Texas A&M Smart Grid Center Webinar

An Approach for the Direct Inclusion of Weather Information in the Power Flow

Thomas J. Overbye O'Donnell Foundation Chair III Texas A&M University overbye@tamu.edu

July 13, 2022

- A M
- Work presented here has been supported by a variety of sources including the Texas A&M Smart Grid Center, PSERC, DOE, ARPA-E, NSF, many utilities and ISOs, and PowerWorld. Their support is gratefully acknowledged!
- Slides also include contributions from many of my students, postdocs, staff and colleagues at TAMU
- The views presented here are my own, and are partially contained in a paper submitted to the 2023 Hawaii International Conference on System Sciences (HICSS)
- The simulations and visualizations shown here are done using the PowerWorld Simulator version 23 beta

Overview

- The purpose of this presentation is to show the benefits of having weather information become a standard part of power flow analysis (with weather including the insolation)
 - The results also apply to related applications such as optimal power flow (OPF), contingency analysis, security-constrained OPF
- The power flow models grid operations past, present and future
- While it is widely recognized that weather impacts electric grid operations, in general weather information has only been implicitly included in the power flow
- The presentation shows how weather could be incorporated into the standard power flow with little changes to existing models, and demonstrates results on grids with more than 80,000 buses.

Weather in Electric Grid Planning and Operations

- Weather information has been used in electric grid planning and operations going back to the initial grids in the 1880's
- In operations real-time weather information has been long used in control rooms, with computerized information used at least since the 1980's; current applications are quite sophisticated
- In planning weather information plays many roles, including load forecasting, outage scheduling and in the development of planning power flow cases (summer, winter, spring, fall)
- The focus of this talk is on direct inclusion of weather information in the power flow, with the talk showing this is relatively simple to do with potentially very good benefits

The Power Flow

- A M
- The power flow (also called the load flow) is used to determine how the power flows from the generators through the transmission system to the load
 - Prior to digital computers analogs simulators were used; digital computer approaches started to develop in the mid to late 1950's with the algorithms needing to solve the set of nonlinear power balance equations
- In its simplest form the inputs are a power grid model, a set of fixed loads (real and reactive), fixed generator real power outputs and voltage setpoints; the power flow then determines the bus voltages
- Commonly many control values are also adjusted including sometimes the generator real power outputs
- The OPF and SCOPF add additional optimizations

The Power Flow as a System

- The word "system" is can be defined as "a set of connected things or devices that operate together." [Cambridge Dictionary]
- The term power flow is sometimes thought of as just the core algorithm [e.g., Newton-Raphson power flow] but more broadly it is a system the includes
 - The core algorithm for solving the power balance equations
 - External algorithms for modifying controls (e.g., AGC, taps)
 - The set of models used in the algorithms ← _ This talk focuses mostly on
 - The input data including its format < including weather here</p>
 - The associated human machine interface (HMI) including visualizations
- The determination of the input parameters could be thought of at the edge of, or outside, the power flow system

A Few Background Thoughts

- "All models are wrong but some are useful," George Box, *Empirical Model-Building and Response Surfaces*, (1987, p. 424)
 - George Box (1919-2013) formed the Department of Statistics at UW-Madison, and has a more than 200,000 Google Scholar citations
 - Models are an approximation to reality, not reality, so they always have some degree of approximation
 - Box went on to say that the practical question is how wrong to they have to be to not be useful
- A good part of engineering is deciding what is the appropriate level of modeling, and knowing under what conditions the model will fail
- The point of this talk is directly including weather information can be very useful, even if it necessarily involves some approximation

Of course Models Should be Implemented Correctly

- Saying the models are always wrong (at least to some degree) does not mean one should be sloppy in implementing the models
 - A power flow example is looking for quadratic convergence to ensure that the Jacobian is being calculated correctly
- Engineering is also balancing the degree of wrongness in the models, tolerating it more when it matters less
- This certainly occurs with the models used in the power flow
 - Positive sequence versus full three-phase
 - Load models
 - Generator PV buses
 - AC versus DC power flow

Engineering Model Tradeoffs

- In any engineering analysis tools (e.g., the power flow here) there are tradeoffs associated with the models to use
 - The existence of the models themselves (i.e., do we understand the physics)
 - The availability of the model parameters and the memory required to store them
 - The computational complexity required to utilize the model
 - The impact of the model on the ultimate results
 - Compatibility with existing software, etc.
- The focus of this talk is to present an approach for the direct inclusion of weather information in the power flow that does not require substantial changes to existing algorithms, and is expandable moving forward

A Little Bit of Power Flow History

- When the power flow was first introduced in the mid 1950's, 50 bus systems were being solved on computers with 4KB of memory [a] and by the mid 1960's 700 buses were solved with 32KB or memory
 - Comments in [c] indicate that by the early 1970's power flows contained up to 4000 buses and 7000 lines
- Hence initial power flows were very much memory constrained
- Into the mid 1980's many computers had on the order of 512KB of memory
- Adding non-crucial parameters like location was not worth the memory

[a] J.B. Ward, H.W. Hale, "Digital Computer Solution of Power Flow Problems," *AIEE Transactions*, vol. 75, pp. 394-404, June 1956
[b] W.F. Tinney, C.E. Hart, "Power Flow Solution by Newton's Method, *IEEE Trans. Power App. & Syst.*, vol. pas-86, pp. 1449-1460, Nov. 1967
[c] "Common Format for Exchange of Solved Load Flow Data," *IEEE Trans. Power App. & Syst.*, vol. pas-92, pp. 1916-1925, Nov/Dec 1973

- In comparing power flow applications of today versus those of the past, much as changed
- The grid sizes in interconnection level models can be 25 times larger
- Computer memory has increased by at least a factor of 100,000
- However, the key model parameters are mostly the same, contrasting say [a] with [b] and [c]
 - There are now more model parameters, individual objects for loads, generators, switched shunts, three-winding transformers, FACTS, HVDC, impedance correction tables, substations

- Substation latitude and longitude is now mostly required

[a] "Common Format for Exchange of Solved Load Flow Data," *IEEE Trans. Power App. & Syst.*, vol. pas-92, pp. 1916-1925, Nov/Dec 1973
[b] "NERC Library of Standardized Power Flow Parameters and Standardized Dynamic Models, Version 1.0," North American Electric Reliability Corporation, Atlanta, GA, Oct. 2015

[c] "WECC Data Preparation Manual for Interconnection-Wide Cases," WECC, Salt Lake City, UT, 2019.

The Power Flow and Weather

- Human activity depends on the weather, and this has always been reflected in the electric load
- Traditionally some power flow parameters have depended on the weather (e.g., line ratings, combustion turbine max MW, line resistance)
- Over the last several decades this dependence has grown substantially with the increase in wind and solar generation
 - They now provide more than 14% of US electric energy; there are times in which most of the electric power in regions is supplied by these sources
 - They are extremely dependent on the weather
- Major power system input parameters are now heavily weather dependent (e.g., wind and solar generator Max MW)

ERCOT Wind and Solar on 7/8/22

A M

Supply and Demand

Combined Wind and Solar

Last Updated: Jul 8, 2022 17:55 CT

Image Source: ERCOT.com

An Approach for the Direct Inclusion of Weather Information in the Power Flow

- The importance of weather has reached the point in which it should be included as a standard part of the power flow inputs
 - Some models for representing weather impacts already exist, and if weather data is readily available more will be developed
- Requirements for explicitly including weather information in the power flow include
 - Have adequate weather information for the footprint of interest
 - Be able to map the weather information to the pertinent electric grid components
 - Have adequate models of how the weather impacts the grid components
- Remainder of presentation shows that meeting these requirements is relatively straightforward now, and can be improved going forward

Availability of Weather Information: Present and Past

- Current and at least some historical weather information is ubiquitously available
 - Associated with some of the research presented here, we obtained hourly

worldwide weather data going back to the 1930's (with the key values being temperature, wind speed, cloud coverage, dew point and wind direction)

 The number of available stations increases as times get closer to the present

Weather Stations (TAMU Dataset) 1949 vs 2022

- In the dataset we obtained there were about 1600 weather stations in the late 1940's and more than 23,000 today
 - The number of missing values also decreases moving forward in time

Weather Station Identifiers

- There is no single standard for identifying weather stations, and there are now many different types of weather stations with available data
- The International Civil Aviation Organization (ICAO) provides data for more than 22,000 locations worldwide using 4-letter identifiers
 - Usually these include the common airport IDs with a letter prefix (KCLL for the College Station airport)
 - Current weather data for about 4900 stations using ICAO is available at https://aviationweather.gov/adds/dataserver_current/current/metars.cache.csv
- The World Meteorological Association (WMO) uses five digit identifiers with some overlap with the ICAOs
- For power flow this data could be supplemented with electric utility weather stations

ICAO METAR Example Information

The data provided from the site includes the raw text along with the decoded fields (data from https://aviationweather.gov/adds/dataserver_current/current/metars.cache.csv)

