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Abstract—This paper considers the sensitivity of the calculated 
geomagnetically induced currents (GICs) in an electrical power 
system model to the assumed substation grounding resistances.  
Substation grounding resistances are not contained in standard 
power system models, and approximate values are often used in 
GIC studies.  The paper provides an algorithm to quantify the 
degree of dependence of the GICs at any given substation.  Case 
study results using the 20-bus GIC test system and a model of 
the North American Eastern Interconnect indicate that the 
substation GICs can be quite dependent on the assumed 
substation grounding values.      

I. INTRODUCTION 

Geomagnetic disturbances (GMDs), caused by solar 
activity, can impact the power grid by producing quasi-dc 
(with frequencies much below 1 Hz) geomagnetically induced 
currents (GICs) to flow in the high voltage transmission grid 
[1].  As noted in [2] GICs can cause half cycle saturation in 
the transformers producing harmonics and increased reactive 
power demand.  If sufficiently severe this can lead to loss of 
reactive power support leading to voltage collage, and 
increased transformer heating resulting in possible equipment 
damage.    

The reactive power impacts of GICs on the power grid can 
be modeled in either the power flow [3], [4], [5] or the 
transient stability applications [6].  This is done by first 
modeling the GMD-induced electric field variation in the 
power grid as dc voltage sources in series with the 
transmission lines [7].  The GICs in the system can then be 
calculating by solving  

 -1V = G I  (1) 

where vector I models the impact of the GMD-induced dc line 
voltages as Norton equivalent dc current injections. The 
structure of G is similar to the power system bus admittance 
matrix except 1) it is a real matrix with just conductance 

values, 2) conductance values are determined by the parallel 
combination of the three individual phase resistances, 3) G is 
augmented to include the substation neutral buses and 
substation grounding resistance values, 4) transmission lines 
with series capacitive compensation are omitted since series 
capacitors block dc flow, and 5) transformers are modeled 
with their winding resistance to the substation neutral in the 
case of autotransformers. 

When solved, the voltage vector V contains entries for the s 
substation neutral dc voltages and the m bus dc voltages.  
Throughout this paper it is assumed that the s substations are 
ordered as the first entries in V, and the m buses are ordered as 
the s+1 to s+m entries.  The V vector can be used to calculate 
all the GICs in the system.  The coupling between the GICs 
and the positive sequence model in the power flow or transient 
stability is accomplished by representing the GIC-related 
transformer reactive power losses as a function of the GICs 
through the transformer as in [1], [8], [9], with [10] noting 
that reactive losses vary linearly with the terminal voltage.   

This paper focuses on the sensitivity of these GICs to the 
modeling assumptions used to determine G.  Much of the data 
needed to setup this matrix is already contained in standard 
power flow models, or can be readily estimated.  Such data 
includes the network topology, the bus voltage levels, the 
resistance of the transmission lines, and the presence of 
transmission line series compensation.  For transformers, the 
power flow model contains the total series resistance of the 
transformer but does not contain the resistance of the 
individual windings.  When available the actual winding 
resistance should be used.  Otherwise the individual coil 
winding resistances can be easily estimated using the approach 
from [5].  Transformer winding configurations (e.g., wye or 
delta) and grounding are not usually included in the power 
flow model, but they can either be determined from short 
circuit data or by estimated. 

However, the substation grounding resistance, a key piece 
of information needed to construct G, is usually not 
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accurately available. The substation grounding resistance 
field is used to represent the effective grounding resistance of 
the substation, consisting of its grounding mat and the ground 
paths emanating out from the substation such as due to shield 
wires grounding [2,9]. This grounding resistance is calculated 
using the Fall of Potential Method and procedures as 
described in IEEE Standard 81-1983 [11] and the revision 
81.2-1991 [12].  There is an excellent presentation available 
on this topic in [13]. The grounding resistance is less a 
function of the construction of the substation grounding grid 
than it is a function of the local soil and earth conditions.  
Resistances can vary by more than an order of magnitude 
from 0.05 to 1.5 ohms.   

