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Abstract—Studies of the optimal multiplier (or optimal step 

size) modification to the standard Newton-Raphson load flow 
have mainly focused on highly stressed and unsolvable systems.  
This paper extends these previous studies by comparing 
performance of the Newton-Raphson load flow with and without 
optimal multipliers for a variety of unstressed, stressed, and 
unsolvable systems.  Also, the impact of coordinate system choice 
in representing the voltage phasor at each bus is considered.  In 
total, four solution methods are compared: the Newton-Raphson 
algorithm with and without optimal multipliers using polar and 
rectangular coordinates.  This comparison is carried out by 
combining analysis of the optimal multiplier technique with 
empirical results for 2 bus, 118 bus, and 10,274 bus test cases.  
These results indicate that the polar Newton-Raphson load flow 
with optimal multipliers is the best method of solution for both 
solvable and unsolvable cases. 
 

Index Terms—load flow analysis, load flow convergence, 
optimal multipliers, step size optimization, polar and rectangular 
coordinates. 

I.  INTRODUCTION 
HE increased utilization of existing transmission 
resources in the North American power grid without any 

significant upgrades has led to a system operated closer to the 
edge of reliability [1].  When performing contingency analysis 
on systems that are already operating very close to reliability 
limits, it is not uncommon to find system configurations where 
the system is either highly stressed or in an unsolvable 
situation [2], [3].  Attempting to solve such systems can lead 
to divergence in the standard Newton-Raphson (NR) load 
flow.  Divergence can also occur when poor initial conditions 
are used to begin the solution process [4], or, in continuation 
load flows, when too large of a predictor step is taken [5].   

Because divergence of the load flow can lead to wasteful 
computations and unpredictable behavior, significant research 
has been done to construct non-divergent algorithms for 
solving the load flow equations of highly stressed and 
unsolvable systems [6]-[10].  Reference [10] provides an 
excellent table summarizing several methods for stopping 
divergence of the load flow.  The various methods used to 
prevent divergence of the NR load flow [11] have been shown 
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to prevent divergence in many cases.   
While non-divergence is an excellent characteristic to have 

in a load flow solution algorithm, any method used for load 
flow solutions must be both fast and robust for any type of 
system, whether the system is unstressed, stressed, or 
unsolvable.  Unfortunately, little attention has been paid to the 
behavior of these non-divergent methods for normally 
convergent, unstressed systems in addition to stressed and 
unsolvable systems. 

One candidate load flow solution method which has been 
shown to possess both speed and robustness for stressed and 
unsolvable systems is the optimal multiplier (OM) 
modification to the standard NR load flow.  The OM load flow 
was first conceived in rectangular coordinates [9], but then 
extended using the same concepts to polar coordinates.  Ref. 
[7] provides full details on how the method of [9] has been 
extended to polar coordinates with varying degrees of success.  
Although the OM load flow has been extended to polar 
coordinates, comparison to the equivalent formulation in 
rectangular coordinates has not been performed.   

This is a crucial oversight, for the speed and robustness of a 
given load flow solution algorithm is dependent not only on 
the choice of algorithm but also on the choice of coordinate 
system used to represent the voltage phasors at the system 
buses [12].  Accordingly, this paper presents for the first time 
a direct comparison of the OM load flow with rectangular and 
polar coordinates using 2 bus, 118 bus, and 10,274 bus cases.  
For each case, the performance of the OM load flow is also 
compared to the standard NR load flow without optimal 
multipliers using each coordinate system.  The rectangular 
OM load flow method used is that of Iwamoto and Tamura 
[9].  For the polar OM load flow, the method developed by 
Castro and Braz [6] was chosen due to its comparative 
advantages as demonstrated in [7].     

These comparisons indicate that of the four methods 
considered—the OM load flow and NR load flow using polar 
and rectangular coordinates—the polar formulation of the OM 
load flow provides the best combination of speed and 
robustness for unstressed, stressed, and unsolvable systems. 

