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Abstract—Validation is a critical component in the develop-
ment of synthetic models, which aims to convince a user that
a model achieves its claims of realism. While users of power
system test cases are primarily interested in operational results,
which could be considered outputs, it is more convenient and
feasible to control distributions of data inputs, both structural
and otherwise. Validation metrics, are therefore generally focused
on input rather than operation features. This paper investigates
the link between input and output statistics in power system.
Better understanding of this relationship allows validation to
continue to focus largely on input statistics, while at the same
time offering some assurance about operational behavior.

Index Terms—Model Validation, Network Analysis, Power
System Topology, Synthetic Power Systems

I. INTRODUCTION

As part of the effort to expand the current collection of

publicly available synthetic power systems funded by ARPA-

E [1], a critical component is careful examination and selection

of the methodology and metrics used to validate cases. Newly

created systems will be judged on how well they depict the real

power grid they are supposed to mimic. Demonstrating their

validity is therefore essential. In our previous work [2], several

tests are introduced, which validate cases generated based on

the methodology in [3]. The work in [4] aims to expand

these tests, and introduces a distinction between structural and

operational metrics.

A large part of the validation challenge lies in the gap

between the quantities that can be easily controlled and those

that are of interest. While users of power system test cases are

primarily interested in operational results, it is more convenient

and feasible to control distributions of data inputs, both

structural and otherwise. It is therefore, easier to formulate

validation of input statistics, as is true of most of the metrics

in [2] for example. What users desire however, are certain

assurances about the operational statistics.

The North American Energy Reliability Corporation

(NERC), and specifically its Model Validation Working Group,

have spent a lot of time and effort considering validation of
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both steady-state and dynamic cases [5], [6], which resulted

in issuing a recent standard [7], requiring data validation

in planning studies. The essence of these documents is that

given the same input data taken from measurements of a real

event, simulations should produce outputs (which we refer to

in this paper as operational behavior) that match said real

event. Synthetic systems offer an additional challenge, since

no real events can be measured on them. Our general tool for

addressing this challenge is to consider statistical distribution

of operating behaviors and try to achieve similar ones.

The tuning nobs available when creating a synthetic case,

are system input data, which consists of topology, equipment

parameters and load, rather than the simulation outputs. Our

work in [4] raises the question: are structural and operational

statistics related, and if so, how? In this paper, we expand from

strictly structural to consider statistics on the input dataset

more broadly. We present a methodology for tackling the

question of how input statistics influence the observed output

statistics, namely power system operational behavior. As these

links become clearer, both conceptually and numerically, val-

idation metrics on the input statistics will offer progressively

more information about the operations that will result.

The goal of this paper is to demonstrate the application

of this methodology by example. We focus on two metrics,

graph cycle distribution and generator rating, and test their

impact using the ACTIVSg2000 case [8], which was created

on the ERCOT geographic footprint. In addition to comparing

various modifications of synthetic cases among themselves,

real ERCOT data is used for further reference. The specific

examples were chosen because they both impact operational

behavior and as such serve to illustrate our point. First, the

cycle distribution is analyzed with respect to its impact on

steady state operations. Second, the impact of the relationship

between generators’ rating and their capacity is considered

with respect to transient stability behavior. Future work will

expand the range of metrics tested in this manner.

The remainder of the paper is structured as follows. In Sec-

tion II we describe the testing methodology used to determine

the link between input and output statistics. Sections III and IV

form the bulk of the paper and discuss the application and

findings from two experiments using the testing methodology.

Finally, section V offers concluding remarks.

II. METHODOLOGY

Our objective is to evaluate the impact of a specific feature

on the operational behavior of the power system. The main
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challenge is to isolate a single feature, while the obvious

benefit is drawing conclusions on a feature’s latent impacts. To

this end, we aim to create two (or more) cases that are identical

except for the feature under examination. By comparing the

operations of the two systems, we can therefore infer the

impact of the altered feature. It should be emphasized that

since simulations are used to demonstrate impact, we cannot

claim proof. Rather, we collect supporting evidence for a

hypothesis, with the rationale that the likelihood it is correct

increases with afirmative results.

