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Abstract—Essential to power systems operation and resilience
is having sufficient generation in the system to supply demand
plus transmission losses. With increasing penetration of wind
power in electric grids, the variable nature of wind as a resource
means that extended periods of abnormally low wind power avail-
ability (wind resource droughts) could compromise that system’s
resilience. This paper presents a methodology for identifying wind
resource droughts in electric grids. The methodology presented
in this paper leverages hourly historic wind speed data from
1973 to 2022 with U.S. generator data from 2021 to determine
historic wind power availability. The distribution of historic data
is then used to help identify wind resource droughts. Examples
are presented for states with high integration of wind generation
in the United States such as California and Texas.

Index Terms—renewable generation, weather, wind drought,
power systems planning

I. INTRODUCTION

At its essence, an electric power system must have sufficient
generation to meet the total load plus the losses. If there is
an overall generation shortage in an interconnected ac system,
initially the frequency would drop, and then usually the other
generators would make up the shortfall through their governor
control and later by automatic generation control. If there is
insufficient additional generation available or if in a larger grid
there is insufficient transmission capacity then the load would
need to be reduced through load shedding. This occurred in the
U.S. state of Texas during Winter Storm Uri in February 2021
when cold weather induced generator and fuel supply failures
caused the frequency to fall to 59.4 Hz for several minutes
and subsequently large amounts of load was involuntarily shed
over the next few days [1].

Traditionally, in North America the North American Electric
Reliability Corporation (NERC) has divided the reliability of
large-scale interconnects into two functional aspects, adequacy
and operating reliability, with adequacy focused on ensuring
there is adequate electric supply at all times taking into
account reasonably expected outages [2]. This was based on
the expectation that adequate fuel was almost always available,
a quite reasonable assumption when most generation was
supplied by coal, natural gas, nuclear or hydro with their larger
amounts of on-site or reservoir fuel storage. However, with the
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rapid growth in wind and solar, in which there is no storage
of their fuel inputs, these concepts need to be extended.

Part of this extension is associated with electric grid re-
silience [2], [3]. While resilience is a term with different
shades of meaning, the grid must be resilient even during
extremely large events, and a necessary consideration in
achieving this is considering the nature of the disruptive event
[4]. It also needs to be present for the grid as a whole,
including generation, transmission, distribution, markets, and
increasingly coupled infrastructures and supply chains. This
paper considers an aspect of generation resilience in grids with
a large amount of wind generation.

Wind generation is growing rapidly around the world. Ac-
cording to U.S. Energy Information Administration (EIA) data
[5], [6] in 2021 around 11% of the overall generation in the
U.S. is supplied from wind energy, and within individual state
this value is much higher including more than 60% in Iowa,
40% in Oklahoma and about 25% in the Electric Reliability
Council of Texas (ERCOT) grid. However a concern about
renewable generation is that it relies on the availability of
an inherently variable resource. The focus of this paper is
on the electric grid resiliency impacts of the more rare,
but more severe situations in which wind power generation
levels are substantially below normal for extended periods of
time, a situation known as a wind drought [7], [8], or wind
resource drought (WRD). In particular this paper presents a
methodology to relatively easily consider such situations in
electric grid planning.

While the WRD term is relatively new in an electric
grid context, human knowledge of outlier wind behavior is
certainly not new especially with respect to sailing. Also the
term “drought” has been used for thousands of years in a
precipitation context, and these traditional droughts can impact
hydro generation and cooling processes for thermal generation
units. A few other references considering WRDs (or more
generally resource droughts when solar is also included) are
[9], [10], and [11].