No vertrig Converting Convertin Convertin Convertin														
2 Note writings Metal source-metars 4 data source-metars 4 data source-metars 4 data source-metars 4 data source-metars 6 rear yeard 4 data source-metars 4 data source-metars 4 data source-metars 4 data source-metars 6 rear yeard 4 data source-metars 6 rear yeard 4 data source-metars 4 data source-metarsou	1 No errors													
B B CALL CALL<	2 No warnings	METAD ACCORD	free		0.040	100		1 1 0	Juan	$^{\circ}$ D	010	ant a	+	
4 distance-metars c c mid_actore-metars 6 distance-metars station_il observation_lime inditude lenge indig_actore-metars indig_actore-metars indig_actore-metars 6 fix/mathematical station_il observation_lime indig_actore-metars indig_act	3 450 ms	- METAK COMES	IIOI		eorc	0102	sica	I Aero	Jarom	eĸ	ep	Drts		
3 3 3 3 3 3 3 1	4 data source=metars		-			- 6				-	- I -		/	
6 Part, lett Statulor Base value	5 4913 results													
XMM H022052 AUTC 3000KT 105M CH 2/1/A A3013 RMK A02 PWINO KMV 2022-07 8721105000 24.83 108.93 27 14 150 7 10 30.0502 5 KUSU 682002 AUTC 3000KT 105M CH 2/10/5 A3024 RMK A01 KUU 2022-07 8721105000 22.37 38.53 3 25 0 4 10 30.0502 5 KUSU 682102 AUTC 30000KT 105M CH 2/10/5 A3024 RMK A01 KUU 2022-07 8721104000 38.25 -24 0 0 10 29.39374 16 KOW 0821002 AUTC 30000KT 105M CH 2/16 A000/000 CLDSKT MA A2P F0000 KKN 2022-07 69721104000 48.37 -8.27 23 0 0 10 39.59707 13 KOW 0821002 AUTC 30000KT 105M CH 2/16 A000/000 CLDSKT MAY E C BSC YSW 02202-07 69721104000 48.35 -5.12 10	6 raw_text		station_id	observation_time	latitude l	ongitude t	emp_c	dewpoint_c win	nd_dir_deg wind_sp	eed_kt w	ind_gust	/isibility_a	Itim_in_ls	ea_level
8 Kolu 2022-07 e8T12165002 27.3 -93.3 10 25 0 0 10 00.0002 10 KUUD 681002 AUTO 0800KT 105M (F8.005 AUX ADD 4 MMX AD1 VILU 681002 AUTO 2000KT 105M (F8.075 AUX ADD 4 MMX AD2 10 30.022 - 078711.040002 35.23 -73.4 25 0 0 10 20.29.07871.040002 10 KOVU 6821042 AUTO 2000KT 105M (F8.275 AUX AD FR.MK AD2 VIS 3/4VS RAB2059 P0016 TSNO KOVU 2022-07 6871.040002 35.23 73.4 25 20 0 0 10 80.30507 12 KOMU 6821042 AUTO 2000KT 105M (F8.275/4 A239 FR.MK AD2 VIS 3/4VS RAB2059 P0001 CD2.55K WK 2022-07 68711.040002 44.73 96.27.7 25 10 13 13.13 13 KOK 0821032 AUTO 1000LTS F002/0000.0CD.5KW MAY BE 085C YSUU 2022-07 68711.04002 44.73 96.27.7 28 21.7 0 4 10 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13	7 KMVH 082105Z AUTO 19007KT 10SM CLR 27/14 A3013 RMK AO2 PWINO		KMVH	2022-07-08T21:05:00Z	46.83	-108.93	27	14	190	7		10	30.12992	
9 NUTO 921022 AUTO VRBAKT LOSM CLR 30/05 A3024 MIXK AD1 NUTO 92102 47.087114500.00 4.25 11.33 30 5 0 4 10 30.23817 11 KOPD 921044000 2010547 XM PLR BR PEWOD4 SCT019 52/24 A2399 RMIK AD2 VIS 3/4V5 RAB2039 PD016 TSNO KOPU 2022-07.6871144000 33.5 32.8 7.8 23 0 0 10 29.97147 12 KOBD 00210032 AUTO 000000T LOSM - RAF / MAS DASIS RMK AD2 KOBD A020000 CLD-SKY MAK AD2 PD000 KKDB 2022-07.68721430.300 43.8 54.12 0 0 0 10 29.97047 12 KOBD 0021032 AUTO 30001KM CAD CP / AADD XMA AD2 PDRAAD 5 KKDK 2022-07.68721430.300 43.8 54.12 10 0	8 KGUL 082105Z AUTO 00000KT 10SM FEW035 31/25 A3005 RMK A01		KGUL	2022-07-08T21:05:00Z	27.3	-93.53	31	25	0	0		10	30.0502	
101 NOP 0222-07-08721-04-002 35.28 -7.94 25 24 20 11 12 25 24 20 11 2 25 24 20 11 2 25 25 35.27 23 35.5 32.7 32 35 32.7 32.2 35.5 32.7 32.3 35 32.7 32.3 35.5 32.7 32.3 35.5 32.7 32.3 35.5 32.7 32.3 35.5 32.7 32.3 35.5 32.7 32.3 35.5 32.7 32.3 35.5 32.7 32.3 35.5 32.7 32.3 35.7 32.7 33.3 30.111 10 30.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 10.3 30.111 </td <td>9 K1U7 082105Z AUTO VRB04KT 10SM CLR 30/05 A3024 RMK A01</td> <td></td> <td>K1U7</td> <td>2022-07-08T21:05:00Z</td> <td>42.25</td> <td>-111.33</td> <td>30</td> <td>5</td> <td>0</td> <td>4</td> <td></td> <td>10</td> <td>30.23917</td> <td></td>	9 K1U7 082105Z AUTO VRB04KT 10SM CLR 30/05 A3024 RMK A01		K1U7	2022-07-08T21:05:00Z	42.25	-111.33	30	5	0	4		10	30.23917	
11 KDWU 2022-07-08721-04002 88.5 -8.7.3 23 0 0 10 29.57047 12 KCN0 0821042 AUTO 00000K1 IDSM: LA 2/15 ASD15 MKK A02 KCN0 2022-07-08721-04002 44.73 -8.677 29 16 00 10 29.57047 13 YSDU 0821032 AUTO 30308T 0500 /////// (2120 601020 SBB6 2022-07-08721-08002 -44.73 -8.677 29 16 00 13 30.11811 14 SBB6 0821027 AUTO 30308T 0500 ////// (2120 ADD0 0000 AKK A02 FZAANO \$ KK0K 2022-07-08721-03002 -44.53 -66.7 2 61.00 13 0.11	10 KSOP 082104Z AUTO 02011G19KT 2SM +RA BR FEW011 BKN021 OVC036 25/24 A299	RMK AO2 VIS 3/4V5 RAB2059 P0016 TSNO	KSOP	2022-07-08T21:04:00Z	35.23	-79.4	25	24	20	11	19	2	29.99114	
IN KNN 08 2024 AUT 09000KT 105M CR2 3/16 A3015 RMK AO2 10 0.10	11 KDWU 082104Z AUTO 00000KT 10SM -RA FEW004 SCT019 SCT050 23/ A2997 RMK AC	2 P0000	KDWU	2022-07-08T21:04:00Z	38.55	-82.73	23		0	0		10	29.97047	
13 YSDU 2222 07-0872.103:002 -32.22 148.57 -45.22 330 33 0.31 30.11811 14 SB86 0821032 AUTO 0801XF 12/05 GL020 SB86 2022-07-08721:03:000 -31.8 -54.12 12 6 60 15 6.21 30.11811 15 KKK 0821032 AUTO 1013KT 105M SCT013 SCT027 A3000 RMK AO2 FZRANO \$ KK0K 2022-07-08721:03:000 40.53 -86.07 60 16 60 10 10 13 10 110 10 <	12 KCNB 082104Z AUTO 06005KT 10SM CLR 29/16 A3015 RMK AO2		KCNB	2022-07-08T21:04:00Z	44.73	-96.27	29	16	60	5		10	30.15059	
14 SBR6 2022-07-08711/33:002 -41.28 -54.12 12 6 60 15 6.21 30.11811 15 KOKK 002022 AUTO 101801 COM CONS 2012/14 A013 BMK AO2 EXPANO \$ KOK 2022-07-08711/30:3002 44.63 -66.1 0 0 4 2.5 29.37933 16 KNYC 0821032 AUTO 1038007 CISKT 310020 105M OVC080 22/14 A013 BMK AO2 KRS 2022-07-08711/30:3002 44.63 -66.2 22 14 4300 7 15 0 30.2992 15 KRS 021032 AUTO 1038007 CISKT 310020 105M OVC080 22/14 A013 BMK AO2 KRS 021027 CIT CONTROL KREW05 35/212 A001 RMK AO2 SEP050 T0170128 S0000 PAHK 2022-07-0871103:002 66.7 19.9 10 30.098 10 30.098 100 30.2992 100 25.99914 1013.9 1013.9 101.9 30.098 100 30.0295 100 30.0295 100 30.0295 100 30.0295 100 30.0295 101.9 30.0295 100 30.0295 100 30.0295 100 30.0295 100 30.2957 100 30.2957 100 30.0295 100 30.0295 100 30.	13 YSDU 082103Z AUTO 33003KT 0500 // ///// 02/// Q1020 RF00.0/000.0 CLD:SKY MAY	BE OBSC	YSDU	2022-07-08T21:03:00Z	-32.22	148.57			330	3		0.31	30.11811	