Holding everything but a single variable fixed is the classic

experimental design. The features we are referring to however,

are not a deterministic number but rather distributions of a

parameter or structural feature. Our methodology can therefore

be restated as maintaining all input statistics but one constant,

and observing result in the operational output.

Given the complex nature of power systems, creating iden-

tical cases but for one feature is not trivial. Power system

operations is highly optimize to the present scenario. For this

reason, we define identical as sharing all statistical properties

except the operational ones. Specifically, algorithms like unit

commitment (UC) and optimal power flow (OPF) may be run

to achieve the most “realistic” operating point. Therefore, it

is entirely possible that two cases in a test will have different

generation dispatch. Despite this “additional” difference, we

consider the cases identical, since the same algorithm is used

to determine the commitment and dispatch. In essence, UC

and OPF are already part of operations and are thus part of

the observed output of the experiment.

III. CYCLES

In [4] we introduced the minimum cycle distribution of the

power system graph as a structural metric. Cycles bases have

long been part of electrical analysis, in fact, Kirchhoff’s work

[9] uses fundamental cycle bases for the application of his

famous voltage law. Cycle bases are however, non-unique.

We therefore, adopt minimum cycle bases using the algorithm

from [10].

A minimum cycle bases is one where the sum of the weights

of all cycles is minimum. When unit weight is assigned to

each edge, this translates to meaning that it is the collection

of the smallest cycles that form a basis for the graph. While

this collection is also non-unique, its distribution is. A cycle

distribution is a count of how many cycles of each size

form the basis of the graph. For the distribution to change,

the count between different cycle sizes must change, which

means that some cycle is broken into smaller constituent parts.

This, however, contradicts the definition of a minimum cycle

distribution, and explains why the distribution is unique even

if the cycles making it up can be selected in different ways.

We observe that the original ACTIVSg2000 case has a

slightly larger mode in the cycle distribution than other in-

terconnects. Considering that cycles imply parallel paths, an

intuitive reasoning based on KCL suggests that there might

be a relationship between the cycle basis of the power system

graph and the resulting loading distribution.

TABLE I
NEGATIVE BINOMIAL PARAMETERS TO CYCLE DISTRIBUTION

Case p r

ACTIVSg2000 0.27 12.66
ERCOT 0.74 1.76

sizebreak ← argmax
cycle size

countactual > countdesired

sizecreate ← argmax
cycle size

countdesired > countactual

if:
• i > iteration limit

• Maximum count error < threshold

collect set E of all edges in cycles
of the desired size to break

select (u, v) ∈ E
set E = E \ {(u, v)}

collect set V of nodes that are
sizecreate − 1 steps from u

select v′ ∈ V
set V = V \ {v′}

rewire (u, v) to (u, v′)

if:
• voltage base for u, v, and v′ is the same.
• u, v, and v′ in biconnected component.
• rewire maintains biconnected component.

• power flow solves after rewire

undo rewire

if V �= ∅

update
cycle basis
i← i+ 1

• cycle basis
• desired distribution

• i = 1

End

False

True

FalseTrue

False

True

Figure 1. Flowchart describing how cases are rewired to target a specific
cycle distribution

A. Modifying Cycles

To test this hypothesis, we start with the ACTIVSg2000

case and rewire some edges to target a cycle distribution more

similar to the ERCOT system. A simple greedy approach to

achieve this is outlined in Figure 1. In [4] we showed that the

minimum cycle lengths can be well fit by a Negative Binomial

distribution,

f(k; p, r) =
Γ(k + r)

k!Γ(r)
pk(1− p)r k = 0, 1, . . . , (1)

where Γ(·) is the gamma function, p ∈ (0, 1), and r > 0. Note

that since cycle must be size 3 or greater, we map cycle size

as k = cycle size−3. The parameters fit to the ACTIVSg2000

and ERCOT cases are shown in Table I.

Using the fit parameters, Equation (1), and the total number

of cycles1, we can calculate how many cycles we wish to see

1The total number of cycles does not change since by Euler’s equation it
is M − N + 1 where M is the number of edges, N the number of nodes,
and 1 is the number of connected components.