Therefore the focus of this paper is on determining the 
sensitivity of the resultant GICs to the assumptions about 
these values.   Previous work on this topic is contained in 
[14], and [15], with [14] providing test results on a model of 
the Finnish 400 kV grid and [15] providing a theoretical 
derivation and a test system model.  The present paper builds 
on these results by using the concept of driving point 
impedance to quantify the dependence on the GICs on 
substation grounding resistance, using a sparse matrix/vector 
formulation.   

The paper is organized as follows.  Section II provides 
problem motivation and an algorithm for single substation 
parameter sensitivity.  Section III presents a methodology for 
determining the sensitivity of the GICs to variation in the 
substation grounding resistance at a single substation, 
providing results for both the  20-bus GIC test system of [16] 
and a 62,500 bus model of the North America Eastern 
Interconnect (EI).  Section IV then addresses the issue of 
sensitivity to the variation of the assumed grounding 
resistance at multiple substations.  The last section provides a 
summary and directions for future research.   

II. MOTIVATION AND SINGLE SUBSTATION ALGORITHM 

To motivate the problem, consider the two generator, four 
bus network shown in Fig. 1 with Bus 1 and its generator (Bus 
3) in Substation A, and Bus 2 with its generator (Bus 4) in 
Substation B.  Buses 1 and 2 are connected by a 765 kV line 
that has a per phase resistance of 3Ω, the per phase resistance 
of the high side (grounded side) coil of each of the two 
transformers is 0.3Ω, a grounding resistance of 0.2 Ω for 
Substation A and 0.3Ω for Substation B. Assume the 
substations are at the same latitude, separated by 150 km in 
the east-west direction, with a given electric field of 1 V/km in 
the east-west direction.  This gives an induced voltage in the 
transmission line of 150V.    

The GICs can then be determined by solving a simple dc 
circuit.  From a GIC perspective, the three phases for the  
transmission line and transformers are in parallel, so the total 
three phase resistance for the 765 kV line is (3/3)Ω = 1Ω, and 
(0.3/3)Ω = 0.1Ω for each of the transformers.  These 

resistance values are then in series with the Substation A and 
B grounding resistance, which leads to 

slack

Substation A with R=0.2 ohm Substation B with R=0.3 ohm

765 kV Line
3 ohms Per Phase

High Side of 0.3 ohms/ PhaseHigh Side = 0.3 ohms/ Phase

DC = 26.5 VoltsDC = 17.6 Volts
Bus 1 Bus 2Bus 3 Bus 4

Neutral =  17.6 Volts Neutral = -26.5 Volts

DC =-35.3 Volts DC =-26.5 Volts

GIC Losses =  29.4 Mvar GIC Losses =  14.7 Mvar

1.001 pu 0.999 pu 0.997 pu 1.000 pu

GIC/Phase =     29.4 Amps
GIC Input = -150.0 Volts

 
Fig. 1 Two substation, four bus GIC example  

 
( )

150V 88.26A
1 0.1 0.1 0.2 0.3GICI = =

+ + + + Ω
 (2) 

The 88.26A result gives the total current in all three phases 
(i.e., 29.4A per phase).  This current flows from ground 
through the Substation B grounding resistance into the high 
side coil of the Substation B transformer, down the 765 kV 
line into the high voltage coil in Substation A and back into 
the ground through the Substation A grounding resistance.  In 
the Fig. 1, the direction and size of the arrows are used to 
visualize the direction and magnitude of the GIC flow. 

Using (2), it is possible to obtain the sensitivity of IGIC to 
each of the model parameters. Focusing on the sensitivity of 
IGIC with respect to the Substation A grounding resistance, RA, 
(2) can be rewritten as      

 
( ) ( )

,
,

,

150V
1 0.1 0.1 0.3

TH A
GIC A

A A TH A

V
I

R R R
= =

+ + + + Ω +
 (3) 

where VTH,A is the Thevenin equivalent voltage looking into 
the network from Substation A, and RTH,A is the corresponding 
Thevenin equivalent resistance.   For this example, their 
values are 150V and 1.5Ω respectively; IGIC,A is the current 
flowing into the ground through the Substation A resistance.  
The sensitivity of IGIC,A to the variation in the assumed value 
for RA is calculated by differentiating (3) with respect to RA,   

 
( )

, ,
2

,

GIC A TH A

A A TH A

I V
R R R

∂ −
=

∂ +
 (4) 

which shows that IGIC,A can be changed equally by a variation 
in either RA or in RTH,A.  