15 KOKK 2022-07-08721-03:002 40.53 -86.0 110 110 10	14 SBBG 082103Z AUTO 06015KT 9999 TS /////CB 12/06 Q1020		SBBG	2022-07-08T21:03:00Z	-31.38	-54.12	12	6	60	15		6.21	30.11811	
16 KNYC 082103Z AUTO VRB04KT 2/12SM - RA BR SCT046 GVC055 23/22 A2998 RMK A02 RAB2059 P0000 T02280217 \$ KNYC 2022-07 68721-03:002 44.63 -8.62 20 1 0 4 0.2 29-9933 17 KFKS 082103Z AUTO VRB04KT 2/12SM - RA BR SCT046 GVC055 23/2A 3901 RMK A02 CIG DSM TVW-NE T03500217 KABV 2022-07-08721-03:002 31.3 -8.4.2 2 1 300 4 10 30.1299 18 KABV 082103Z AUTO VRB03KT 10SM CIR 2/13 ASMC A02 CIG DSM TSW-NE T03500217 KABV 2022-07-08721-03:002 35.3 -8.4.2 2 1 300 4 10 2.95882 1005.6 19 PAHK 082102Z AUTO VRB03KT 10SM CIR 3/12 A2999 RMK A02 UTG DSM TSE ALP055 D12193 \$ KEND 2022-07-08721-02:002 35.3 -9.2 36.7 11.8 300 11.0 10.0 29.95866 101.5 30.058 12 KEND 082102Z AUTO VRB03KT 15M TSM FEWOG 35CT035 SCT088 BKN092 16/09 A2996 RMK PRESRR SLP153 DENSITY ALT 2900FT CYZ 2022-07-08721-00:002 35.3 -123.13 16 9 0 7 5 9.2 9.5 23.5 9.62 23.5 6.7 128 30 6.10 2.56882 10.15 <	15 KOKK 082103Z AUTO 11013KT 10SM SCT018 SCT027 A3000 RMK AO2 FZRANO \$		КОКК	2022-07-08T21:03:00Z	40.53	-86.07			110	13		10	30	
17 KFKS 2022 07-08T21:03:002 44.8 -8.6.2 2.2 14 350 7 15 10 30.1292 18 KARV 0321032 AUTO 35007G15KT 310V020 105M KAO 2 (176 DSNT NW. KO 2 (150 DSNT NW. KO 2 (150 DSN 105W (LG 25NT NW. KO 2 (150 DSN 127)) KARV 2022-07-08T21:03:002 31.33 -8.62 35 71.2 0 3 10 30.1292 19 PAKK 0321032 AUTO 3000KT 105M (LG 23/13 A299 RMK AO2 UND KM KO 2 (150 DSN 15W (MG 38/21 A299 RMK AO2 WSHF 72055 SLP139 \$ KEND 2022-07-08T21:02:002 36.3 -9.72 38 21 35.55 -12.8 30.0088 -10 29.9914 101.3 101.3 101.3 101.3	16 KNYC 082103Z AUTO VRB04KT 2 1/2SM -RA BR SCT046 OVC055 23/22 A2998 RMK A	2 RAB2059 P0000 T02280217 \$	KNYC	2022-07-08T21:03:00Z	40.78	-73.97	22.8	21.7	0	4		2.5	29.97933	
18 KABY 0202-07-08T21:03:00Z 31.53 -84.2 35 21.7 200 9 10 80.0886 19 PALK 062100Z AUDT 0R03KT 105M CLR 22/13 A2970 RMK AO2 SLP056 T02170128 50000 PALK 2022-07-08T21:02:02 61.7 -15.8 21.7 12.8 0 3 0.00.86 10.00.86 <t< td=""><td>17 KFKS 082103Z AUTO 35007G15KT 310V020 10SM OVC080 22/14 A3013 RMK AO2</td><td></td><td>KFKS</td><td>2022-07-08T21:03:00Z</td><td>44.63</td><td>-86.2</td><td>22</td><td>14</td><td>350</td><td>7</td><td>15</td><td>10</td><td>30.12992</td><td></td></t<>	17 KFKS 082103Z AUTO 35007G15KT 310V020 10SM OVC080 22/14 A3013 RMK AO2		KFKS	2022-07-08T21:03:00Z	44.63	-86.2	22	14	350	7	15	10	30.12992	
19 PAHX 0821022 AUTO VR803KT 105M CLR 22/13 A2970 RMK AO2 SLP056 T02170128 50000 PAHX 2022-07-08T21:02:002 62.7 -159.57 21.7 12.8 0 3 10 9.69882 100.56 0 KEND 0821022 AUTO 38014621KT 105M CLR 32/13 A2990 RMK AO2 WSHFT 2055 SUP139 \$ KEND 0222-07-08T21:02:002 35.33 -97.92 36.7 1.0 3.00 1.0 9.099114 103.9014621KT 10.8 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9 9.09586 101.5 10.9	18 KABY 082103Z 20009KT 10SM FEW055 35/22 A3001 RMK AO2 LTG DSNT NW-NE T03	00217	КАВҮ	2022-07-08T21:03:00Z	31.53	-84.2	35	21.7	200	9		10	30.00886	
20 KEND 2022-07-08T21:02:00Z 36.3 -97.92 38 21 360 14 21 10 29.9114 101.3.9 21 KEND 082102Z AUTO 36014G21KT 10SM CLR 38/21 A2999 RMK AO2 USG DSN TSE W T03670194 KCSM 2022-07-08T21:02:00Z 35.3 -99.2 36.7 19.4 10 50.0255 10.3 30.02553 10.3 30.02553 10.3 30.02553 10.3 30.02553 10.3 30.02553 10.3 30.02553 10.3 30.02553 10.3 30.02553 10.3 30.02553 10.3 30.02553 10.3 30.02553 10.3 30.02553 10.3 30.02553 10.3 30.02563 10.3 30.02563 10.3 30.02563 10.3 30.02567 10.3 30.02567 10.3 30.02567 10.3 30.30267 10.3 30.30267 10.3 30.30267 10.3 30.30267 10.3 30.30267 10.3 30.30267 10.3 30.30267 10.3 30.30267 10.3 30.30267 10.3 30.30267 10.3 30.30267 10.3 30.30267 10.3 30.30267 10.3 30.3	19 PAHX 082102Z AUTO VRB03KT 10SM CLR 22/13 A2970 RMK AO2 SLP056 T02170128 5	0000	PAHX	2022-07-08T21:02:00Z	62.7	-159.57	21.7	12.8	0	3		10	29.69882	1005.6
11 KCSM 2022-07-08T21:02:00Z 35.5 -99.2 36.7 19.4 10 10 30.0293 12 KCSM 082102Z 01015KT 10SM CLR 37/19 A3003 RMK A02 LTG DSNT SE-W T03670194 KCSM 2022-07-08T21:02:00Z 55.3 -123.13 16 99.0 7 59.2 99.2 36.7 123.13 16 99.0 7 59.2 29.95866 101.3 20.02953 123 SBFN 082101Z AUTO 12015G6KT 999 FEW023 SCT043 26/23 Q1015 SBFN 2022-07-08T21:01:00Z -3.85 2.32.2 2.6 2.3 6.7 120 6.10 29.95866 101.5 29.97047 125 KRTN 082101Z AUTO 12005G6KT 999 FEW023 SCT043 26/23 Q1015 SBFN 2022-07-08T21:01:0Z 3.62 -154.35 2.3.3 2.6 7.10 2.6 6.11 2.9.97047 10.5 2.5 KTN 082101Z AUTO 12005G16KT 9907150 SM KA22 SLP058 T02330067 58003 PKF 2022-07-08T21:01:0Z 3.67.3 1.04.5 19.4 1.0 3.0.2953 10.0 3.0.2957 10.0 3.0.2957 10.0 3.0.2957 10.0 3.0.2957 10.0 3.0.2957 10.0 3.0.2957 10.0 3.0.2957 <	20 KEND 082102Z AUTO 36014G21KT 10SM CLR 38/21 A2999 RMK AO2 WSHFT 2055 SLF	139 \$	KEND	2022-07-08T21:02:00Z	36.33	-97.92	38	21	360	14	21	10	29.99114	1013.9
22 CYZY 082102Z AUTO VRB07KT 9SM TSRA FEW040 SCT055 SCT068 BKN092 16/09 A2996 RMK PRESRR SLP153 DENSITY ALT 2900FT CYZY 2022-07-08721:01:00Z 5.5. -12.3.1 16 9 0 7 9 9.95866 1015.3 23 SBFN 082101Z AUTO 12015G26KT 9999 FEW023 SCT043 26/23 Q1015 SBFN 2022-07-08721:01:00Z -3.85 -32.42 26 23 120 15 26 6.0.1 29.95866 1015.3 24 PAFS 082101Z AUTO 12008G16KT 090V150 105M CLR 23/07 A2969 RMK AQ2 SLP058 T02330067 58003 PAFS 2022-07-08721:01:00Z 63.02 -154.35 23.3 6.7 120 88 10 29.68966 100.5.8 25 KRTN 082101Z AUTO 12008G16KT 090V150 105M CLR 23/07 A2969 RMK AQ2 SUPDFS R0210 PRESRR SLP169 \$ KLF 2022-07-08721:01:00Z 36.32 104.5 19.4 12.8 30 16 0 0 0.02067 101.5.3 26 KLF 082101Z AUTO 100315KT 105M VCTS FEW027 FEW065 27/23 A3002 RMK AQ2 SUPDFRSR SLP169 \$ KLF 2022-07-08721:01:00Z 39.45 87.32 27.8 23.3 0 4 10 29.97047 105.9 105.9 105.9 105.9 105.9 10.9 10.9	21 KCSM 082102Z 01015KT 10SM CLR 37/19 A3003 RMK AO2 LTG DSNT SE-W T03670194		KCSM	2022-07-08T21:02:00Z	35.35	-99.2	36.7	19.4	10	15		10	30.02953	
23 SBFN 0821012 AUTO 12015G26KT 9999 FEW023 SCT043 26/23 Q1015 C6 C1	22 CYZY 082102Z AUTO VRB07KT 9SM TSRA FEW040 SCT055 SCT068 BKN092 16/09 A29	6 RMK PRESRR SLP153 DENSITY ALT 2900FT	CYZY	2022-07-08T21:02:00Z	55.3	-123.13	16	9	0	7		9	29.95866	1015.3
