero-nonzero pattern

1 2 3 4 5

1 X X X X

2 X X X

3 X X X

4 X X X X

5 X X X

r
c

10

Example: 5 by 5 System

• Then, the associated graph G is

1 2

34

5

We could also go from the graph to the matrix

11

• The graph-theoretic interpretation for the ordering and fill addition of the
node (bus) j is as follows

• As bus j is ordered it is deleted from the graph.

• The deletion of the bus j involves all its incident branches

• In the pre-elimination graph of the eliminated bus j, the elimination of
the branches (j, k) and (l, j) results in the addition of the new branch
(k, l), if one does not already exist

Graph-Theoretic Interpretation

12

• If we decide to order bus 1, then it is deleted from the graph, with
conditions added between its incident buses (2, 4, 5)

Here new lines are
added between 2 and 4,

and between 2 and 5

1 2 3 4 5

1 X X X X

2 X X X F F

3 X X X

4 X F X X X

5 X F X X

r
c

Example: 5 by 5 System

Graph G1

• We obtain the graph G1 from G by removing Bus 1 with the new
added branches (2, 4) and (2, 5) corresponding to the fills

5 2

4 3

new branch

Example: 5 by 5 System

14

• The elimination of Bus 2 results in the submatrix shown below

3 4 5

3 X X F

4 X X X

5 F X X

r
c

Example: 5 by 5 System

Now a new branch is
added between buses 3

and 5

15

with the corresponding graph G2

• The elimination of Bus 3 yields

5

4 3

4 5

4 X X

5 X X

r
c

Example: 5 by 5 System

16

with the corresponding graph G3

• Finally, upon Bus 4 we have

• and the corresponding G4 is simply the point

5

5 X

5

4

5

r
c

Example: 5 by 5 System

17

• We next examine how we may reorder the rows and columns of A to
preserve its sparsity, i.e., to minimize the number of fills

• Eventually we’ll introduce an algorithm to try to minimize the fills

• This is motivated by revisiting the graph G

1 2

34

5

Reording the Rows/Columns

18

• To minimize the number of fills, i.e., the number of new branches in G,
we eliminate first the node which upon deletion introduces the least
number of new branches

• This is node 5 and upon deletion no new branches are added and the
resulting graph G1 is

1

4

2

3

Reording Motivating Example

19

• The structure of G1 is such that any one of the remaining nodes may be
chosen as the next node to be eliminated since each of the 4 remaining
nodes introduces a new branch after its elimination

• We arbitrarily pick node 1 and we obtain the graph G2

• We continue with the next three choices arbitrary, resulting in no new fills

2

34

new branch

Reording Motivating Example

20

• We may relabel the original graph in such a way that the label of the
node refers to the order in which it is eliminated

• Thus we renumber the nodes as shown below

1
2 3

45

Reording Motivating Example

21

• Clearly, relabeling the nodes corresponds to reordering the
rows and columns of A

• For the reordered system, the zero-nonzero pattern of A is

1 2 3 4 5

1 X X X

2 X X X X

3 X X X

4 X X X

5 X X X X

r
c

Reording Motivating Example

22

and of its table of factors has the zero-nonzero structure

Compared to the original ordering scheme, the new ordering scheme has
saved us 4 fill-ins

1 2 3 4 5

1 X X X

2 X X X X

3 X X X F

4 X X X

5 X X F X X

r
c

Reording Motivating Example

23

• The associated graph of the structurally symmetric matrix A is useful in
gaining insights into the factorization process

• We make the following observations

• If A is originally structurally symmetric, then it remains so in all the
steps of the factorization;

• A good ordering scheme is independent of the values of the elements
of A and depends only on its the zero-nonzero pattern

General Findings

24

Permutation Vectors

• Often the matrix itself is not physically reorded when it is renumbered.
Rather we can make use of what is known as a permutation vector, and
(if needed) an inverse permutation vector

• These vectors implement the following functions
– inew = New(iold)

– iold = Old(inew)

• For an n by n matrix the permutation vector is an n-sized integer vector

• If ordered lists are needed, then the linked lists do need to be reordered,
but this can be done quickly

25

Permutation Vectors, cont.

• For the previous five bus example, in which the buses are to be
reordered to (5,1,2,3,4), the permutation vector would be
rowPerm=[5,1,2,3,4]
– That is, the first row to consider is row 5, then row 1, …

• If needed, the inverse permutation vector is invRowPerm = [2,3,4,5,1]
– That is, with the reordering the first element is in position 2, the second element in

position 2, ….

• Hence i = invRowPerm[rowPerm[i]]

26

Sparse Factorization using a Permutation Vector
For i := 1 to n Do Begin

k = rowPerm[i]; // this is the only change, except using k

LoadSWRbyCol(k,SWR); // Load Sparse Working Row }

p2 := rowHead[k]; // the row needs to be ordered correctly!