Authorized licensed use limited to: Texas A M University. Downloaded on November 28,2022 at 18:26:54 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
KL-DIVERGENCE OF ACTIVSG2000 CYCLE DISTRIBUTION

original case modified case

DKL(pACTIVSg2000|qERCOT) 0.2050 0.0157

DKL(pACTIVSg2000|qACTIVSg2000) 0.0240 0.2316

at any size. The procedure in Figure 1 selects the cycle size

that is most over represented in the current cycle basis as

the type of cycle to break, while the most under represented
cycle is the one to target. Edges participating in cycles of

the appropriate size to break are selected, and one by one,

new neighbors are sought, until one is found which fulfills the

requirements. These are, namely:

• the voltage basis of the nodes will be the same (as it does

not make sense to rewire transformers).

• System biconnectivity is unaltered.

• A power flow solution exists.

As an implementation note, the calculation of a minimum

cycle basis is rather expensive. For this reason, in the main

loop of Figure 1, an update algorithm is used, which we

developed as a modification of [11]. At the end of the

procedure the full cycle distribution is calculated again to catch

any possible errors caused during successive updates2.

Figure 2 shows the minimum cycle distribution of the

original and modified ACTIVSg2000 cases, as well as the

original ERCOT case for reference. It is visually clear, that

the desired change in the distribution has been achieved.

We evaluate the change numerically by considering the

Kullback-Leibler (KL) divergence [12] between the empirical

distribution and the desired Negative Binomial distribution

parametrized by the ERCOT values in Table I. The empirical

distribution simply refers to the histogram of the data, which

could have bins with no associated weight. This differs from

the chosen Negative Binomial model, which will map any

value in its domain to an associated weight, irrespective of the

underlying data used to initially fit the model. For example,

there might not be cycles of size 52 in the dataset, but (1) can

certainly be evaluated at k = 52− 3. We adopt the following

notation:

• pi refers to the empirical cycle distribution for case i.
Whether the original or modified case is intended is

indicated either with a superscript or elsewhere.

• qi refers to the Negative Binomial distribution with pa-

rameters for case i from Table I.

Using this convention, the change in KL-divergence values

is tabulated in Table II. The numbers strongly support the

visual from Figure 2 that the cycle distribution for the mod-

ified ACTIVSg2000 case closely matches that of the original

ERCOT case, and furthermore no longer matches the original

ACTIVSg2000 case.

2We experimentally found that the update did not perform perfectly.
However, the error, on the order of 0.1%, is minimal.
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Figure 2. Cycle distribution for the ACTIVSg2000 case before and after
modification. The targeted ERCOT case is also shown for reference.

TABLE III
ACTIVSG2000 OPERATIONAL VALUES

Quantity Original Modified Case

Cost [$] 1,220,002.12 1,222,871.83
Average LMP [$] 19.62 19.70
Losses [MW] 1389.19 1539.84
Average Ls 1.5498 1.6050
Average Δθ [degree] 1.50 1.63
DKL(Ls|Exp(μLs )) 0.1625 0.0979

B. Effects On Operations

Having established the desired structural change, we turn

to look at how operations are (or are not) impacted. As men-

tioned in Section II, a simple UC determines an economically

optimal dispatch for both the original and modified cases.

Subsequently, the ACOPF is solved using Matpower [13],

which also accounts for losses, voltage deviations, etc., that

are not captured by the DC model used for UC. One necessary

technical note is that in all cases, line limits are removed

since they are not considered during topology manipulation,

and could therefore introduce problematic constraints that are

merely artifacts of the modification algorithm. As all cases are

handled the same, we are still comparing two identical cases

except for a topological manipulation. Once the operating

point for both cases is established, statistics between the two

can be compared.

In [4] we proposed the distribution of a line’s load with

respect to its Surge Impedance Loading (SIL) rating as a good

way to describe the loading of the system. SIL represents an

impedance matched termination for a lossless line, in the sense

that the voltage profile is flat at the nominal voltage, when

the line delivers its SIL [14]. We use Ls to denote the ratio

between actual loading and SIL,

Ls =
Actual MVA flow

SIL MVA rating
. (2)

We further showed that for all interconnect cases the exponen-

tial distribution is a good model for Ls. Figure 3 shows the

distribution of Ls for the original and modified ACTIVSg2000

cases. One can see that the peak of the distribution shifts in

a desirable direction, where desirable means more similar to

the ERCOT case, although the change is admittedly not very

significant.
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Figure 3. Distribution of Ls for ACTIVSg2000 case before and after
modification. The ERCOT case is also shown for reference.