24 PAFS 082101Z AUTO 12008G16KT 090V150 10SM CLR 23/07 A2969 RMK AO2 SLP058 T02330067 58003 PAFS 2022-07-08T21:01:00Z 63.02 -154.35 23.3 6.7 120 8 10 29.68996 1005.8 25 KRTN 082101Z AUTO 03015KT 10SM VCTS -RA SCT080 BKN090 BKN110 19/13 A3040 RMK AO2 WSHFT 2044 LTG DSNT ALQDS TSE01 P0000 T0 KRTN 2022-07-08T21:01:00Z 36.73 -104.5 19.4 12.8 30 15 10 30.39862 26 KLSF 082101Z AUTO 17008KT 10SM VCTS FEW027 FEW065 27/23 A3002 RMK AO2 TSE01 PRESR SLP169 \$ KLSF 2022-07-08T21:01:00Z 32.32 -84.97 27.8 23.3 0 4 10 30.02067 1016.9 27 KHUF 082101Z VRB04KT 10SM SCT015 SCT110 28/23 A2995 RMK AO2 T02780233 KHUF 2022-07-08T21:01:00Z 39.45 -87.32 27.8 23.3 0 4 10 29.9498 29.9498 29.9498 29.9498 29.9498 2022-07-08T21:01:00Z 39.55 -87.32 26.6 19.4 110 4 3 30.0590 29.9498 29.9498 29.9498 29.9498 29.9498 29.9498 29.9498 29.9498 29.9498 2022-07-08T21:01:00Z 45.2 32.0	23 SBFN 082101Z AUTO 12015G26KT 9999 FEW023 SCT043 26/23 Q1015		SBFN	2022-07-08T21:01:00Z	-3.85	-32.42	26	23	120	15	26	6.21	29.97047	
25 KRTN 0821012 AUTO 03015KT 105M VCTS - RA SCT080 BKN090 BKN110 19/13 A3040 RMK AO2 WSHT 2044 LTG DSNT ALQDS TSE01 P0000 T0 KRTN 2022-07-08T21:01:00Z 36.7 1.04.5 1.94. 1.28 30 1.0 30.39862 26 KLSF 082101Z AUTO 17008KT 105M VCTS FEW027 FEW065 27/23 A3002 RMK AO2 TSE01 PRESR SLP169 \$ KLSF 2022-07-08T21:01:00Z 32.32 -84.97 2.7 2.3 1.0 .0 0.0	24 PAFS 082101Z AUTO 12008G16KT 090V150 10SM CLR 23/07 A2969 RMK AO2 SLP058	02330067 58003	PAFS	2022-07-08T21:01:00Z	63.02	-154.35	23.3	6.7	120	8	16	10	29.68996	1005.8
26 KLSF 022-07-08721:01:002 32.3 -84.97 27 23 100 30.02067 1016.9 27 KHUF 022-07-08721:01:002 39.45 -87.32 27.8 23.33 0 44.0 0.02067 1016.9 28 KARB 0821012 AUTO 11004KT 35M -RA BR SCT030 BKN070 OVC090 21/19 A3006 RMK AO2 P0001 T02060194 KARB 022-07-08721:01:002 42.22 -83.73 20.6 101 44 30.0506 101.9 <td< td=""><td>25 KRTN 082101Z AUTO 03015KT 10SM VCTS -RA SCT080 BKN090 BKN110 19/13 A3040</td><td>RMK AO2 WSHFT 2044 LTG DSNT ALQDS TSE01 P0000 T01</td><td>KRTN</td><td>2022-07-08T21:01:00Z</td><td>36.73</td><td>-104.5</td><td>19.4</td><td>12.8</td><td>30</td><td>15</td><td></td><td>10</td><td>30.39862</td><td></td></td<>	25 KRTN 082101Z AUTO 03015KT 10SM VCTS -RA SCT080 BKN090 BKN110 19/13 A3040	RMK AO2 WSHFT 2044 LTG DSNT ALQDS TSE01 P0000 T01	KRTN	2022-07-08T21:01:00Z	36.73	-104.5	19.4	12.8	30	15		10	30.39862	
27 KHUF 0821012 VRB04KT 105M SCT015 SCT110 28/23 A2995 RMK A02 T02780233 KHUF 2022-07-08721:01:002 39.45 -87.32 27.8 23.3 0 4 10 29.9498 28 KARB 0821012 AUTO 11004KT 35M -RA BR SCT030 BKN070 OVC090 21/19 A3006 RMK A02 P0001 T02060194 KARB 2022-07-08721:01:002 42.22 -83.73 20.6 10.0 4 30.0596 10.0	26 KLSF 082101Z AUTO 17008KT 10SM VCTS FEW027 FEW065 27/23 A3002 RMK AO2 TS	E01 PRESRR SLP169 \$	KLSF	2022-07-08T21:01:00Z	32.32	-84.97	27	23	170	8		10	30.02067	1016.9
28 KARB 0821012 AUTO 11004KT 3SM - RA BR SCT030 BKN070 OVC090 21/19 A3006 RMK A02 P0001 T02060194 KARB 2022-07-08721:01:002 42.2 -83.7 20.6 1.01 .04 .05 30.05906 29 CYAH 0821012 AUTO 32010G16KT 290Y350 9SM BKN041 OVC055 13/05 A2997 RMK SLP160 CYAH 2022-07-08721:01:002 53.75 7.73.67 1.3 5.35 5.30 .05	27 KHUF 082101Z VRB04KT 10SM SCT015 SCT110 28/23 A2995 RMK AO2 T02780233		KHUF	2022-07-08T21:01:00Z	39.45	-87.32	27.8	23.3	0	4		10	29.9498	
29 CYAH 082101Z AUTO 32010G16KT 290Y350 95M BKN041 OVC055 13/05 A2997 RMK SLP160 CYAH 2022-07-08721:01:00Z 53.7 7-73.67 13 5 320 10 16 9 9.99704 1016 30 2YTX 082100Z 15002MPS 5000 BR SCT030 23/23 Q1000 NOSIG CYM 2022-07-08721:00:00Z 41.63 123.48 23 230 10 16 9 9.99704 1016 31 2YTX 082100Z 15002MPS 5000 BR SCT030 23/23 Q1000 NOSIG CYM 2022-07-08721:00:00Z 41.63 123.48 23 205 6 10 0 0 10 9.5750 9.5750 31 2YTL 082100Z VRB01MPS CAVCK 26/21 Q101 NOSIG CYM 2YL 2022-07-08721:00:00Z 38.97 121.55 26 21 10 0 20 6.61 29.5570 9.5750 9.5750 10.55 <td>28 KARB 082101Z AUTO 11004KT 3SM -RA BR SCT030 BKN070 OVC090 21/19 A3006 RM</td> <td>(AO2 P0001 T02060194</td> <td>KARB</td> <td>2022-07-08T21:01:00Z</td> <td>42.22</td> <td>-83.73</td> <td>20.6</td> <td>19.4</td> <td>110</td> <td>4</td> <td></td> <td>3</td> <td>30.05906</td> <td></td>	28 KARB 082101Z AUTO 11004KT 3SM -RA BR SCT030 BKN070 OVC090 21/19 A3006 RM	(AO2 P0001 T02060194	KARB	2022-07-08T21:01:00Z	42.22	-83.73	20.6	19.4	110	4		3	30.05906	
30 2YTX 0821002 15002MPS 5000 BR SCT030 23/23 Q1000 NOSIG 2YTX 2022-07-08721:00:002 41.63 123.48 223 150 4 3.11 29.5276 31 2YTL 0821002 VRB01MPS CAVOK 26/21 Q1001 NOSIG 2YTL 2022-07-08721:00:002 38.97 121.55 266 21 0 20 6.21 29.55709 32 2YHB 0821002 25004MPS CAVOK 21/17 Q0998 NOSIG 2YHB 2022-07-08721:00:002 45.62 126.55 21 17 250 86.01 29.4685 33 2YCC 0821002 21004MPS 9999 FEW030 20/16 Q1001 BECMG TL2230 TS 2YCC 2022-07-08721:00:002 43.98 125.68 20 16 210 8 6.21 29.55709	29 CYAH 082101Z AUTO 32010G16KT 290V350 9SM BKN041 OVC055 13/05 A2997 RMK	LP160	СҮАН	2022-07-08T21:01:00Z	53.75	-73.67	13	5	320	10	16	9	29.97047	1016
31 2YTL 0821002 VRB01MPS CAVOK 26/21 Q1001 NOSIG 2YTL 2022-07-08721:00:002 38.97 121.55 26 21 0 2 9.55709 32 2YHB 0821002 25004MPS CAVOK 21/17 Q0998 NOSIG 2YHB 2022-07-08721:00:002 45.62 126.55 21 17 250 8 6.21 29.4580 33 2YCC 0821002 21004MPS 9999 FEW030 20/16 Q1001 BECMG TL2230 TS 2YCC 2022-07-08721:00:002 43.98 125.68 20 16 210 8 6.21 29.55709	30 ZYTX 082100Z 15002MPS 5000 BR SCT030 23/23 Q1000 NOSIG		ZYTX	2022-07-08T21:00:00Z	41.63	123.48	23	23	150	4		3.11	29.52756	
32 2YHB 0821002 25004MPS CAVOK 21/17 Q0998 NOSIG 2YHB 2022-07-08721:00:00Z 45.62 126.55 21 17 250 8 6.21 29.4685 33 2YCC 0821002 21004MPS 9999 FEW030 20/16 Q1001 BECMG TL2230 TS 2YCC 2022-07-08721:00:00Z 43.98 125.68 20 16 210 8 6.21 29.55709	31 ZYTL 082100Z VRB01MPS CAVOK 26/21 Q1001 NOSIG		ZYTL	2022-07-08T21:00:00Z	38.97	121.55	26	21	0	2		6.21	29.55709	
33 ZYCC 0821002 21004MPS 9999 FEW030 20/16 Q1001 BECMG TL2230 TS 2YCC 022-07-08721:00:00Z 43.98 125.68 20 16 210 8 6.21 29.55709	32 ZYHB 082100Z 25004MPS CAVOK 21/17 Q0998 NOSIG		ZYHB	2022-07-08T21:00:00Z	45.62	126.25	21	17	250	8		6.21	29.4685	
	33 ZYCC 082100Z 21004MPS 9999 FEW030 20/16 Q1001 BECMG TL2230 TS		ZYCC	2022-07-08T21:00:00Z	43.98	125.68	20	16	210	8		6.21	29.55709	
				0000 07 00704 00 007			22					C 04	00 70 405	