While p2 <> rowDiag[k] Do Begin

p1 := rowDiag[p2.col];

SWR[p2.col] := SWR[p2.col] / p1.value;

p1 := p1.next;

While p1 <> nil Do Begin // Go to the end of the row

SWR[p1.col] := SWR[p1.col] - SWR[p2.col] *p1.value;

p1 := p1.next;

End;

p2 := p2.next;

End;

UnloadSWRByCol(k,SWR);

End;
27

Sparse Matrix Reordering

• There is no computationally efficient way to optimally reorder a
sparse matrix; however there are very efficient algorithms to
greatly reduce the fills

• Two steps here: 1) order the matrix, 2) add fills

• A quite common algorithm combines ordering the matrix with
adding the fills

• The two methods discussed here were presented in the 1963 paper
by Sato and Tinney from BPA; known as Tinney Scheme 1 and
Tinney Scheme 2 since they are more explicitly described in
Tinney’s 1967 paper
– 1967 paper also has Tinney Scheme 3 (briefly covered)

28

Tinney Scheme 1

• Easy to describe, but not really used since the number of fills, while
reduced, is still quite high

• In graph theory the degree (or valence or valency) of a vertex is the
number of edges incident to the vertex

• Order the nodes (buses) by the number of incident branches (i.e., its
valence) those with the lowest valence are ordered first
– Nodes with just one incident line result in no new fills

– Obviously in a large system many nodes will have the same number of
incident branches; ties can be handled arbitrarily

29

Tinney Scheme 1, Cont.

• Once the nodes are reordered, the fills are added
– Common approach to ties is to take the lower numbered node first

• A shortcoming of this method is as the fills are added
the valence of the adjacent nodes changes

1 2 3

4 5
6

78
Node Valence

1 1
2 1
3 1
4 4
5 3
6 3
7 2
8 3Tinney 1 order is 1,2,3,7,5,6,8,4

Number of new branches is 2 (4-8, 4-6)
30

Tinney Scheme 2

• The Tinney Scheme 2 usually combines adding the fills with the
ordering in order to update the valence on-the-fly as the fills are added

• As before the nodes are chosen based on their valence, but now the
valence is the actual valence they have with the added lines (fills)
– This is also known as the Minimum Degree Algorithm (MDA)

– Ties are again broken using the lowest node number

• This method is quite effective for power systems, and is highly
recommended; however it is certainly not guaranteed to result in the
fewest fills (i.e. not optimal)

31

Tinney Scheme 2 Example

• Consider the previous network:

• Nodes 1,2,3 are chosen as before. But once these nodes are eliminated
the valence of 4 is 1, so it is chosen next. Then 5 (with a new valence
of 2 tied with 7), followed by 6 (new valence of 2), 7 then 8.

1 2 3

4 5
6

78

32

Coding Tinney 2

• The following slides show how to code Tinney 2 for an n by n sparse
matrix A

• First we setup linked lists grouping all the nodes by their original valence

• vcHead is a pointer vector [0..mvValence]
– If a node has no connections its incidence is 0

– Theoretically mvValence should be n-1, but in practice a much smaller number can
be used, putting nodes with valence values above this into the vcHead[mvValence]
is

33

Coding Tinney 2, cont.

• Setup a boolean vectors chosenNode[1..n] to indicate which nodes are
chosen and BSWR[1..n] as a sparse working row; initialize both to all
false

• Setup an integer vector rowPerm[1..n] to hold the permuted rows;
initialize to all zeros

• For i := 1 to n Do Begin
– Choose node from valence data structure with the lowest current valence; let this be

node k
• Go through vcHead from lastchosen level (last chosen level may need to be reduced by one

during the following elimination process;

– Set rowPerm[i] = k; set chosenNode[k] = true

34

Coding Tinney 2, cont.

– Modify sparse matrix A to add fills between all of k’s adjacent nodes provided
1. a branch doesn’t already exist

2. both nodes have not already been chosen (their chosenNode entries are false)

• These fills are added by going through each element in row k; for each element set the BSWR
elements to true for the incident nodes; add fills if a connection does not already exist (this requires
adding two new elements to A)

– Again go through row k updating the valence data structure for those nodes that have
not yet been chosen
• These values can either increase or go down by one (because of the elimination of node k)

• This continues through all the nodes; free all vectors except for rowPerm

• At this point in the algorithm the rowPerm vector contains the new ordering
and matrix A has been modified so that all the fills have been added
– The order of the rows in A has not been changed, and its columns are no longer sorted

35

Coding Tinney 2, cont.

• Sort the rows of A to match the order in rowPerm
– Surprising sorting A is of computational order equal to the number of elements in A

• Go through A putting its elements into column linked lists; these columns will be ordered by row

• Then through the columns linked lists in reverse order given by rowPerm

– That is For i := n downto 1 Do Begin
p1 := TSparmatLL(colHead[rowPerm[i]).Head;
….