Like the general term “drought,” defined by [12] as “a period
of abnormally dry weather sufficiently long enough to cause
a serious hydrological imbalance,” a WRD is does not have a
precise duration or geographic extent but it does need to be
sufficiently long and wide-spread to cause an impact. Like a
traditional drought it needs to be “abnormal,” so implied in
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its definition is an understanding of the expected wind power
generation. In addition, a WRD depends on the amount of
wind generation actually impacted, so the term would not be
appropriate in a region in with no installed wind generation.
Finally, whether a WRD is occurring depends not solely on
the wind speeds themselves, but on their impact on the wind
turbine power outputs. This requires knowledge of the wind
turbine power curves. Since wind turbines have both cut-in
and cut-out speeds, a WRD could occur when the winds are
consistently too high (though this would be more rare). In the
U.S. the EIA Form 860 data [5] provides sufficient information
to provide estimates of all the wind turbine power curves. A
methodology for using this information in the power flow is
given in [13].

The remainder of this paper demonstrates a WRD identifi-
cation methodology using a combination of U.S. hourly wind
speed data from the years 1973 to 2022, and the installed U.S.
wind turbine portfolio as of the end of 2021 from [5]. The
study considers in detail the U.S. states of Texas, which by
far has the most installed wind turbine capacity, and California.
In the paper Section II provides details on the data and models
used in this methodology. Section III details the cases studied,
and Section IV highlights and shows the WRDs. A summary
and future directions are then provided in Section V.

II. DATA OVERVIEW

As has been noted, the data used in the study includes
information about the U.S. installed generation capacity from
the EIA 860 Form [5] and hourly-locational wind speed
information from 1973 to 2021. More specifically, the EIA 860
data provides information on all generators with a nameplate
capacity of one MW or greater, allowing the individual wind
turbines at a location to be aggregated if they have similar
characteristics. The generators at a single location are then
grouped into power plants with the geographic location of each
provided. For the wind generators this data also contains the
turbine manufacturer, model number, design wind speed, wind
quality class, and the hub height.

To provide context for the relative amount of wind gener-
ation in the U.S. Figure 1 visualizes all the generation using
the geographic data view (GDV) approach of [14], [15] in
which the size of each oval is proportional to the power plant’s
MW capacity and its color indicates the primary fuel type
(red for nuclear, black for coal, brown for natural gas, blue
for hydro, and green for wind). To better show just the wind
and solar generation, Figure 2 repeats this visualization except
just showing these two fuel types and the GDV oval scaling
is increased to better visualize the generation. Figure 3 shows
just the wind generation, except aggregated at the state level.

The second portion of the input data is the hourly historical
weather information including the wind speed used here. For
this work the data was obtained from [16] with values between
1973 and 2021 used. Over this time period the number of
weather stations with measurements gradually increased with
several thousand in the contiguous U.S. available by 2021
(shown in Figure 4).
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Fig. 2: GDV Visualization of U.S. EIA Form 860 2021 Wind
and Solar Generation

To obtain an estimate of the output of each wind generator
at each hour the approach of [13] is used. In particular, this
requires knowing for each wind generator the wind speed and
the power curve relating the wind speed to the power output.
While the wind speed measurements are seldom available
at the exact location of each generator, usually there are
some available nearby. Then 2D scattered data interpolation
methods can be used to usually obtain a reasonable estimate.
While there is no best interpolation method for all situations,
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Fig. 3: GDV Visualization of U.S. EIA Form 860 2021 Wind
Capacity by State



Fig. 4: Weather Station Locations
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the approach utilized here is to use the closest available
measurement station. Since weather measurements are not
always available from each station, the closest station with
a valid measurement needed to be checked for each wind
turbine for each hour, a process that can be computationally
quite efficient using a k-dimensional tree algorithm. As noted
in [13] there are certainly situations in which the closest
weather station does not give the best approximation for
the actual wind speed at the generator location, but for the
general methodology presentation of this paper it is reasonable
approximation. The hub height wind speed is then estimated
from this value using a scalar multiplier, noting that hub height
information is available in the EIA 860 data.

The estimated hourly power output of each wind generator
is then determined using the turbine’s power curve. Since
the EIA data does contain the model numbers, the actual
power curves could be used. However, given this paper’s
methodology focus, rather four generic curves are utilized
based upon the wind quality class obtained from the EIA data.
An example of this process, used for each hour, is shown
in Figure 5 in which the wind speeds are visualized using
the contouring approach of [17] and the wind turbine power
outputs for these wind speeds shown using the green GDVs.
If desired, animation sequences can be created by showing a
series of such images.
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Fig. 6: Approach to calculate wind power availability for
each year.