The values in Table III, however, provide further evi-

dence to the changes. First, losses increase following the

modification, which agrees with the simultaneously observed

increase in average Ls. That loading in the system increase

is further supported by a slight increase in the average Δθ
between adjacent buses, suggesting higher real power flows.

Furthermore, it is noteworthy that Ls behaves more like an

Exponential distribution, which is seen by the decrease in the

KL-divergence between Ls and the Exponential distribution

parametrized by the Maximum Likelihood Estimator, which

in the case of Exponential is simply the mean value, μLs
.

The change also manifests itself in the cost to operate the

system, which increases as well. Further insight is possible in

this particular case, since the generator commitment happens

to not change between original and modified cases. Letting,

C0 and l0 be the original total cost and losses respectively, Cm

and lm the modified total cost and losses respectively, and p̄
be the average of all the LMP prices in the modified case,

(Cm − C0)− p̄(lm − l0) = −$97.46. (3)

In words: the difference in cost between the two scenarios can

be largely attributed to losses.

C. Interpretation

Each of the impacts from the previous sections is on its

own rather small. However, the culmination of all of these

effects strongly suggest that altering the cycle distribution

did in fact change the operational behavior of these power

system. Furthermore, this change largely agrees with the initial

hypothesis, which related cycles to current paths. The basic in-

tuition that cycles imply parallel current paths, suggests that a

higher density of larger cycles means more parallel paths, and

therefore, reduces loading on any individual branch. Decreases

in losses, Ls, Δθ, and cost, all support this hypothesis. Finally,

as the cycle distribution changed, the loading distribution,

measured by Ls, also shifted. The data represented here is

one example of a rewiring. However, out of 25 additional runs

only 1 showed a different trend in terms of losses, and non

showed a different trend in terms of average Ls.

While the direction of change is clear, its magnitude is

fairly small. This test shows that the cycle distribution impacts

the loading distribution of a power system, however, it is

clearly one of many marginal effects. In other words, the cycle
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Figure 4. Cycle distribution for the ERCOT case before and after modifica-
tion. The targeted original ACTIVSg2000 case is also shown for reference.

TABLE IV
KL-DIVERGENCE OF ERCOT CYCLE DISTRIBUTION

original case modified case

DKL(pERCOT|qACTIVSg2000) 0.5243 0.4224
DKL(pERCOT|qERCOT) 0.0584 0.0891

distribution affects but does not determine the loading distri-

bution. The implication of our finding is that a correct cycle

distribution is not sufficient for correct operation statistics. The

closer resemblance to an Exponential distribution following

the modification provides some evidence for the necessity
of a correct cycle distribution to achieve a correct loading

distribution. Since we are only looking at a marginal effect,

rather than the full joint distribution of all variables, we cannot

make a definitive claim of necessity. The impact, however,

is clear and therefore, if this feature is not matched others

may have to be adversely manipulated to achieve desirable

operational behaviors.

D. A Reverse Experiment

In an effort to further strengthen the argument, another

test is performed where the ERCOT case is modified to try

and get its cycle distribution closer to that of the original

ACTIVSg2000 case. The results of the cycle modification are

shown in Figure 4. While it appears visually that movement

in the “right” direction is made, closer numerical evaluation

show this is far less successful a modification than in the

ACTIVSg2000 case. Table IV shows the KL-divergence for

the original and modified cases similar to Table II. While

the modified ERCOT case is more similar to the original

ACTIVSg2000 case it is still quite different. At the same

time, the modified case remains closer, at least in the KL-

divergence sense, to the original ERCOT case than to the

original ACTIVSg2000 case.

With the caveat that the structural change is less successful,

a similar and opposite trend is seen in the operational statistics.

Table V shows that as the cycle distribution is pushed towards

something more like the original ACTIVSg2000 case losses

decrease, as does average Ls, and Δθ. These changes similarly

translate to a decrease in the total cost, however, in this case

the unit commitment does change and therefore it is no longer

possible to attribute the change in cost directly to the losses.