• That’s it – the matrix A is now readying for factoring

• Pivoting may be required, but usually isn’t needed in the power flow

36

Some Example Values for Tinney 2

Number of
buses

Nonzeros
before fills

Fills Total
nonzeros

Percent
nonzeros

37 63 72 135 9.86%

118 478 168 646 4.64%

18,190 64,948 31,478 96,426 0.029%

62,605 228,513 201,546 430,059 0.011%

37

Tinney Scheme 3

• “Number the rows so that at each step of the process the next row
to be operated upon is the one that will introduce the fewest new
nonzero terms.”

• “If more than one row meets this criterion, select any one. This
involves a trial simulation of every feasible alternative of the
elimination process at each step. Input information is the same as
for scheme 2).”

• Tinney 3 takes more computation and in general does not give
fewer fills than the quicker Tinney 2

• Tinney got into the NAE in 1998

These are direct quotes from the Tinney-Walker 1967 IEEE Proceedings Paper
38

Sparse Forward Substitution with a Permutation
Vector

Pass in b in bvector

For i := 1 to n Do Begin

k = rowPerm[i]; // this is the only change, except using k

p1 := rowHead[k]; // the row needs to be ordered correctly!

While p1 <> rowDiag[k] Do Begin

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

End;

39

Sparse Backward Substitution with Permutation
Vector

Pass in b in bvector

For i := n downto 1 Do Begin

k = rowPerm[i];

p1 := rowDiag[k].next;

While p1 <> nil Do Begin

bvector[k] = bvector[k] – p1.value*bvector[p1.col];

p1 := p1.next;

End;

bvector[k] := bvector[k]/rowDiag[k].value;

End;

• Note, numeric problems such as matrix singularity are indicated with
rowDiag[k].value being zero! 40

Sparse Vector Methods

• Sparse vector methods are useful for cases in solving Ax=b in which
– A is sparse, b is sparse, only certain elements of x are needed

• In these right circumstances sparse vector methods can result in extremely
fast solutions!

• A common example is to find selected elements of the inverse of A, such
as diagonal elements.

• Often times multiple solutions with varying b values are required
– A only needs to be factored once, with its factored form used many times

• Key reference is
W.F. Tinney, V. Brandwajn, and S.M. Chan, "Sparse Vector Methods", IEEE
Transactions on Power Apparatus and Systems, vol. PAS-104, no. 2, February 1985,
pp. 295-300 41

Sparse Vector Methods Introduced

• Assume we are solving Ax = b with A factored so we solve LUx = b by
first doing the forward substitution to solve Ly = b and then the backward
substitution to solve Ux = y

• A key insight: In the solution of Ly = b if b is sparse then only certain
columns of L are required, and y is often sparse

y1

.

.

.

yn

b1

.

.

.

bn

=x

42

Fast Forward Substitution

• If b is sparse, then the fast forward (FF) substitution takes advantage of
the fact that we only need certain columns of L

• We define {FF} as the set of columns of L needed for the solution of Ly =
b; this is equal to the nonzero elements of y

• In general the solution of Ux = y will NOT result in x being a sparse
vector

• However, oftentimes only certain elements of x are desired
– E.g., the sensitivity of the flows on certain lines to a change in generation at a single

bus; or a diagonal of A-1

43

Fast Backward Substitution

• In the case in which only certain elements of x are desired, then we
only need to use certain rows in U below the desired elements of x;
define these columns as {FB}

• This is known as a fast backward substitution (FB), which is used to
replace the standard backward substitution

x1

x2
.
.
.

xn

y1

y2
.
.
.

yn

=x

44

Factorization Paths

• We observe that
– {FF} depends on the sparsity structures of L and b

– {FB} depends on the sparsity structures of U and x

• The idea of the factorization path provides a systematic way to construct
these sets

• A factorization path is an ordered set of nodes associated with the
structure of the matrix

• For FF the factorization path provides an ordered list of the columns of L

• For FB the factorization path provides an ordered list of the rows of U

45

Factorization Paths

• The factorization path is traversed in the forward direction for FF and in the
reverse direction for FB
– Factorization paths should be built using doubly linked lists

• A singleton vector is a vector with just one nonzero element. If this value is
equal to one then it is a unit vector as well..

• With a sparse matrix structure ordered based upon the permutation vector
order the path for a singleton with a now zero at position arow is build using
the following code:

46

Path Table and Path Graph

• The factorization path table is a vector that tells the next element in the
factorization path for each row in the matrix

• The factorization path graph shows a pictorial view of the path table

47

20 Bus Example

48

20 Bus Example

Only showing L

49

20 Bus Example

50

20 Bus Example

• Suppose we wish to evaluate a sparse vector with the nonzero elements
for components 2, 6, 7, and 12

• From the path table or path graph, we obtain the following factorization
paths (f.p.)

• This gives the following path elements

2 {2, 11, 12, 15, 17, 18, 19, 20}f.p.

6 {6, 16, 17, 18, 19, 20}f.p.

7 {7, 14, 17, 18, 19, 20}f.p.
12 2f.p. already contained in that for node

{ }7,14, 6,16, 2,11,12,15,17,18,19, 20

51

20 Bus Example

Full path Desired subset

52