III. WIND RESOURCE DROUGHT IDENTIFICATION

Based on weather data, the strategy in Figure 6 is used
to calculate the available wind turbine generator capacity or
wind power output for each time step and for each region
of study. Then, for each region of study, the distribution of
historical wind power availability is calculated on an hourly
basis. Then for each hour of the year, the data over the years
of study but for the same hour of the year is considered and
the main statistics including minimum, maximum, average, as
well as 10th, 20th, 80th, and 90th percentiles of output power
generation of wind turbines are calculated. This information,
coupled with the drought definition is used in finding WRDs in
the dataset. Also, as well as hourly data for the output power
of wind turbines the daily and annual output of wind turbines
are calculated.

The output data of wind turbines based on this strategy is
used for more detailed study in California and Texas in the
U.S., which include high capacities of wind generation. Figure
7 shows the results of simulations based on historical wind
speed to find annual wind power availability for Texas and
California from 1973 to 2022 based on 2021 generator data.
The figure shows that the overall trend of wind availability is
not significantly changed over these years. Therefore, calcu-
lating the percentiles of output power of wind turbines based
on the wind availability over the years is a reasonable strategy
for determining wind drought. Please note the difference in the



scale of Texas power generation through wind turbines based
on the availability wind capacity and wind speed during these
years by the scale of 10.
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Fig. 7: Historical Annual MWh Wind Energy Availability for
(a) Texas and (b) California
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Then the more detailed hourly data of these two states is
used and for each hour of the year, including 8760 hours
in a sample year, the minimum, maximum, average, as well
as 10th, 20th, 80th, and 90th percentiles of output power
generation of wind turbines over all studies years is calculated
to find the historic distribution of wind power availability.
These statistics of wind power availability based on 1973 to
2022 wind and using 2021 generator data are presented in
Figure 8 for Texas. The same statistics are shown in Figure
9 for California. As wind power data is highly variable,
smoothing was applied for the purpose of visualizing trends
in historic wind power availability distribution during a year
using a rolling window average.

The wind power availability in Texas follows an annual
pattern with two peaks. The higher peak typically occurs in
March and the lower peak generally occurs in November.
Wind power availability in Texas is on average at its lowest
from late summer to early fall. California, however, shows a
slightly different pattern in its annual wind power availability.
The peak wind power availability in California occurs on
average in May and the minimum occurs on average in the
winter. In both Texas and California, there is a greater range
to the higher percentiles of wind power availability than the
lower percentiles. Note also that California has a tighter power
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Fig. 9: Historic Distribution of Wind Power Availability in
California

availability range in its lower 20th percentile than Texas,
particularly during winter months.

The definition of WRD should include the severity of the
droughts, the period of time that they lasts and the geograph-
ical area that is impacted by the droughts mentioning how
widespread they are. Also, based on the general definition of
the term drought, the abnormally low power output of wind
turbines should be long enough to create operation issues
such as frequency violations or even cause black-outs. In this
work, the wind power threshold for a WRD is considered
an event in which wind power availability is below the 20th
percentile and the severe WRD threshold is set to wind power
availability being below the 10th percentile, while the time
threshold for recognizing WRD is considered a day. However,
this definition is a caution to look into the WRD more carefully
but the operation problem that may occur depend on many



other factors such as demand. More importantly, if the WRD
is too severe meaning that the output of wind turbines are
below say 5Sth percentile, a shorter period of WRD can create
operational challenges. On the other hand, if the WRD is not
severe but lasts over a long period of time and impacts a very
large area, that can also create serious reliability issues for the
grid.