However, an important observation is that these quantities 
are often known with potentially vastly different degrees of 
accuracy.   The substation grounding resistance is often an 
approximation with a large degree of uncertainty.  In contrast, 
RTH,A is mostly based on values known with a relatively high 
degree of precision, including the transmission line and 
transformer resistances.  While [9] makes the important 
observation that wire resistance is temperature dependence, 
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this variation of about 0.4% per degree C is known and 
therefore can be included in a study by using approximate 
temperature profile.  Also, it is apparent in this simple 
example that RTH,A depends upon the assumed resistance of 
the other substation.  

Using (4) we can obtain the sensitivity of the substation 
GIC to variation in assumed substation resistance in terms of a 
normalized variation.  That is, the percent variation in the 
current in terms of the percent variation in the grounding 
resistance.  For the general case of an arbitrary substation i, 
this can be expressed as 

 
,

, ,

,

(% )
(% )

GIC i

GIC i GIC i i

ii i TH i
i

I
I I R

RR R R
R

∂
∂ −

= =
∂∂ +

 (5) 

Note that this sensitivity is always negative since an 
increase in assumed resistance will always result in a decrease 
in the magnitude of the current. Hence, it is convenient to 
define the negative of this ratio as  

 
,

: i
i

i TH i

R
R R

ℜ =
+

 (6) 

If the iℜ is small (i.e., the Thevenin resistance is substantially 
larger than the substation resistance), as in this example, then 
an accurate estimate of substation resistance is less important.  
Conversely, if iℜ approaches unity then the value of the 
substation resistance dominates in the determination of IGIC,i.    

Returning to the four bus example, 

 0.2 0.1176
0.2 1.5Aℜ = =

+
 (7) 

which indicates that a 1.0 percentage error in Ri results in a 
0.1176 percentage error in IGIC,A.  So if the assumed value of 
RA is increased by say 10% (from 0.2 to 0.22Ω) the magnitude 
of IGIC,A decreases by about (0.1176)*(10%) = 1.176%.  Of 
course, this is only a linearization about the currently estimate 
of Ri.  For example, if the value of RA were assumed to 
increase by 100% (changing to 0.4Ω) the value of IGIC,A would 
only decrease by about 10.6% (to 78.9A).   

Since the Thevenin equivalence resistance can be obtained 
for any substation in a network by calculating the diagonal 
element of G-1 corresponding to the substation, this approach 
can be generalized to systems of any size. Define the 
resistance matrix as 

 1−=R G  (8) 

Then, with the assumption that the s substations are ordered as 
the first s entries in G, the driving point resistance for the ith 

substation is Rii.  Since for large systems G is quite sparse, the 
diagonal elements of R can be calculated with great 
computational efficiently using sparse vector methods [17].  It 
is important to emphasize that the entire matrix G is never 
explicitly inverted!   

Since the substation resistances are directly connected to 
ground, the driving point resistance is the parallel combination 
of substation resistance and the Thevenin resistance, given by 

 

,

1
1 1ii

i TH iR R

=
+

R  (9) 

where Ri is the grounding resistance of the ith substation, and 
RTH,i is the Thevenin resistance looking into the network from 
the same substation.  Solving (9) for RTH,i gives  

 
,

1
1 1TH i

ii i

R

R

=
−

R

 (10) 

Then the Thevenin voltage for the ith substation, VTH,i, is given 
by 
 ( ), , , .TH i i TH i GIC iV R R I= +  (11) 

With the Thevenin voltage and resistance, the impact of 
assumed changes in substation resistance on the substation 
current are easily determined by solving    

 
( )

,
,

,

TH i
GIC i

i TH i

V
I

R R
=

+




 (12) 

where iR is the new grounding resistance and ,GIC iI is the new 

current.   
Before demonstrating the matrix approach on the four bus 

system and moving on to larger systems, several observations 
are warranted.  First, the Thevenin voltages are dependent 
upon the I vector used in (1), which means they do depend 
upon the particular GMD scenario under consideration.  
Second and conversely, the Thevenin resistances values are 
independent of I, depending only upon G.  Third, the 
substations for which accurate resistance values are most 
needed are those that have both high GIC values and high 
ratio values (ℜ ). 