II.  THE RECTANGULAR AND POLAR OM LOAD FLOW 

A.  The Load Flow Equations and the NR Algorithm [11] 
In the polar NR load flow, the complex voltage phasor at 

each bus is represented using polar coordinates: 
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 ˆ ˆ
i i iV V θ= ∠  (1) 

For the rectangular load flow formulation, the voltage phasor 
at each bus is represented using rectangular coordinates: 

 î i iV e j f= +  (2) 

In the NR load flow, the set of load flow equations 
( ) =f x 0  is solved.  For the polar formulation, ( )f x  contains 

real and reactive power balance equations of the following 
forms: 
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where îj ij ijY G jB= + , the complex admittance between buses 
i and j , and i denotes the set of all buses connected to bus i , 
including itself.  The most important aspect of these equations 
as they relate to the OM load flow is the presence of 
transcendental functions in (3) and (4).   

For the rectangular formulation, ( )f x  contains real power 
balance, reactive power balance, and voltage setpoint 
equations of the following forms: 
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It should be noted that the rectangular formulation uses an 
extra equation at each PV bus in the system, due to the need to 
maintain the specified voltage magnitude (7).  As a result, the 
rectangular formulation has a larger equation and variable 
count relative to the polar formulation, with the difference 
equal to the number of PV buses in the system. 

The salient characteristic of these equations with regard to 
the OM load flow is that all the state variables in (5)-(7) 
appear in quadratic terms.  This leads to significant 
simplification of these equations’ Taylor series expansion, 
particularly with regard to the second-order term. 

B.  The OM Load Flow [6], [9] 

The NR algorithm solves for the update vector ( )ν∆x at each 
iteration ν  based on the first-order Taylor series expansion of 

( )f x , referred to hereafter as the linearization of ( )f x .  The 

OM modification to the NR algorithm determines an optimal 
multiplier (i.e., an optimal step size) ( )νµ  for the update vector 
based on the second-order Taylor expansion of each equation 

( )if x  in ( )f x at iteration ν : 
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An approximately equal sign is used in (8) to denote the 
inaccuracy of the second-order approximation for general 
equations.  However, if the equation ( )if x  is purely second-
order (as in the rectangular form of the load flow equations), 
then (8) holds with strict equality.  The optimal multiplier ( )νµ  
of the update vector ( )ν∆x  is determined by solving the 
following minimization problem: 
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(9) can be easily solved as a cubic equation when optimality 
conditions are used [13].  In the case of multiple roots, the 
smallest real root is chosen as the optimal multiplier [9]. 

C.  The Importance of Good Linearization of the Load Flow 
Equations 

The optimal multiplier is only able to scale ( )ν∆x ; the 
direction of the update vector is still based entirely on the first-
order Taylor series expansion as in the NR algorithm.  
Accordingly, if the linearization of ( )f x  is poor, ( )ν∆x  may 
not indicate a very good direction.  When the direction is not 
very good, the optimal multiplier provides little help in 
solving the system and can even slow down the solution. 

This behavior can be seen mathematically by examining 
the effect of large second-order terms (i.e., poor linearization) 
on the optimal multiplier.  The only information used when 
computing the optimal multiplier ( )νµ  that is not used in 
computing the update vector ( )ν∆x  is the second-order term 
(denoted as ( )νc ) from the Taylor expansion of ( )f x : 
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The notation ( )νc  is used to be consistent with the historical 
OM formulation [9].  Because ( )νc  is the second-order term of 
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the Taylor expansion, ( )νc  is zero if the load flow equations 
are exactly equal to their first-order Taylor series expansion.  
That is,  

 ( ) ( )( ) ( )( ) [ ]( ) ( )νν ν ν ν + ∆ = + ∇ ∆ xf x x f x f x  (11) 

When the linearization of ( ) ( )( )ν ν+ ∆f x x is not exact, the 
equality in (11) does not hold and ( )νc  can take on a wide 
range of values.     

If ( )νc  is zero, the optimal multiplier will be 1, just as if the 
NR algorithm were used.  On the other hand, if ( )νc is much 
larger than the other terms in (8), (9) can be reduced to: 

 ( ) ( )( )2
2

2

1argmin
2

ν ν

µ
µ µ≈ c  (12) 

The solution of (12) is ( ) 0νµ ≈ , indicating that a large 
second-order term in the Taylor expansion leads to a very 
small optimal multiplier value. 