Future Weather

- Given that power flow studies often look at future conditions, there are several options for getting this information
 - Grid organizations (e.g., NERC, EROs, etc.) could select a set of times from the past to study and standardize on them (peak summer is 3pm CDT on xx-xx-xxxx)
 - Grid organizations could develop or obtain future representative weather conditions (many different organizations already do such studies)
 - Entirely fictional conditions could be used (e.g., high temperature, high wind, etc.)
- Inclusion of weather in a power flow data file would have very little impact on the file size
- An advantage of including the weather is the underlying weather assumptions would become explicit

Mapping Weather to the Electric Grid Components

- As noted, geographic information is now available in most power flow cases, either in the main file or a supplemental file
 - Large-scale synthetic grids with geographic information are also available
- Given the number of weather station data available even in the 1940's, close by meteorological measurements are usually available for electric grid infrastructure
- There is no single best algorithm for doing the needed 2D scattered data interpolation, but there are a number of good and fast algorithms (Delaunay Triangulation, Shepherd's, closest neighbor)
- Usually places in which the weather changes rapidly with geography (e.g., mountains) don't have much electric infrastructure (the exceptions are covered next)

Delaunay Triangulation of 1949 Weather Stations

Delaunay Triangulation of 2022 Weather Stations

Temperature Contour for February 15, 2021

Mapping Weather to the Electric Grid Components

- In situations in which interpolation does not work well (e.g., valleys, mountains, some coastal regions), specific weather stations could be assigned to the electric grid devices (e.g., a wind farm)
 - A example is the Columbia River Gorge with a length of 190 km and an
 - average width of 5 km; the gorge has a unique and complex climate often with high winds
 - Image shows the generation (ovals, with green for wind and blue for hydro) and the weather stations (as white rectangles)

Last Issue: Models of Grid Weather Impacts

- Certainly a number of models already exist, and undoubtedly more will be created as weather data is included with power flow cases
- An approach for handling a growing list of models is to mimic what has been done with power system stability – start small and expand
 - Stability codes from 1960 gave some nice results on grids with up to 96 generators using a total of three models (a machine, an exciter, and a governor)
 - Current stability codes support hundreds of models

[a] M. S. Dyrkacz, C. C. Young, and F. J. Maginniss, "," AIEE Trans. (Power App. & Syst.), vol. 79, pp. 1245-1257, Feb. 1961.

Example of Model Evolution: Exciters for Stability

- In previous 1961 article the exciter had one differential equation
- In 1968 the IEEE type 1 to 4 exciters were defined [a]
- In 1981 updated exciters are provided (modeled as EX...) [b]
- In 1992 IEEE Std. 421.5-1992 provides more updates (modeled as ES...) and also includes power system stabilizers
- In 2005 IEEE Std. 421.5-2005 provides more updates and includes over and underexcitation limiters, and power factor and reactive controllers and regulators
- In 2016 IEEE Std. 421-5-2016 provides more updates

[a] "Computer Representation of Excitation Systems," *IEEE Trans. Power App. and Syst.*, vol. PAS-87, pp. 1460-1464, June 1968
[b] "Excitation System Models for Power Stability Studies," *IEEE Trans. Power App. and Syst.*, vol. PAS-100, pp. 494-509, February 1981

Initial Models: Gen MaxMW Wind and Solar

- Initially we've code just six different models, all relating weather to generator maximum MW values (four wind turbines, a generic solar and a generic temperature)
 - The wind turbine models are based on the turbine classes using data from [a]
 - The solar PV model uses the standard equations for insolation based on location and time of day including cloud cover, combining it with whether the solar has tracking and, if needed, its tilt and azimuth

[a] C. Draxl, A. Clifton, B. Hodge, J. McCaa, "The Wind Integration National Dataset (WIND) Toolkit," *Applied Energy*, vol. 151, pp. 355-366, 2015.

Example: Wind During Record Cold in Texas (1949)

Example: Solar at 4am (Central) on 1/31/49

Needed Wind and Solar Data is in EIA 860

- For generation in the US the data needed to setup the wind and solar models is in the EIA 860 data
 - For wind this includes the wind quality class, the design speed, the turbine model, and the hub height
 - For solar this includes the type of tracking (single or dual), tilt angle and azimuth angle
 U.S. wind capacity additions by wind design class (1990–2018)

Image source: www.eia.gov/todayinenergy/detail.php?id=41474

Initial Model: Generation Max MW and Temperature

- The impact of ambient temperature on some types of generators is well known, with their output decreasing as the temperature rises
- As demonstrated in Feb 2021 generators can be impacted by low temperatures, but the relationship is less well defined
- As presented in [a] the failure rate for generators does show some strong temperature dependency (left image is Figure 6 from [a]

[a] S. Murphy, F. Sowell, J. Apt, "A time-dependent model of generator failures and recoveries captures correlated events and quantifies temperature dependence," *Applied Energy*, vol. 253, 2019.

Initial Model: Generation Max MW and Temperature

- More R&D is needed to determine how this dependence should be reflected in power flow models
 - This temperature dependence could be represented either in a deterministic or in a stochastic model (e.g., for power flow Monte Carlo simulations)
- One simple model is shown below

Some Potential Additional Models

- With weather information a part of the power flow a wide variety of additional power flow model enhancements become possible.
 Some examples are given below, recognizing that many are already done using external analysis
 - Transmission line limits that depend on temperature, wind and insolation along the right-of-way
 - Transformer limits
 - Load models (recognizing that the load depends on many factors, initial models could be linearizations about a specified value)
 - Line resistance (though this would be more complex since it is operating point dependent
 - Etc.

A 6700 Bus Synthetic Grid Example

- Next slides give some specific examples, with the first example using a 6700 bus synthetic grid on the ERCOT footprint.
 - The transmission grid is shown on the left (red is 345 kV, black 138 kV), with the generation shown using a geographic data view (GDV) visualization with green wind, yellow solar, red nuclear, brown natural gas

34

Applying July 11 and 12, 2022 Weather to Case

- Given that ERCOT set an all time peak on 7/11/22 (78,379 MW) with a conservation appeal (driven in part by low wind availability) for between 2 and 8 pm, the first example shows how weather can be quickly applied to this situation
- According to the ERCOT 7/10/22 news release their capacity is 80,083 MW dispatchable, 35,162 MW wind , and 11,787 MW solar
 - On July 11 only about 8% of the wind was forecasted to be available at peak
- The example uses the 6700 bus case with 2019 capacity of 25,700 MW wind, 2335 MW solar and 76,900 dispatchable
- The power flow case was initially set to all generation online with a load of 78,400 MW

6700 Bus Power Flow Solution: No Weather

Standard Voltage Contour GDV of generation dispatch, size is MW, color is fuel type (green is wind, yellow solar) Date and Time (Central): 07/11/2022 02:20 PM Date and Time (Central): 07/11/2022 02:20 PM Total Load: 78400 MW Total Load: 78400 MW Wind Gen 25118 MW This a 6700 Bus Wind Gen 24886 MW Solar Gen 2060 MW Synthetic Grid with This a 6700 Bus Solar Gen 2040 MW Synthetic Grid with all lines fictitious. all lines fictitious. Generation is based on 2019 EIA 860 Generation is based on 2019 EIA 860 data. data. oltage Magnitude -1.06 pu -1.00 pu 0.94 pu

Ā

GDV of Generation with Layout with No Weather

Adding the Weather

example

- On July 11 at about 3pm CDT I downloaded the worldwide weather data from
 - <u>https://aviationweather.gov/adds/dataserver_current/current/metars.cache.csv</u>
 - There are many sources for weather information; this is just one easy to get