IV. SEVERE WIND RESOURCE DROUGHT EXAMPLES

For this study, the power grid zones are divided based on the
U.S. states and Texas and California as examples of two states
with large wind capacity are studied. However, the zones can
change based on the goal of study. For each zone, the most
severe WRDs are selected as cases of interest by determining
historic periods with the lowest wind power availability over
a duration of at least longer than a day. Examples of selected
severe wind drought cases are visualized in Figures 10 and 11.
The color keys used in these Figures are the same as Figure
8 with the difference that the average wind power output over
1973 to 2022 is shown with the dark maroon lines but the
actual wind power MW output on that dates are shown with
the bolded black lines.

Figure 10 presents the most severe wind drought in Texas
from 1973 to 2022 that lasted over 4.5 days. The daily
variation of the wind is apparent both in the historic statistics’
trends and the wind drought that occurred in 2008 (shown with
the black line). Many of the hours from this day are matched
with the overall low-wind-availability records of the studied
years and this time of year in Texas. It should be noted that
for almost all of this period, the wind power output is below
10th percentile of the historical data.

Figure 11 shows the wind power availability for the most
severe wind drought from 1973 to 2022 that occurred in
late November of 2005 relative to the distribution of historic
statistics of wind power availability for this time of year.
The drought lasted nearly 1.5 days and not only matches
the overall low wind records for the studied years and this
time of year, but also presented values very close to 0 MW
wind power availability for a long duration of this severe
drought. Please note that the wind turbines output power is
below 10th percentile of historical data for this period but
also the difference between the minimum and 10th percentile
is very small. Then year 2021 in Texas is selected to find the
duration of WRDs. Figure 12 shows the hourly MW output of
wind turbines in 2021 compared to the minimum, maximum,
average, 10th, 20th, 80th and 90th percentiles over 1973 to
2022. The WRDs are shown with blue arows. The duration of
these WRDs are shown in 13.

Depending on the scale of demand compared to the available
generation capacity, these WRDs can create significant oper-
ations issues for the electrical grid. Similar extreme weather
events should be used for detailed studies of their impact on
the operation of power system and then should be considered
carefully for the planning for improving power system relia-
bility and resiliency.
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Fig. 11: Late Nov., 2005 California Wind Power Availability

V. SUMMARY AND FUTURE WORK

With wind generators representing a rapidly-growing por-
tion of power systems globally, it is important that the avail-
ability and variability of wind resources are accounted for
when planning reliable and resilient power systems. Histori-
cally, adequate fuel supply has been assumed in power systems
planning, but with environmental and economic incentives
for utilizing renewable resources, the availability of these
resources and dependency of the power system on these
resources should be studied carefully. Wind power is one of
the most important renewable resources that has a variable and
intermittent nature. Finding extreme weather scenarios such as
severe WRD situations is very encouraging for power system
planning.

A methodology has been presented to identify WRDs and
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find examples of severe WRDs are presented from California
and Texas. Leveraging publicly-available generator data from
2021, information on the wind turbine manufacturer, model
number, design wind speed, wind quality class, and the hub
height is used to calculate how much wind power would will
be available with historic wind conditions (using wind speed
data from 1973 to 2022). The expected available wind power
capacities in different hours of a year is determined based
on analyzing statistics from historical data in each hour of
the studied years. WRDs are found based on comparing the
output power from wind turbines in each time with historical
statistics on the same time of the year.

Although it is observed that the overall annual availability
of wind resources is not changed over these years, different
patterns are observed comparing the hourly statistics of his-
torical trends in Texas and California such as two peaks in the
average wind generation of Texas in March and November
but one peak in California’s average wind data in May. These

statistics help recognizing extreme WRDs as examples are
brought with more details. Since the utilization of wind energy
is increasing, the availability of wind resources is having a
more significant impact on the operation of power system.
Therefore, extreme WRDs can have a significant impact on
the reliability and resiliency of the power system. Therefore,
similar extreme weather events should be considered carefully
in the operation and planning of power systems to improve the
reliability and resiliency of the grids. In future, we will also
study the solar droughts and the possibility of their coincidence
with wind droughts.
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