A small optimal multiplier is desirable when attempting to 
solve unsolvable systems; it is precisely because ( )νµ takes on 
small values in such cases that divergence of the OM 
algorithm is prevented.  On the other hand, if small optimal 
multipliers show up when solving solvable systems, then the 
algorithm can take more iterations than the standard NR 
algorithm (which can be thought of as using a constant 
multiplier of 1). 

III.  ADVANTAGES AND DISADVANTAGES OF EACH 
COORDINATE SYSTEM FOR THE OM LOAD FLOW 

A.  Advantages and Disadvantages of Using Polar 
Coordinates with the OM Load Flow 

The polar formulation has several advantages over the 
rectangular formulation when solving the load flow using the 
OM solution method.  The polar form of the load flow 
equations exhibit excellent linearization characteristics, as 
demonstrated by both the Fast Decoupled Load Flow (FDLF) 
[14] and the use of sensitivity factors in power system 
analysis.  Also, the polar formulation of the load flow 
equations has fewer equations to solve than the rectangular 
formulation.  This can be significant for systems with 
relatively high percentages of PV buses as in the IEEE 118 
bus system. 

However, there are also disadvantages to using the polar 
formulation instead of the rectangular formulation.  The most 
significant drawback to the polar formulation is the presence 
of transcendental functions.  These functions lead to infinite 
order terms in the Taylor expansion, which makes (8) an 
approximation rather than a strict equality as in the rectangular 
formulation.  As a result, the calculation of ( )νµ  can be less 
accurate than with the rectangular formulation which does not 
have any Taylor series expansion terms of order higher than 
two.  Also, the presence of sine and cosine in the polar load 
flow equations results in a more complex calculation of the 

second-order term ( )νc  needed to solve for the optimal 
multiplier.  Fortunately, the calculation of ( )νc  is still on the 
order of a mismatch calculation [6], [7].  Though there are 
some disadvantages to using the polar formulation, the case 
studies will demonstrate that these disadvantages are 
outweighed by the advantages of using the polar formulation 
of the load flow equations and variables with the OM load 
flow. 

B.  Advantages and Disadvantages of Using Rectangular 
Coordinates with the OM Load Flow 

In the original derivation [9] of the OM solution method, 
several key advantages of the rectangular formulation are 
given.  The greatest benefit of using the rectangular 
formulation results from the quadratic nature of the load flow 
equations when rectangular coordinates are used.  Because all 
the state variables appear in quadratic terms in the equations, 
the third and higher order terms of the Taylor expansion are 
zero; this makes (8) hold with strong equality.  This can lead 
to greater accuracy in the calculation of ( )νµ  relative to the 
polar formulation.  Further, ( )νc  is much easier to calculate 
and program than with the polar formulation, because in the 
rectangular formulation: 

 ( ) ( )( )ν ν= ∆c f x  (13) 

As a result, calculating the second-order term is just a matter 
of plugging ( )ν∆x  into the mismatch calculation routines 
instead of ( )νx .   

Unfortunately, there are also several disadvantages to using 
the rectangular formulation.  One problem with the rectangular 
formulation is the lack of widespread implementation of the 
NR load flow in rectangular coordinates [7], though at least 
one commercial load flow package does use the rectangular 
formulation by default [15].  The extremely poor performance 
of the decoupled load flow in rectangular coordinates [16] also 
indicates that the rectangular formulation may not have as 
good of a linearization as the polar formulation.  The extra 
voltage mismatch equation that must be satisfied at PV buses 
(7) can also lead to difficulties with the OM algorithm in 
rectangular coordinates [17].  The two bus PV system 
examined below in the case studies clearly demonstrates how 
the extra equation can cause trouble with the OM algorithm. 

IV.  CASE STUDIES 
Because the convergence behavior of the NR load flow is 

difficult to analyze mathematically, particularly when the OM 
modification is used, empirical results are used to compare the 
two formulations.   