X	🛃 🍠 ▼ 🕲 マ ↓ File Home Insert Page Layout Formulas Data				1	metars.cache_	luly11_20	22_3PM_CDT	- Microsoft	Excel											× ~ ×			
Pi	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	= <mark>=</mark> »·	Wrap Text	Center +	General \$ ~ % ,	•.0 0.€ 00.	Condition Formattin	nal Format Ig * as Table *	Norma Check	al Cell	Bad Explanator	Goo 77 Inp	od ut	Neutra Linked	il Cell	Calculation Note	* * *	Insert De	lete Format	Σ AutoSur Fill ▼ Clear ▼	m * Zr Sort 8 Filter *	Find & Select *		
_	Clipboard 🕞 Font 🕞	Alignment		Gi.	Numbe	ar D	i					Styles						Ce	ells		Editing			
	Q8 • (<i>f</i> x																							-
_	A B	С	D	E	F	G	H	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Y
1	No errors																							[
2	No warnings																							
3	511 ms																							
4	data source=metars																							
5	4924 results																							
6	raw_text station_id	observaticla	titude lo	ngitude 1	temp_c_d	ewpoint	wind_dir_	wind_spe wi	nd_gust	visibility_	altim_in_i	sea_level	corrected	auto	auto_stat	imaintenau	no_signal	l lightning	treezing_	(present_v	wx_string	sky_cover	cloud_bass	sky_cover
/	YCFS 1120222 AUTO 00000KT 9999 // NCD 0 YCFS	2022-07-1	-30.32	153.12	/	6	0	0		6.21	30.05906			TRUE								CLR		
8	SBBG 1120212 AUTO 18017KT 9999 -RA OV(SBBG	2022-07-1	-31.38	-54.12	13	12	180	1/	10	6.21	29.61614	1000.0		TRUE		Li					#NAME?	OVC	/00	COT
9	CYMT 1120212 AUTO 20010G16KT 3SM -RA CYMT	2022-07-1	49.77	- /4.52	15	15	200	10	10	3	29.5187	1000.3		TRUE			TOUL				#INAIVIE?	FEW	800 3	SCI
10	VINKT 1120202 VRB02KT 7000 FEW015 FEWI VINKT	2022-07-1	27.68	85.37	23	21	0	2		4.35	29.85236			TOUL	TOUL		TRUE					FEW	1500 1	FEW
11	PRWA 1120202 AUTO 05013KT 105M SCT04 PRWA	2022-07-1	8.72	167.72	27.4	24.7	50	13		10	29.86122			TRUE	TRUE							SCI	4100	
12	LSZS 1120202 AUTO 04009KT 9999 NCD 14/(LSZS	2022-07-1	40.53	9.88	14	11	40	9		6.21	30.29528			TRUE								CLR		
13	LSZR 1120202 AUTO 08004KT 020V130 9999 LSZR	2022-07-1	47.40	9.37	20	11	200	4		0.21	30.20009			TRUE							-	CER	8000	CCT
14	LSZE 1120202 AUTO 28004K1 250V350 99991LSZE	2022-07-1	40.17	0.00	25	10	280	4		6.21	30.02933			TRUE			TRUE				#INAIVIE :	CANOK	8000 3	501
10	LSZC 1120202 03007K1 020V080 CAVOK 21/ LSZC	2022-07-1	47.40	7.42	21	12	90	, E		6.21	20 17717			TRUE			TRUE					CLP		
17	1 SZC 1120202 A010 05003K1 5555 NCD 20/ LSZC	2022-07-1	47.17	9.29	20	13	260	1		6.21	30.17717			TRUE								CLR		
19	LSZE 1120202 W010 20004KT 210V310 5555 ESEC	2022-07-1	46.92	7.5	17	12	200	1		6.21	20 17717			THOL			TRUE					CAVOK		
19	I SZA 1120202 VINDORT CAVOR 17/12 GT02. C260	2022-07-1	40.52	8 92	24	17	10	6		6.21	30.05906			TRUE			TROL				#NAME?	FEW	6500	SCT
20	LSGS 1120207 AUTO 25004KT 220V/280 CAVUSGS	2022-07-1	46 22	7 32	24	12	250	4		6.21	30.08858			TRUE							interior co	CAVOK	0500 0	501
21	LSGG 112020Z 01004KT 320V040 CAVOK 22 LSGG	2022-07-1	46.25	6.12	27	10	10	4		6.21	30 11811			mor			TRUE					CAVOK		
22	LSGC 1120207 AUTO 03006KT 9999 NCD 17/ LSGC	2022-07-1	47.08	6.8	17	11	30	6		6.21	30,23622			TRUE								CLR		
23	LLBG 1120207 VBB02KT 9999 SCT031 26/20 LLBG	2022-07-1	32	34.88	26	20	0	2		6.21	29,79331						TRUE					SCT	3100	
24	LGKR 112020Z 22003KT CAVOK 23/15 Q101: LGKR	2022-07-1	39.62	19.92	23	15	220	3		6.21	29.91142						TRUE					CAVOK		
25	LGIR 112020Z 30010KT 9999 FEW025 25/18 (LGIR	2022-07-1	35.33	25.17	25	18	300	10		6.21	29.94095						TRUE					FEW	2500	
26	LGAV 112020Z 33004KT 280V040 9999 FEW(LGAV	2022-07-1	37.93	23.95	23	13	330	4		6.21	30						TRUE					FEW	3000	
27	LATI 112020Z VRB03KT CAVOK 20/14 Q1017 LATI	2022-07-1	41.42	19.72	20	14	0	3		6.21	30.02953						TRUE					CAVOK		
28	KQFX 112020Z AUTO 11001KT 9999 FEW003 KQFX	2022-07-1172	20:20:00Z		21	21	110	1		6.21	29.77854			TRUE	TRUE			TRUE				FEW	300	
20	KOEW 1120207 AUTO 05001/KT 0000 CLP 18 KOEW	2022 07 117	20.20.007		10	10	60	1		6.01	20 66042			TRUE	TOUL			TOUL				CLD		

Loading the Weather

- The METAR file can be directly loaded into the power flow software (other options for handling historical weather will be covered shortly)
 - Since the file has the weather station latitudes and longitudes, optionally new stations can be created if they don't exist, the approach used here

	¯ ⊞ *k too 4	00 44 46	Records	▼ Geo ▼ S	et - Columns - 🔄 -	AUXB - AUXB -	SORT	f(x) ▼ ⊞	Options •				
	Name	Longitude	Latitude	ElevationFt	Observation Time (UTC)	Enabled	Temp F 🔻	Dew Point F	Wind Speed m/sec	Wind Speed mph	Wind Direction	Cloud Cover %	Insolation %
1	KEED	114.620000	34.770000	889	2022-07-11T19:56:00.000	YES	114.1		5.1	11.5	220.0	0.0	81.
2	KLSV	115.050000	36.230000	1847	2022-07-11T19:58:00.000	NO		10	3.1	6.9	230.0	20.0	65
3	KPSP	116.500000	33.820000	404	2022-07-11T19:53:00.000	YES	113.0	24.1	2.6	5.8	0.0	0.0	81
4	KHII	114.370000	34.570000	791	2022-07-11T20:15:00.000	YES	113.0	33.8	4.1	9.2	100.0	0.0	81
5	KBLH	114.720000	33.620000	390	2022-07-11T19:52:00.000	YES	111.9	44.1	5.1	11.5	160.0	75,0	20
6	KPHX	112.020000	33.430000	1109	2022-07-11T19:51:00.000	YES	111.9	45.0	3.1	6.9	260.0	45.0	44
7	KLGF	114.400000	32.870000	387	2022-07-11T19:58:00.000	NO		45.0	3.1	6.9	190.0	0.0	81
8	KNJK	115.670000	32.820000	-49	2022-07-11T19:56:00.000	NO		30.0	2.6	5.8	100.0	0.0	81
9	KIFP	114.570000	35.150000	689	2022-07-11T19:47:00.000	YES	111.2	41.0	4.1	9.2	210.0	45.0	44
10	KLUF	112.370000	33.530000	1093	2022-07-11T20:18:00.000	NO		42.8	6.2	13.8	240.0	45.0	44
11	KGEU	112.300000	33.530000	1047	2022-07-11T19:50:00.000	YES	111.2	46.4	5.7	12.7	190.0	45.0	44
12	KBXK	112.680000	33.420000	994	2022-07-11T20:15:00.000	YES	111.2	44.6	3.6	i 8.1	230.0		
13	KL08	116.320000	33.270000	512	2022-07-11T20:15:00.000	YES	111.2	15.8	4.1	9.2	90.0	0.0	81
14	KIPL	115.580000	32.830000	-52	2022-07-11T19:53:00.000	YES	111.0	34.0	3.6	i 8.1	90.0	0.0	81
15	KDVT	112.070000	33.680000	1490	2022-07-11T19:53:00.000	YES	111.0	46.0	6.2	13.8	280.0	0.0	81
16	KTRM	116.170000	33.630000	-128	2022-07-11T19:52:00.000	YES	111.0	39.0	4.1	9.2	130.0	0.0	81
17	KGXF	112.720000	32.880000	856	2022-07-11T19:58:00.000	YES	110.5	43.5	4.1	9.2	280.0	20.0	65
18	KFFZ	111.720000	33.470000	1378	2022-07-11T19:54:00.000	YES	109.9	46.9	4.6	i 10.4	270.0	0.0	81
19	KSDL	111.920000	33.620000	1437	2022-07-11T19:53:00.000	YES	109.9	45.0	4.6	i 10.4	280.0	0.0	81
20	KA39	111.920000	32.980000	1283	2022-07-11T20:15:00.000	YES	109.4	48.2	5.7	12.7	250.0	0.0	81
21	KIWA	111.650000	33.300000	1378	2022-07-11T19:50:00.000	YES	109.4	50.0	3.1	6.9	310.0	0.0	81
22	KGYR	112.370000	33.420000	958	2022-07-11T19:47:00.000	YES	109.4	50.0	5.1	11.5	240.0	75.0	20
23	KP08	111.430000	32.930000	1565	2022-07-11T20:15:00.000	YES	109.4	46.4	6.2	13.8	320.0	0.0	81
24	KMKN	-98.600000	31.920000	1404	2022-07-11T20:06:00.000	YES	109.4	62.6	0.0	0.0	0.0	45.0	44
25	KNOZ	114.500000	32.530000	256	2022-07-11T19:59:00.000	YES	109.0	55.9	3.1	6.9	170.0	0.0	81
26	ксот	-99.220000	28.450000	472	2022-07-11T19:53:00.000	YES	109.0	63.0	4.1	9.2	110.0	45.0	44
27	KNYL	114.620000	32.650000	190	2022-07-11T19:57:00.000	YES	109.0	54.0	4.6	i 10.4	200.0	0.0	81
28	KCGZ	111.770000	32.950000	1457	2022-07-11T19:56:00.000	NO		48.9	3.6	8.1	220.0	0.0	81
29	KAPY	-99.250000	26.970000	423	2022-07-11T20:15:00.000	YES	108.7	61.0	3.1	6.9	70.0	100.0	0
30	KSJT	100.500000	31.370000	1909	2022-07-11T19:51:00.000	YES	108.0	46.0	2.6	5.8	0.0	0.0	81
31	KLAS	115.170000	36.070000	2172	2022-07-11T19:56:00.000	YES	108.0	42.1	4.6	i 10.4	100.0	20.0	65
32	KTUS	110.950000	32.130000	2546	2022-07-11T19:53:00.000	YES	108.0	48.0	5.1	11.5	360.0	0.0	81
33	KMZJ	111.320000	32.520000	1883	2022-07-11T20:15:00.000	YES	107.6	46.4	5.1	11.5	310.0	0.0	81
34	MMML	115.230000	32.620000	69	2022-07-11T19:40:00.000	YES	107.6	41.0	3.1	6.9	110.0		
35	KAVK	-98.670000	36.770000	1476	2022-07-11T20:20:00.000	YES	107.6	48.2	3.6	8.1	190.0	0.0	80
36	KAVQ	111.220000	32.400000	2028	2022-07-11T20:15:00.000	YES	107.6	40.6	2.6	5.8	320.0	0.0	81
37	KBVU	114.870000	35.950000	2146	2022-07-11T20:15:00.000	YES	107.6	39.2	3.6	8.1	0.0	0.0	81
38	KCVB	-98.850000	29.350000	768	2022-07-11T20:17:00.000	YES	107.6	51.8	2.6	5.8	120.0	0.0	80