 To finish the four bus example, its G values are given in 
Table 1.  Since the low-side generator buses (Buses 3 and 4) 
are delta-connected, they do not have an impact on the GICs 
and have been omitted from the table entries.  The resultant 
derived values are shown in Table 2, with the driving point 
resistances determined by (8), the Thevenin resistances by 
(10), the ratio ℜ  by (6), and the Thevenin voltages by (11).  
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Using these values the impact of changes in the assumed 
substation grounding resistance on the substation GIC can be 
easily calculated by (12).  While the values are straightforward 
for this simple example, its usefulness is demonstrated in the 
next section on the twenty bus test system of [16] and a 
62,500 bus EI model.  

Table 1: G matrix (in Siemens) for the four bus system 

 Sub A Sub B Bus 1 Bus 2 

Sub A 15.00 0.00 -10.00 0.00 

Sub B 0.00 13.33 0.00 -10.00 

Bus 1 -10.00 0.00 11.00 -1.00 

Bus 2 0.00 -10.00 -1.00 11.00 

Table 2: Equivalent values for four bus system 

 Sub A Sub B 

Grounding resistance (Ω) 0.2 0.3 

Driving point resistance (Ω) 0.1765 0.2471 

Thevenin resistance (Ω) 1.5 1.4 
 

ℜ  0.1176 0.1765 

GIC (A) 88.2 -88.2 

Thevenin voltage (V) 150.0 -150.0 

The last topic to consider before moving on to the larger 
system examples is the relationship between a variation in the 
substation GIC and the GICs in the transformers.  Since (1) is 
a linear system, superposition holds and network sensitivity 
factors [18, App. 11.A] can be used to determine the 
incremental change in the GIC voltages due to a change in the 
flow between the substation neutral and ground.  Hence for a 
change in the substation i GIC the system-wide changes can 
be determined by solving,       

 [ ] 1−
∆ = ∆V G I  (13) 

with ∆I set to all zeros except the location corresponding to 
substation i.   It is important to recognize that the substation 
neutral currents are the total for all three phases in parallel 
whereas the transformer GICs are usually reported as per 
phase (e.g., as in [16]).  This issue is easily resolved by 
dividing the substation currents by a factor of three to get 
equivalent per phase values.     

III. APPLICATION OF SINGLE SUBSTATION ALGORITHM TO  
LARGER SYSTEMS 

The algorithm is first demonstrated using the 20-bus test 
system from [16]. The one-line diagram of the system is 
shown in Fig. 2. The arrows in Fig. 2 represent the flow of the 
GICs for the 1 V/km eastward field, while the size of an arrow 

is proportional to the magnitude of the GIC on each of the 
lines.  The locations of the eight substations in the case are 
labeled in Fig. 2. The algorithm is applied to the two GMD 
scenarios considered in [16], namely, a uniform 1V/km 
eastward field and a uniform 1 V/km northward field.   

For convenience, the assumed substation grounding 
resistance values and the calculated GIC flows for the two 
scenarios (from Tables I and VII of [16]) are given in Table 3.  
Notice that Substation 1 is modeled with a GIC blocking 
device so its grounding resistance is assumed to be infinite.  
Substation 7 models a series capacitor location that has no 
connection to ground.   

 
 Fig. 2 20-bus GIC test system one-line showing 1 V/km eastward values 

Table 3: 20-bus substation resistances and GIC flows 

 Grounding resistance 
(Ω) 

Eastward field 
GIC (A) 

Northward 
field GIC (A) 

Sub. 1 0.2 (but blocked) 0.00 0.00 

Sub. 2 0.2 -189.29 115.63 

Sub. 3 0.2 -109.49 139.85 

Sub. 4 1.0 -124.58 19.98 

Sub. 5 0.1 -65.46 -279.09 

Sub. 6 0.1 354.52 -57.29 

Sub. 7 No ground path 0.00 0.00 

Sub. 8 0.1 134.30 60.9 

 
Using the approach from the previous section, the values 

for the 20-bus system are given in Table 4 (since grounding 
resistance plays no role for Substations 1 and 7 they are 
omitted from the Table).  The relatively low ℜ values for all 
the substations except 3 and 4 indicate that the substation 
GICs are not particularly dependent on the assumed substation 
resistance.  In contrast, the GIC at Substation 4 is highly 
dependent on its grounding resistance value.   
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Table 4: 20-bus substation equivalent values 

 
Driving 

point 
resistance. 