A solution tolerance of 0.01 MW was used for each 
simulation.  As discussed in [7] and [9], the reduction of the 
optimal multiplier to very small values indicates unsolvability 
of the associated power system.  For the following cases, the 
solution was stopped when the optimal multiplier dropped 
below 0.01, indicating that the solution had stalled at a 
constant mismatch and the system was unsolvable.  It should 
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also be noted that all four methods indicated that the same sets 
of cases were unsolvable, giving further credence to the notion 
that small optimal multipliers do indeed indicate unsolvability 
of the underlying power system.  If any islanding occurred 
during outage studies, results were taken from the largest 
island. 

In the following sections, ROM (POM) refers to solution 
using the OM load flow with rectangular (polar) coordinates, 
and RNR (PNR) refers to solution using the standard NR load 
flow without optimal multipliers with rectangular (polar) 
coordinates.  In reporting the results for the case studies, 
several indices are used: 

 ( ) # of iterations to solve 

with RNR (PNR)

no opt no opt
Rect PolarIC IC =

 (14) 

 ( ) # of iterations to solve 

with ROM (POM)

opt opt
Rect PolarIC IC =

 (15) 

 opt opt
opt Rect PolarIC ICΓ = −  (16) 

 no opt no opt
no opt Rect PolarIC ICΓ = −  (17) 

 no opt opt
Rect Rect RectIC IC∆ = −  (18) 

 no opt opt
Polar Polar PolarIC IC∆ = −  (19) 

Values of optΓ ( no optΓ ) greater than zero indicate poorer 
performance of ROM (RNR) relative to POM (PNR).  Values 
of Rect∆  ( Polar∆ ) greater than zero indicate poorer performance 
of ROM (POM) relative to RNR (PNR). 

To examine the performance of the OM and NR solution 
methods under both coordinate systems, four systems are 
examined—a two bus system with a PQ bus, a two bus system 
with a PV bus, the IEEE 118 bus system, and a 10,274 bus 
system.   

A.  Two Bus PQ System 
    1)  System Description 

First, a simple two bus system is examined in detail to 
demonstrate the behavior of the four solution methods.  The 
system has a slack bus (bus 1) and an unregulated (PQ) load 
bus (bus 2) connected by a line with X held constant at 0.01 
p.u.  In all cases, initial conditions were taken to be the flat 
start values. 
    2)  Case Studies 

Cases were generated for this system by simultaneously 
varying three parameters: MW load from 0 to 2500 MW, 
Mvar load from 0 to 2500 Mvar, and R/X ratio from 0 to 2.  
Each range of system parameters (MW, Mvar, and R) was 
broken up into 30 points, giving 27,000 total cases. 13,209 of 
the cases were solvable, while the remaining 13,791 were not 
solvable.  A comparison of the number of iterations required 
for the various methods is presented in Table I and Table II. 

POM provides significant gains over PNR, ROM, and RNR 
for these cases.  Compared to PNR, POM takes an average of 
51% fewer iterations for solvable cases, indicating significant 
performance gains when using the OM algorithm instead of 
the NR algorithm for these cases.  RNR and ROM also 
performed worse than POM, taking an average of 52% and 
27% more iterations, respectively.   

B.  Two Bus PV System 
    1)  System Description 

Another two bus system is examined to look at the effects 
of the voltage setpoint equation in rectangular coordinates as 
in [17].  For this case, bus 2 has a voltage regulating generator 
in addition to a load, making bus 2 a PV bus instead of a PQ 
bus.  The line connecting the two buses has constant 
parameters of R = 0.005 p.u. and X = 0.01 p.u. for all cases.  
Because the voltage at bus 2 is regulated, there is only one 
equation ( ( )Polar

2 2P θ  = 0) and one unknown ( 2θ ) for this 
system in polar coordinates.  However, though the polar 
solution is trivial, this system clearly demonstrates the 
problems that can arise with ROM due to the voltage setpoint 
mismatch equation. 

 
TABLE I – NUMBER OF ITERATIONS FOR TWO BUS (PQ) SOLVABLE CASES 

 
 
TABLE II – NUMBER OF ITERATIONS FOR TWO BUS (PQ) UNSOLVABLE CASES 

 
 

    2)  Case Studies 
In these cases the MW load at the second bus was varied 

from 0 to 4944 MW (maximum loadability) in increments of 1 
MW, resulting in 4944 solvable cases.  Due to the trivial 
solution of this system with polar coordinates, only the results 
for ROM and RNR are given in Table III. 