Since the structural change is much smaller as previously
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Figure 5. Distribution of Ls for the ERCOT case before and after modifica-
tion. The original ACTIVSg2000 case is also shown for reference.

TABLE V
ERCOT OPERATIONAL VALUES

Quantity Original Modified Case

Cost [$] 1,740,845.88 1,739,953.28
Average LMP [$] 20.15 20.12
Losses [MW] 1570.72 1412.80
Average Ls 1.2065 1.1422
Average Δθ [degree] 2.42 2.41
DKL(Ls|Exp(μLs )) 0.0358 0.0278

discussed, the observed changes are also smaller compared

to those in Section III-B. Still, the fact that the changes are

consistent with those in Section III-B further supports the con-

clusion that structural cycles impact the loading distribution in

the system.

E. Results from Modified Algorithm

Following the observations discussed above, a tweak was

made to the ACTIVS algorithm [3] to address the cycles

issue. A second 2000 bus case on the ERCOT footprint

was created, which we will refer to as ACTIVSg2000 v2.

Figure 6a shows that the algorithm tweak in fact alters the

cycle distribution to be more similar to that observed in the

ERCOT case. The fit parameters to the Negative Binomial

distribution are,

p = 0.69, r = 1.53,

which are significantly closer to the ERCOT values in Table I.

Since there are many other elements involved in the gen-

eration of cases, conclusions from a direct comparison are

limited. For example, the two version have different load,

which obviously impacts the loading distribution. Nonetheless,

figure 6b shows the Ls distribution has also changed and in a

manner consistent with the change seen in Figure 3, i.e., the

peak shifting somewhat to the left. While the change cannot

be strictly attributed to the change in cycle distribution, the

agreement with the previous findings serve as further support

for the hypothesis.

IV. DYNAMICS EXAMPLE

As the ACTIVS cases begin to integrate data for dynamic

simulations [15], there is a need to consider validation methods

and metrics in this area as well.
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Figure 6. Cycle and Ls distributions following a tweak to the ACTIVS
algorithm to address the cycle distribution.
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Figure 7. Relationship between generator rating and capacity. (a) shows the
distribution of the ratio between the two, while (b) shows that this ratio
depends on the capacity of the generator.

A. Experiment Description

The capacity of a generator, Pmax, and its rating, Sbase, are

generally not exactly the same, as seen in Figure 7, based on

data from an Eastern Interconnect (EI) case with over 8,000

generators. The ratio in the ACTIVSg2000 case between Sbase

and Pmax is currently set to roughly match the median at

1.2. Since many generators operate at or close to capacity

we consider the impact the Sbase/Pmax has.

To test this relationship, two modified ACTIVSg2000 cases
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Figure 8. Governor block diagram from PowerWorld Simulator, showing
valve limits (VMAX, VMIN). These are per unit values in Trate ≈ Sbase.

are created, with Sbase/Pmax set to 1.1 and 1.0, respectively. In

each of the resulting three cases, N − 1 contingencies are run

and statistics about the resulting transient behavior collected.

Three types of contingencies are used to model both large and

small disturbances. These are:

1) generator outage,

2) line fault followed by trip, and

3) three-phase load bus faults.

Results are evaluated with respect to the Frequency Re-

sponse, also known as β, which we calculate as:

β =
MW lost

10(60Hz−Mf )
, (4)

where Mf is the minimum frequency during the contingency

event. The factor of 10 is due to the traditional reporting units

of MW/0.1HZ.

B. Rational

Many governor models, such as the one shown in Figure 8,

limit the output power via valve limits. These per-unit values

are based on the turbine rating, Trate. This rating is, in turn,

very closely related to the generator MVA base, Sbase. In fact,

out of 5336 models in the EI model, only around 12.9% make

use of a Trate different from Sbase. About 1.3% of the governor

models have Trate > Sbase, while the remaining 11.6% have

Trate < Sbase. All of these cases are shown in Figure 9, where

it is evident that the ratio strays substantially from 1 only

for fairly small machines. Considering the small number of

affected machines and the relative small impact of the change,

we make the simplifying assumption that Trate = Sbase. As

such, it is a logical hypothesis that changing Sbase will impact

transient behavior.