(Ω) 

RTH, 
(Ω) ℜ  

VTH 
eastward 

(V) 

VTH 
northward 

(V) 

Sub. 2 0.158 0.750 0.210 -179.88 109.90 

Sub. 3 0.115 0.272 0.424 -51.61 65.95 

Sub. 4 0.198 0.246 0.802 -155.28 24.90 

Sub. 5 0.076 0.321 0.239 -27.53 -117.41 

Sub. 6 0.075 0.302 0.249 142.50 -23.02 

Sub. 8 0.093 1.365 0.068 196.69 89.20 

 
For example, if the Substation 4 grounding resistance value 

is assumed to decrease by 50% (from 1.0 to 0.5Ω), then using 
(12) the new GIC for an eastward field would change from -
124.6A to -208.1A (the magnitude increases by 67.01%). In 
contrast, at the less sensitive Substation 2 if its grounding 
resistance was also reduced by 50% (from 0.2 to 0.1Ω) the 
Substation 2 GIC for the eastward field would only change 
from -189.3 to -211.6A (the magnitude increases by 11.78%). 
The above sensitivity analysis confirms that ℜ  is indeed a 
sensitivity indicator.  

If desired, (13) could be used to determine the network 
shift factors for this change in the substation GIC.  For 
example, Substation 2 has two identical generator step-up 
transformers (GSUs), both with shift factors of 0.5.  Hence for 
the above 22.3A increase in the current out of the ground into 
the Substation 2 neutral, the current going into each GSU 
changes by 11.15A total for all three phases or 3.72A per 
phase.   

Next the algorithm is applied to a 62,500 bus, 27,600 
substation model of the EI used in [5].  Since this is an actual 
power system model, the line and transformer resistance 
values were determined from the power flow data with good 
accuracy.  However, the substation grounding resistances were 
not known (except for at a handful of buses) and were 
estimated using a rather simplistic model.   

In this model the assumed resistance depended upon the 
highest substation voltage level and its assumed size (based on 
the number of lines coming into the substation), with larger, 
higher voltage substations having lower values.  Soil 
resistivity, which certainly can have an impact, was not known 
and hence not included in this simplistic model.  Fig. 3 plots 
the sorted assumed substation grounding resistances used in 
this example.  While the figure contains a handful of actual 
utility provided data values, the vast majority of it is 
estimated.          

 

 
Fig. 3 EI sorted assumed substation grounding resistance  

For this example, a uniform 1 V/km eastward electric field 
is applied to the entire EI system, then (1) is used to calculate 
the GICs.  The purpose of applying a uniform electric field is 
not meant to imply such a field would represent a realistic 
GMD storm scenario; it certainly would not.  Rather it was 
used solely to generate example GICs.  As noted earlier the G 
matrix and hence the derived Thevenin resistance values are 
independent of the assumed I vector used in (1). Table 5 
shows the data for the ten substations with the highest GICs 
(labeled Sub A to Sub I to maintain data confidentiality).   

The result from this analysis is the substation GICs, and 
hence the associated transformer GICs, are quite dependent 
upon the estimated substation grounding resistance values. 
Note that more than half of the entries in Table 5 have 
ℜ values at or above 0.5, indicating that the assumed 
substation resistance dominates in determining the GIC for a 
particular substation.  And this trend is not restricted just to 
the top ten substations.  The average of ℜ  is 0.47 for the top 
100 substations and 0.51 for the top 500.     