 
TABLE III – NUMBER OF ITERATIONS FOR TWO BUS (PV) CASES 

 
 
Fig. 1 shows the relationship between loading level and 

Rect∆  for this case.  The maximum value of Rect∆  for the load 
range shown is 7, and the minimum value is -3.  While Rect∆  
varied widely for these cases, the ROM took more iterations in 
71% of the cases.  While the ROM performed poorly for the 
vast majority of unstressed cases, as the system approached 
unsolvability the ROM did see some performance gains over 
RNR. 
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An unusual feature of Fig. 1 is the large increase in Rect∆ for 
load levels around 4000 MW (about 80% of the maximum).   
A more detailed look at the system mismatch equations for 
this load level can help to explain why.  Fig. 2 and Fig. 3 are 
plots of the absolute value of  the voltage setpoint mismatch 
equation (7)  and the real power mismatch equation (5) at bus 
2 as a function of the real and imaginary components of the 
bus 2 voltage over the ranges 20.75 1.00e≤ ≤  and 

20.95 0.4f− ≤ ≤ − .  Of course the goal of the NR algorithm is 
to determine the point where both mismatch equations are 
equal to zero.  For a load of 4000 MW this occurs at V2 = 0.8 - 
j0.6.  Clearly, evaluation of (5) results in values several orders 
of magnitude higher than (7) in the region of interest.  As a 
result, the real power mismatch dominates both the shape and 
magnitude of the 2-norm of the total mismatch of the system, 
which is shown in Fig. 4. 

 

 
Fig. 1.  The relationship between Rect∆  and the MW load at bus 2 for the two 
bus PV system 
 

 
Fig. 2.  Voltage mismatch (7) for two bus PV case with 4000 MW load 

 
Fig. 3.  Real power mismatch (5) for two bus PV case with 4000 MW load 
 

 
Fig. 4.  Total mismatch and iteration paths for the two bus PV case (4000 MW 
load) using ROM and RNR 
 

Also plotted in Fig. 4 are the solution paths taken with 
RNR (solid line) and ROM (dashed line).  Both iterations 
begin at a flat start of 2e = 1.0, 2f = 0.0 and end with 2e = 0.8, 

2f = -0.6.  Solving with the ROM clearly takes a longer path 
than solving with RNR.  The ROM solution method first sets 
the real power mismatch to zero then attempts to correct the 
voltage mismatch while keeping the real power mismatch very 
close to zero.   

The cause of this behavior is precisely the magnitude 
difference mentioned above.  Because the real power 
mismatch overpowers the voltage mismatch in the 2-norm, the 
ROM solution method forces the solution to always stay very 
close to the region where the real power mismatch is zero.  
This requires the solution to crawl along the ( )Rect

2P x  = 0 
curve.  In this case, because the first iteration puts the voltage 
values at bus 2 far from the correct values for the voltage 
setpoint equation, the solution must wind along the ( )Rect

2P x  = 
0 curve to get to the final solution.  The tight, slow traversal of 
the ( )Rect

2P x  = 0 curve to arrive at the final solution is 
responsible for the difference in iteration counts between ROR 
and RNR.  

In summary, the voltage mismatch equation does not 



Copyright © 2005 IEEE. IEEE Transactions on Power Systems, vol. PWRS-20, pp. 1667-1674, November 2005.Personal 
use of this material is permitted. Permission from IEEE must be obtained for all other uses. 

present much of a challenge for the traditional NR load flow 
(RNR); convergence proceeds normally.  On the other hand, 
the Newton-Raphson load flow with the usage of optimal 
multipliers (ROM) can encounter significant problems due to 
the vast differences of scale caused by the voltage setpoint 
equation at PV buses.   

Heuristic methods of alleviating this problem, e.g. scaling 
the voltage equation by a fixed magnitude and disallowing 
small optimal multipliers, are discussed in [15] and [17].  
Unfortunately, both of these methods have their own pitfalls.  
Scaling the voltage equation is problematic due to the 
difficulty in determining exactly how much to scale each 
voltage setpoint equation in large systems, and the rejection of 
small optimal multipliers can have the undesired side effect of 
causing more iterations to be performed for unsolvable 
systems. 