Sorted by temperature; it was nice to see that Texas wasn't the hottest place in the world! Locally (KCLL) we were 76th out of more than 4800

Visualizing the Weather

GDVs can be created for the weather stations for quick visualization with dynamic formatting

Here the stations with temperatures above 100 F are shown larger

Contouring the Data

A M

• If desired the data can be readily contoured

Cloud Cover and Wind Speed

Cloud Cover Percent

ĀĮÑ

Wind Speed in the Focus Area of Texas

• There is a disconnect between the power flow assumption for wind and what was actually occurring

ĀĮÑ

Mapping Weather to Power Flow Parameters

 Using the new models the weather can be mapped to power system values (all generator MaxMW here)

Save All PFW M	Models in Aux	L	Load PFW Model Aux File										
Model	Class Ob	ect Type	Active and Online Count	Active Cou	int	Inactive Count							
1 All PFW N	All PF	W Models	853		853	C							
2 Gen MWN	lax WindE	asic	_ 153		153	(
3 Gen MWN	1ax SolarP	/Basic1	36		36	(
4 Cap MM/A	lax Tempe	ratureBasic1	664		664	0							

Generator Information for Present Status 190172 ~ 🚔 Find By Number View Bus Dialog Bus Number Open Bus Name LOCKNEY 4.3 Find By Name Closed Energized TD Find . NO (Offline) YES (Online) Area Name North (2) Labels no labels Fuel Type Renew\WND (Wind)| [PW=12] [E > Generator MVA Base 360.00 Linit Type WT (Wind Turbine) | [PW=19] [F Power and Voltage Control Faults Owners Data and Models Interpolation Sources Values Weather Station (if blank then inte Wind Direction (Degrees) 94 101.6 6.1 Temperature (F) Wind Speed (MPH) 13 46.0 Wind Speed (m/sec) 2.7 Cloud Cover Percent Dew Point (F) PEW Gen Object Insert Delete Type WindBasic Active (only one may be active) Set to Defaults Parameters AllowTurnOff 1 🌻 CutOut2MS 25.0000 👙 1 HubScala AllowTurnOr 1.5000 0 🌲 DefaultWindMS 4.0000 CurveType MWMax 300.0000 CutInMS 3,5000 RatedMS 11,0000 CutOut 1MS 25.0000

Ī	<u>C</u> lose	Numbe	Activ r of Models 15	e and Onlin 3	ne Act 153	ive	Inactive 0																	
	IPT. →	k * .0 ₁	00 🏘 🏘 👯	Records	▼ Set ▼ Colu	umns 👻 📴 🔻	AUXE - AUXE	:- 🌱 🗒	$ \begin{array}{c} $	Options 🝷														
	Number o	f Bus ID	Name_Nominal	kV of Bus	Area Name of Gen	Model Type	MVA Base	Device Status	Criteria Model Class	Input Value	Input Valid	Input Source	Output	Output Scalar Output Val	id AllowTurnOff	AllowTurnOn	CurveTyp	e MWMax	CutInMS	RatedMS	CutOut1MS	CutOut2M	S HubScala	r DefaultWin \land
1	12	0493 1	BRACKETTVILLE 4	2_13.80	West	WindBasic	119.76	Active	Gen MWMa	1.9702	Yes		0	0 Yes	1	1	(99.8	3.5	11	25	2	5 1.5	j
2	15	0492 1	DESDEMONA 3 2	13.80	North Centra	l WindBasic	72	Active	Gen MWMa	2.7162	Yes		4.5941	0.0766 Yes	1	1	(60	3.5	11	25	2	5 1.5	i
3	15	0496 1	BRYSON 1 2_18.00)	North Centra	l WindBasic	144	Active	Gen MWMa	2.8997	Yes		13.593	0.1133 Yes	1	1	(D 120	3.5	11	25	2	5 1.5	i
4	15	0499 1	OLNEY 2 3_18.00		North Centra	l WindBasic	270	Active	Gen MWMa	3.992	Yes		74.6393	0.3317 Yes	1	1	(225	3.5	11	25	2	5 1.5	i
5	15	0502 1	WINDTHORST 2 3	3_20.00	North	WindBasic	193.2	Active	Gen MWMa	3.82	Yes		47.8704	0.2973 Yes	1	1	(0 161	3.5	11	25	2	5 1.5	i
6	15	0505 1	BRYSON 2 3_13.80)	North Centra	WindBasic	180	Active	Gen MWMa	3.0881	Yes		22.6417	0.1509 Yes	1	1	(D 150	3.5	11	25	2	5 1.5	i
7	15	0507 1	MUENSTER 5 2_13	3.80	North	WindBasic	135	Active	Gen MWMa	2.0639	Yes		0	0 Yes	1	1	(112.5	3.5	11	25	2	5 1.5	i
8	15	0510 1	ODELL 1 2_13.80		North	WindBasic	162.48	Active	Gen MWMa	2.0265	Yes		0	0 Yes	1	1	(135.4	3.5	11	25	2	5 1.5	i
9	15	0512 1	JACKSBORO 3 2_1	3.80	North Centra	I WindBasic	132	Active	Gen MWMa	2.642	Yes		6.7896	0.0617 Yes	1	1	(110	3.5	11	25	2	5 1.5	i
10	15	0515 1	WINDTHORST 3 3	3_13.80	North	WindBasic	244.8	Active	Gen MWMa	3.3669	Yes		42.1682	0.2067 Yes	1	1	(204	3.5	11	25	2	5 1.5	6
11	15	0517 1	WINDTHORST 4 2	2_13.80	North	WindBasic	81.12	Active	Gen MWMa	3.6485	Yes		17.7805	0.263 Yes	1	1	(67.6	3.5	11	25	2	5 1.5	i
12	15	0520 1	SEYMOUR 3 2_24.	.00	North	WindBasic	180	Active	Gen MWMa	3.198	Yes		25.939	0.1729 Yes	1	1	(D 150	3.5	11	25	2	5 1.5	6
13	15	0528 1	OKLAUNION 2 3_1	18.00	North	WindBasic	276	Active	Gen MWMa	2.7604	Yes		19.6474	0.0854 Yes	1	1	(230	3.5	11	25	2	5 1.5	<i>i</i>
14	15	0531 1	MUENSTER 6 3_18	8.00	North	WindBasic	150	Active	Gen MWMa	1.9491	Yes		0	0 Yes	1	1	(125	3.5	11	25	2	5 1.5	5
15	15	0534 1	MINGUS 4 3_18.00	0	North Centra	WindBasic	120.6	Active	Gen MWMa	2.5313	Yes		3.9801	0.0396 Yes	1	1	(100.5	3.5	11	25	2	5 1.5	i
16	15	0549 1	SEYMOUR 4 2_18.	.00	North	WindBasic	36.24	Active	Gen MWMa	3.6916	Yes		8.2039	0.2717 Yes	1	1	(30.2	3.5	11	25	2	5 1.5	i
17	15	0552 1	VFRNON 2 3 13.8	0	North	WindBasic	220.56	Active	Gen MWMa	2.561	Yes		8.3705	0.0455 Yes	1	1	(183.8	3.5	11	25	2	5 1.9	·

44

Mapping Weather to Power Flow Parameters

- Actual ERCOT wind between 2pm and 3pm gradually rose from about 2200 to 3670 MW
- Using the real-time weather with the default Class 2 wind turbine models the wind generation in the power flow decreased from 24.5 GW to 3.3 GW
 - This is based on an assumed hub height to surface wind scaling of 1.4; the value is 2.8 GW with a scaling of 1.25

Weather Scaled Generation Values, 7/11/2022

Easily Using Models or Weather with Other Power Flows: First the Same Grid with New Weather

- With the weather and associated models available, both can be readily used with other cases. The below example takes the previous power flow and applies the July 12, 2022 weather (a hot day but with more wind in Texas)
 - As before the input is the METAR weather, now from 2pm on July 12