Table 5: EI substations with the largest GICs for a uniform eastward field 

 
Assumed 
grounding 
resistance 

(Ω) 
GIC (A) RTH, 

(Ω) ℜ  
VTH 

eastward 
(V) 

Sub. A 0.24 -294.85 0.38 0.39 -183.09 

Sub. B 0.10 238.14 0.59 0.14 164.30 

Sub. C 0.10 -228.69 0.08 0.54 -42.27 

Sub. D 0.15 213.23 0.15 0.50 63.55 

Sub. E 0.10 192.66 0.28 0.27 74.12 

Sub. F 0.27 178.58 0.23 0.55 88.86 

Sub. G 0.10 -151.93 0.11 0.49 -31.25 

Sub. H 0.12 150.41 0.08 0.58 29.86 

Sub. I 0.17 -144.39 0.10 0.63 -38.64 

Sub. J 0.10 143.20 0.14 0.52 34.85 

 
To illustrate, consider Substation D which has about 1500 

MW of generation connected at 345 and 138 kV.  With an 
assumed grounding resistance of 0.15Ω, its GIC of 213.2A for 
a 1V/km field indicates that it is highly susceptible to GIC on 
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its GSUs.  If the assumed grounding resistance is increased 
from 0.15 to 0.5Ω then this value drops to 97.8A.  

IV. MULTIPLE SUBSTATION SENSITIVITY CONSIDERATIONS 

Before concluding, it is important to at least briefly 
comment on the issue of the dependence of the Thevenin 
resistance for a particular substation on the assumed 
grounding resistances of the other substations.  This is clearly 
seen in the four bus example that 

 , ,1.2TH A Ground BR R= +  (14) 

For larger systems the dependence is more complex but is 
certainly still present. In [14] this network wide sensitivity is 
explored by simultaneously changing the substation 
resistances either by fixed percentages, fixed amounts, by 
random percentages (within a range) or by setting them all to 
zero (the “perfect-earthing” case).    

To illustrate such an approach on the Thevenin resistance 
method, Table 6 compares the Thevenin resistance values of 
the original 20-bus system with values obtained either by 
doubling the assumed grounding resistances or by assuming 
the grounding resistance tended towards zero (representing 
them by just 0.01 Ω). Clearly as more resistance is added to 
the model, the Thevenin values will increase. Conversely, 
when the substation grounding resistance is neglected the 
Thevenin resistances will decrease, providing an upper bound 
on the magnitude of the substation GICs.  Whether this upper 
bound is overly restrictive is somewhat system specific, and 
certainly an area for future research.      

Table 6: Variation in 20-bus substation resistance values (Ω) 

 
Original 

Grounding 
Resistance  

Original 
RTH,  

Doubled 
Grounding 
Resistance 

RTH, 
Doubled  

Resistance  

RTH, 
Resistance 
of 0.01 Ω 

Sub. 2 0.2 0.750 0.4 0.795 0.689 

Sub. 3 0.2 0.272 0.4 0.308 0.224 

Sub. 4 1.0 0.246 2.0 0.281 0.210 

Sub. 5 0.1 0.321 0.2 0.372 0.223 

Sub. 6 0.1 0.302 0.2 0.372 0.255 

Sub. 8 0.1 1.365 0.2 1.418 1.304 

V. CONCLUSION AND FUTURE DIRECTIONS 

The paper has addressed the issue of the sensitivity of the 
GICs to the assumed substation grounding resistance, 
providing an algorithm suitable for large system use to 
quantify this sensitivity. The conclusion of the paper is that the 
GICs can indeed be quite dependent on these values, with 
example results provided for the 20-bus GIC test system and 
the EI.   

Another contribution of the paper is providing a 
methodology for identifying the substations that need accurate 
grounding resistance values. Those substations that have high 
GICs and high ℜ  values.  Of course ideally utility engineers 
would have easy access to data sets that provide accurate 
values for all substations in a network. However, this can be 
difficult in practice as was discussed in the introduction.  The 
methodology introduced in the paper can help them focus on 
the locations in which accurate information is most needed.   

The paper also suggests several directions for future 
research.  First, the single substation algorithm presented in 
the paper needs to be further refined and tested on additional 
networks.  Second, additional research in the dependence of 
the Thevenin resistances on the grounding values for other 
substations is needed.  The upper bound approach of assuming 
low resistances needs to be further considered.  Last, the paper 
certainly highlights the need for additional work in the area of 
GIC analysis validation using actual system data and 
measurements.  Such measurements could, perhaps, provide a 
mechanism to directly estimate the actual substation 
grounding resistance values.  With the advent of more direct 
measurement of power system GICs, there is a great potential 
for much better results in the near future.    
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