C.  IEEE 118 Bus System 
    1)  System Description 

The IEEE 118 bus system [18] is examined next.  In order 
to compare the performance of the rectangular and polar 
formulations with this system, three difference studies were 
performed—all single outages, all double outages, and system-
wide load scaling.  Flat start values of 1 0∠ ° p.u. were used as 
initial conditions for each case.   
    2)  Single and Double Outage Studies 

For the single outage study, all 186 lines in the system were 
outaged and the solution results were compared.  The system 
was solvable for all single outages.  For the double outage 
study, all 186 lines in the system were outaged in pairs for a 
total of 17,205 cases.  One double outage case was unsolvable; 
in that case, the rectangular formulation took 5 iterations to 
stall and the polar formulation took 4.  A comparison of the 
number of iterations required is given in Table IV for all  
17,390 solvable outage cases.   

 
TABLE IV – NUMBER OF ITERATIONS FOR 118 BUS SINGLE AND DOUBLE 

OUTAGE CASES 

 
 
Though the polar formulation did not see much 

improvement with the usage of optimal multipliers for the 
outage cases, opt

PolarIC still has the lowest average of the four 
solution methods. The most notable aspect of these results, 
however, is that in 98.86% of the outage cases studied, PNR 
performed better than RNR.  This is most likely due to the 
high number of PV buses in this case—47 out of the 118 
buses. 
    3)  Load Scaling 

For the load scaling study, all real and reactive loads and 
generator outputs in the system were scaled uniformly by a 
multiplier.  This multiplier ranged from 0.001 to 4.000, and 

was incremented by 0.001 for each case, giving a total of 4000 
cases.  The system was solvable for scaling between 0.001 and 
3.187, and was unsolvable for scaling between 3.188 and 
4.000.  Comparison of the number of iterations required for 
these cases is summarized in Table V and Table VI.   

Several aspects of the results for the load scaling are quite 
interesting.  Most importantly, the average iteration count for 
POM is well below the other three methods, mirroring the 
results seen for the two bus PQ cases.  Also, in all of the 813 
unsolvable cases, POM stalled in fewer iterations than ROM.  
Because one of the primary purposes of using optimal 
multipliers with the Newton-Raphson algorithm is to quickly 
stall at a constant mismatch for unsolvable cases, the 
performance of the rectangular formulation for these 
unsolvable cases is of great concern. 

ROM also performed worse relative to POM as the load 
multiplier was increased.  In Fig. 5, the solid line represents 
solvable cases and the dashed line represents unsolvable cases.  
Due to the large power transfers needed to satisfy the scaled 
load demand, large angle changes are occurring along with the 
load scaling; the norm of all angle changes on the system has a 
correlation coefficient of 0.91 with the load scaling.  This 
suggests that large angle shifts are tied to the poor 
performance of ROM. 

 
TABLE V – NUMBER OF ITERATIONS FOR THE IEEE 118 BUS LOAD SCALING 

CASES (SOLVABLE) 

 
 
TABLE VI – NUMBER OF ITERATIONS FOR THE 118 BUS LOAD SCALING CASES 

(UNSOLVABLE) 

 
 

 
Fig. 5.  Relation between the load scaling for the 118 bus system and optΓ  

D.  10,274 Bus System 
    1)  System Description 

The final system examined is a 10,274 bus case.  To test 
this case, the 500 lines carrying the most power were outaged 
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and the solutions were examined.  Of the 500 outage cases 
studied, 479 were solvable and 21 unsolvable.  A comparison 
of the number of iterations for the solvable and unsolvable 
cases are provided in Table VII and Table VIII, respectively.   

These results are simply terrible for the rectangular 
formulation.  In 33 of the 479 solvable outage cases the 
rectangular formulation took at least 20 iterations to solve with 
the optimal multiplier.  This accounts for the very large 
average value of opt

RectIC  in Table VII .  For the 21 unsolvable 
cases, optΓ was greater than zero in all cases.  The rectangular 
formulation performed extraordinarily poorly for the 
unsolvable 10,274 bus cases.  For instance, in 3 of the 
unsolvable cases, it took over 100 iterations for the rectangular 
optimal multiplier to drop below 0.01.  As in the other 
systems, opt

PolarIC has the lowest average iteration count of the 
four methods used to solve the load flow. 