This simplification reduces the performance of generators

that would otherwise have Trate > Sbase, however, as Figure 9

illustrates, the impact is minimal. At the same time it improves

the performance of generators with Trate < Sbase. First of

all, these ratios are also mostly close to one. Secondly,

performance is improved, we do not have to worry about

generating unreasonably constrained cases. This is similar in

spirit to removing the line limits in Section III.
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Figure 9. Ratio of turbine rating to generator rating versus generator rating.
This plot helps justify the simplifying assumption made in simulation that
Trate = Sbase.
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(a) Frequency Response β for ACTIVSg2000 cases.

(b) ERCOT Frequency Response taken from [16]

Figure 10. Frequency Response following contingencies in three different
ACTIVSg2000 cases and on the ERCOT system. The results in (a) suggest
that a mixture of the three cases will help achieve results similar to those in
(b).

C. Results

The statistics collected from the contingency runs are re-

ported in Figure 10a. As expected, more extreme responses

occur as the Sbase/Pmax ratio is reduced, which is evident by

the smaller maximum β values. When comparing Figures 10a

and 10b, we see that neither of the three cases quite matches

data from the ERCOT interconnect reported in [16]. On the

one hand, the average β from the case where Sbase = Pmax

matches the ERCOT data far better. On the other hand, the

extreme values are far more accurate in the higher ratio cases.

Beyond confirming the intuition that the ratio of Sbase/Pmax

affects transient behavior, these results also suggest that it

is important to capture more of the distribution as shown in

Figure 7. Including more generators with ratios close to, or
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even below, 1 will help bring the median β closer to realistic

levels, while keeping some generators at higher ratios will help

help keep some of the extreme values.

V. CONCLUSION

This paper takes a deeper look at how synthetic power grid

models are validated, and the implications of chosen metrics.

Our goal is to evolve a process that is useful for validating

synthetic power system models however derived, and this

work is a step in that process. The majority of power system

test case users are interested in how the systems operate,

which we view as system outputs. From the test case creation

perspective, it is desirable, to place constraints on system

inputs: parameters including topology, generator ratings, etc.

This paper formulates an approach, illustrated by example,

for evaluating the link between the statistical distribution of

an input and the statistics of operational behavior. While

direct functional relationships are not derived, demonstrating

connection between input values and operation helps justify

the validation constraints placed on the inputs. Testing valida-

tion metrics in this manner can identify impactful ones, thus

reducing the burden of meeting unnecessary criteria. At the

same time, each added critera increases confidence that the

resulting system will operate in the desired manner, on the

basis of observations for how it pushes the system towards

particular operation.

The novelty in the work is its emphasis on distributions.

Rather than asking how a given parameter or feature impacts

system behavior, we show that a variety in parameter values is

needed to achieve the desired operations, and furthermore, the

distribution of values itself makes a difference. Ultimately, a

“joint distribution,” which combines any possible operational

criteria, with system parameters, is the goal. Unfortunately,

merely listing all of the criteria is impractical if not impossible,

leaving a full description of the distribution out of reach.

This paper focused on the topological cycle distribution

and the distribution of generator Sbase/Pmax, which are both

marginal distribution of the joint distribution in all variables

and criteria. Section III showed how the the cycle distribution,

a system parameter, impacts operational distributions of line

loading (Ls), as well as, losses, and operation cost. Section IV

showed how Sbase/Pmax, another system parameter, impacts

the frequency response (β) distribution of under various con-

tingency scenarios. The results presented suggest that the input

distributions (cycles, and Sbase/Pmax) have an impact on the

output distributions (Ls, β, etc.). It is also clear from the

results, that the input distributions considered are not solely

responsible for the observed output statistics. We therefore

conclude that the input distributions are marginal to the

observed outputs. Finally, since the outputs considered here

are marginals of the complete joint distribution, by matching

them the solution gets closer to the desired result.

The motivation we advocate, is that matching more and

more operational marginal distributions, strengthens the ar-

gument that the power system case in general converges

towards the desired joint distribution. Matching the operational

distributions can, in turn, be achieved by matching specific

system parameter distributions, shown via the methodology

presented, to impact said operations.
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