ĀĮŪ

Easily Using Models or Weather with Other Power Flows: July 13, 2022 about 130pm

 One of the advantages of using actual generator locations in the synthetic grids coupled with actual weather is validation,
 Something we have just started

48

Easily Using Models or Weather with Other Power Flows: Now a New Grid with July 11 Weather

- Historical weather can also be applied to future grids. The below example is for a 2030 extreme renewable Texas synthetic scenario
 - This grid has 26.8 GW of solar and 55.7 GW of wind

This was solved using a DC OPF

Ā M

Using Large Amounts of Historical Data

We have now setup historical data going back to the 1940's in a form that allows different weather scenarios to be quickly applied to grids of today or the future
 *.tsb files

Starting Time: 12	2/31/1948		6:00:00 PM				10				-1 - 1													
		-		<u> </u>	DO RUN	Res	et Run	Insert	Read	SBHIE	Clear Results	Load Aux F	le Snow	Stored Soluto	ns Playback Co	ntrol Dialog								
Ending Time: 12	2/31/1949		5:00:00 PM	E Do	Single Point	Do Pre	vious Point	Points	Save T	SB File	Delete All	Save to Au	v View Sto	red Solutions	Delete All Sto	ored Solutions								
Run Time Bad	kwards (End	d to Start)									bare to no												
Summary			Summary																					
> Input				5 021	* 0 00 AA	84 -			6	- AUSP	aliya 👝 i	SORT	m											
> · Results			: 23 -] ⊞ 1F	.00 → .0 6P	ABCD R	ecords * Se	t + Colu	mns 👻 💾		er Y	₩ T ABED T(X)		ions *										_
> · Results: Con	nstraints			Date	Time	Skip	Processed	Soluti	on Type	Run	S	olved	Store Result	Has Stored	Initaialize	Enforce	Total MW	Total Mvar	Total MW	Total Mvar	Total MW	Total Mvar	Total Numbe	r
> · Options										Conting	en		Solution	Solution?	From Stored	Generator	Load	Load	Gen	Gen	Shunt	Shunt	of Input	
TSB Case De	escription														Solution	Ramp Rates							Values	
			11	2/31/1948	6:00:00 PM	NO	YES	Apply O	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	802767.48	174565.17	0.00	45360.69)
			21	2/31/1948	7:00:00 PM	NO	YES	Apply O	ny with v	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	21/506.0	801762.40	174565.17	0.00	45360.69)
			41	2/21/1940	0:00:00 PM	NO	VEC	Apply O	ily with M		Apply On	ly with Weath	NO	NO	VEC	NO	912695.6	217506.0	901762.40	174565 17	0.00	45360.69		
			5 1	2/31/1948	10:00:00 PM	NO	VES	Apply Or	ly with V	/ NO	Apply On Apply On	ly with Weath	NO	NO	VES	NO	812685.6	217506.0	805276.66	173823.52	0.00	45360.69		á
			61	2/31/1948	11:00:00 PM	NO	YES	Apply Or	ly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	807358.74	173959.38	0.00	45360.69	Ċ	ò
			7 1	/1/1949	12:00:00 AM	NO	YES	Apply O	ly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	804858.11	173919.25	0.00	45360.69	(j
			8 1	/1/1949	1:00:00 AM	NO	YES	Apply Or	nly with W	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	806386.67	174148.62	0.00	45360.69	()
			9 1	/1/1949	2:00:00 AM	NO	YES	Apply Or	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	807091.75	173941.47	0.00	45360.69	()
			10 1	/1/1949	3:00:00 AM	NO	YES	Apply Or	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	809161.72	173610.62	0.00	45360.69	()
			11 1	/1/1949	4:00:00 AM	NO	YES	Apply O	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	810601.95	173637.68	0.00	45360.69	()
			12 1	/1/1949	5:00:00 AM	NO	YES	Apply O	ily with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	806645.65	173756.51	0.00	45360.69)
			13 1	/1/1949	6:00:00 AM	NO	YES	Apply Or	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	21/506.0	808612.40	1/4133./6	0.00	45360.69)
			14 1	/1/1949	7:00:00 AM	NO	VEC	Apply O	ily with v	/ NO	Apply On	ly with Weath	NO	NO	VEC	NO	012003.0	217506.0	011045 55	173404.03	0.00	45560.69		<u>ا</u>
			16 1	/1/1949	9:00:00 AM	NO	VES	Apply Or	ly with M	/ NO	Apply On Apply On	ly with Weath	NO	NO	VES	NO	812685.6	217506.0	814251 61	173893.42	0.00	45360.69		<u></u>
			17 1	/1/1949	10:00:00 AM	NO	YES	Apply Or	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	821560.64	174474.71	0.00	45360.69	Ċ	J
			18 1	/1/1949	11:00:00 AM	NO	YES	Apply Or	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	823251.46	174505.32	0.00	45360.69		j.
			19 1	/1/1949	12:00:00 PM	NO	YES	Apply Or	nly with W	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	829882.71	174404.74	0.00	45360.69	(J
			20 1	/1/1949	1:00:00 PM	NO	YES	Apply Or	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	832495.21	174314.70	0.00	45360.69	()
			21 1	/1/1949	2:00:00 PM	NO	YES	Apply O	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	832076.27	174411.15	0.00	45360.69)
			22 1	/1/1949	3:00:00 PM	NO	YES	Apply O	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	829526.66	174276.78	0.00	45360.69	()
			23 1	/1/1949	4:00:00 PM	NO	YES	Apply O	ily with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	825938.18	174416.32	0.00	45360.69	()
			24 1	/1/1949	5:00:00 PM	NO	YES	Apply O	ny with v	NO	Apply On	ly with weath	NO	NO	YES	NO	812685.6	217506.0	820163.67	174139.87	0.00	45360.69		,
			25 1	/1/1949	7:00:00 PM	NO	VES	Apply O	ily with v		Apply On	ly with Weath	NO	NO	VES	NO	812685.6	217506.0	81/075 03	1740/1.55	0.00	45360.69		0
			27 1	/1/1949	8:00:00 PM	NO	VES	Apply Or	ly with M	/ NO	Apply On	ly with Weath	NO	NO	VES	NO	812685.6	217506.0	812136 67	173628.49	0.00	45360.69		á
			28 1	/1/1949	9:00:00 PM	NO	YES	Apply Or	ly with V	/ NO	Apply On	with Weath	NO	NO	YES	NO	812685.6	217506.0	811699.12	173913.00	0.00	45360.69	Ċ	à
			29 1	/1/1949	10:00:00 PM	NO	YES	Apply O	nly with W	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	811250.54	173899.73	0.00	45360.69	(ć
			30 1	/1/1949	11:00:00 PM	NO	YES	Apply Or	nly with W	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	809928.17	173937.02	0.00	45360.69	()
			31 1	/2/1949	12:00:00 AM	NO	YES	Apply Or	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	810241.31	174075.44	0.00	45360.69	()
			32 1	/2/1949	1:00:00 AM	NO	YES	Apply O	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	806381.79	174117.87	0.00	45360.69	(3
			33 1	/2/1949	2:00:00 AM	NO	YES	Apply O	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	807034.96	174194.26	0.00	45360.69	()
			34 1	/2/1949	3:00:00 AM	NO	YES	Apply O	nly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	808874.02	173748.21	0.00	45360.69	()
			35 1	(2/1949	4:00:00 AM	NO	TES	Apply O	ily with V		Apply On	y with weath	NO	NO	TES	NO	812685.6	21/506.0	00/216.41	174194.13	0.00	45360.69		,
			30 1	/2/1949	6:00:00 AM	NO	VES	Apply O	ny with M	/ NO	Apply On Apply Op	ly with Westh	NO	NO	VES	NO	812685.6	217506.0	806409 57	174335 55	0.00	45360.69	(é –
			38 1	/2/1949	7:00:00 AM	NO	VES	Apply O	ly with M	/ NO	Apply On Apply On	ly with Westh	NO	NO	VES	NO	812685.6	217506.0	804617.48	174391.26	0.00	45360.69		á
			39 1	/2/1949	8:00:00 AM	NO	YES	Apply O	ly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	806929.98	174321,86	0.00	45360.69	(J
			40 1	/2/1949	9:00:00 AM	NO	YES	Apply O	ly with V	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	812619.73	174433.89	0.00	45360.69	Ċ	J
			41 1	/2/1949	10:00:00 AM	NO	YES	Apply O	nly with W	/ NO	Apply On	ly with Weath	NO	NO	YES	NO	812685.6	217506.0	818705.81	174429.50	0.00	45360.69	()
I			42 1	/2/1949	111:00:00 AM	NO	YES	Apply Or	nlv with V	/ NO	Apply On	lv with Weath	NO	NO	YES	NO	812685.6	217506.0	824039.36	174417.86	0.00	45360.69	()

Example Results Using a 82,000 Bus Synthetic Grid

With this approach, any modifications to generator portfolio can be screened using a wide variety of historical points (e.g., we now have hourly worldwide weather values from about 1945 to 2022)

Example Results Using a 82,000 Bus Synthetic Grid

Temperatures February 15, 2021

Temperatures January 31, 1949

Potential Grid Impacts of January 31, 1949

- In comparing 2011 with 1949, in 1949 the temperatures were lower in parts of Central Texas, but not as low further north. However these lower temperatures did occur in locations the now have a large amount of natural gas generation
- The wind in 1949 was substantially lower, with almost no wind in South Texas

Conclusion

A M

- The presentation has shown the weather data can be used effectively in the power flow
- A number of models that relate weather to electric grid values already exist, but more certainly should be developed
- With adequate models historical and/or future forecasted weather can be relatively easily applied to the electric grids of today and the future

Thank You! Questions?