As in the 118 bus load scaling cases, there are some clear 
dependencies between angle shifts and problems with ROM in 
this system.  Fig. 6 provides a visual indicator of this 
dependence.  Each dot in this figure represents a single 
solvable outage case.  The correlation coefficient between the 
norm of the angle shifts and the differences in iteration counts 
is 0.98, based on the 479 solvable outage cases. 

 
 
 
 
 
 

TABLE VII - NUMBER OF ITERATIONS FOR THE 10,274 BUS OUTAGE CASES 
(SOLVABLE) 

 
 

TABLE VIII - NUMBER OF ITERATIONS FOR THE 10,274 BUS OUTAGE CASES 
(UNSOLVABLE) 

 
 

 

 
Fig. 6.  Relation between the 2-norm of the angle shifts for the 10,274 bus 
system and optΓ  

V.  DISCUSSION OF THE CASE STUDIES 

A.  The Effect of Angle Shifts 
For the mid- to large-sized stressed systems examined in 

this paper (the IEEE 118 bus load scaling cases and the 10,274 
bus outage cases), the greatest single indicator of poor 
performance with the rectangular formulation is the norm of 
the angle shifts for the system.  The most likely cause of this 
dependence is that a change in angle is a curve in the 
rectangular solution space rather than a straight line.  Also, as 
shown for the two bus case in Fig. 4, the rectangular 
formulation can have great difficulty in moving along a curve 
when the optimal multiplier is employed.  For the polar 
formulation, on the other hand, changing angles is a linear 
movement with respect to the solution variables.  This could 
help to explain why the polar formulation does not exhibit the 
same performance degradation when large angle shifts occur. 

B.  Average Iteration Count Differences 
For all three system sizes, the average value of opt

PolarIC is 

less than the average value of opt
RectIC , indicating that the polar 

formulation usually performs better than the rectangular 
formulation when optimal multipliers are used.  Also, in each 
set of cases, the average value of no opt

PolarIC  is less than the 

average value of no opt
RectIC .  This shows that the polar 

formulation routinely performs better than the rectangular 
formulation whether or not optimal multipliers are not used.  
Finally, the average value of no opt

PolarIC is greater than the average 

value of opt
PolarIC  for all three system sizes, indicating that the 

polar usually receives some benefit from the usage of the 
optimal multiplier for solvable cases.  On the other hand, the 
rectangular formulation does worse when optimal multipliers 
are used for several of the 10,274 bus cases and for the 
majority of the two bus PV cases. 

VI.  CONCLUSIONS 
The case studies indicate that any advantages of using the 

rectangular formulation are offset by greater difficulties.  
These problems are particularly apparent as the system 
becomes highly stressed and unsolvable.  At its best (the two 
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bus PQ system), ROM took an average of 0.5 iterations more 
than POM in stalling for unsolvable cases.  In the worst case, 
the 10,274 bus case, ROM took an average of 63 iterations 
more than POM to stall, including quite a few cases which 
took unreasonably long times (over 100 iterations) to stall.   

On the other hand, the polar form of the OM algorithm 
performed very well throughout all simulations.  The POM 
had a lower average iteration count than ROM for all systems, 
indicating that the polar coordinate system is the best choice if 
the OM algorithm is to be used.  Also, POM behaved well for 
unsolvable systems by stalling quickly and not diverging.  
This behavior gives a clear advantage over both RNR and 
PNR when dealing with unsolvable systems, as the standard 
NR algorithm does not handle unsolvable systems gracefully.  
POM also had a lower average iteration count than PNR for 
every set of cases (and never had a higher iteration count than 
PNR for any single case).  For these reasons, the authors 
recommend implementation of the optimal multiplier 
modification to the Newton-Raphson load flow with polar 
coordinates to get the fastest, most robust performance, 
regardless of system solvability or size. 
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