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Abstract—Synthetic electric power systems are important
models that allow researchers to conduct and publish their
work without using nonpublic data about the real grid. These
synthetic grids are often missing models that are important to
certain studies, such as, fault analysis, cascading failure, or
geomagnetically induced currents (GICs). Furthermore, these
cases often lack the data to build these models because the
data is nonpublic, or the data is synthetic. Because the data
is synthetic, it is generally within an acceptable range, but it
might not necessarily be precise enough for certain models such
as generator capability curves. Using the synthetic data to build
the generator capability curves, will often lead to unrealistic
results. The generator capability curves can instead be estimated
using data from the existing data set. Line distance relay and
time-overcurrent relay models can also be added to the case,
using known data. With these models, a synthetic case can be
made much more realistic without the need to obtain or protect
nonpublic, real grid data.

Index Terms—Power Systems, Synthetic Networks, Line Dis-
tance Relay, Time-Overcurrent Relay, Generator Capability
Curve

I. INTRODUCTION

Synthetic electric grids provide valuable models that mimic
the grid, but contain no nonpublic information about the real
grid. They are important to the community of power and
energy researchers because, in their absence, the results of
important and globally relevant studies cannot be published or
shared with others [1], [2]. It is important that a synthetic grid
contain the necessary components that should be modeled for a
given research project. For instance, geomagnetic disturbances
(GMDs) and electromagnetic pulses (EMPs) cause reactive
power losses because the GICs saturate the transformers which
can ultimately lead to voltage collapse [3], [4].

Generator capability curves are an accurate model of a
generators reactive power capability. A generators reactive
power capability is limited by its armature current limit, field
current limit, and end-region heating limit [5]. According to
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the North American Electric Reliability Commission (NERC),
loss of reactive power support is a key risk to the electric
grid caused by GICs [6]. Because reactive power losses are
a key risk to the electric grid when GICs are present, it is
important to model each generator’s reactive power capability
more accurately. There are well known methods for calculating
generator capability curves. Accurate methods for creating
these curves is shown in [5], [7]–[10]. The problem with these
methods, is that they rely on a few specific generator parame-
ters such as the synchronous reactance Xs or the short circuit
ratio (SCR). In synthetic cases, these parameters, which are
stored in the case, are synthetic and often produce unrealistic
generator capability curves when used as they are described
in the listed sources. For this reason, they do not provide
a helpful algorithm to create synthetic generator capability
curves. A novel method to create these curves is formulated
in [11], but this method assumes a minimum lagging power
factor of 0.8, and a minimum leading power factor of 0.95.
These assumptions, although common and reasonable, may
not make sense when minimum reactive power is at a power
factor greater than 0.95. This paper presents a novel algorithm
for creating generator capability curves.

Line relays are another important component of a synthetic
case that can be difficult and time consuming to add to a
model. They are important because they have the potential
to dramatically affect the solution of a transient stability run.
For instance, in a transient stability study that includes GIC
flows, it is important to include relays because the added
current caused by the GIC flows could be enough to open
a relay which would not be detected if there are no relays in
the case. Relays have the potential to cause cascading failure
especially on a heavily loaded system. Without relays in a
case, a transient stability run with a given contingency might
converge when, in reality, it would have caused a blackout
because the contingency caused other lines to overload, which
led to cascading failure [12]. For these reasons, it is sometimes
necessary to add these models to a synthetic case so that it will
provide results that are reasonably similar to the real grid. This
can become a cumbersome and monotonous task when it must
be done for large cases. The authors did not find any existing



methods for automating relay settings. Typically relays are
added one or a handful at a time, and thus there has been
no need for automation. However, with recent changes to the
power system such as bidirectional power flows on lines that
were typically unidirectional or fault currents being limited
by inverter-based generation, large-scale reevaluation and re-
calculation of relay settings might become commonplace. This
paper will show how to quickly create synthetic relay models
and synthetic generator capability curves.

This paper is organized into the following sections. Section
II discusses the development of synthetic relay models. Section
III demonstrates an algorithm to create synthetic generator
capability curves. Finally, Section IV concludes the paper with
a discussion of the results, and potential future work.

II. DEVELOPING SYNTHETIC RELAY MODELS

Relays are an important aspect of a synthetic case because
they make a given case behave more like the real grid. When
a transient stability is run for a given contingency, for instance
a fault, it may cause the case to black out or fail to converge
when, in reality, a relay would have opened and only a single
line would have lost power. On the other hand, a transient
stability run might converge, but on closer examination, it is
easily determined that many relays would have opened on the
real grid under such conditions. This section will show how to
quickly add line distance relay and overcurrent relay models
to a synthetic case with typical values. The relay creation
techniques are demonstrated using a 2000 bus synthetic Texas
electric grid, available at [13] that covers the approximate
geographic footprint of the Texas ERCOT system [1], [14].
Since it represents a typical 115 kV transmission line, circuit
1 of the 138 kV transmission line between buses 1001 and
1064 is used to demonstrate the effectiveness of the proposed
techniques.

A. Line Distance Relays

Line distance relays protect lines by reading the current
and voltage on a branch and using these to compute the
impedance of the line and load connected to it. When the
impedance of the line enters a set region, the relay considers
it a fault [15]. The implementation becomes more complicated
when multiple lines are considered. The relay should only trip
when the fault is on the line that the relay protects. If the
fault is on the next line, the distance relay will still detect
the change in impedance. Because of this, time delays are
introduced so that the relay nearest the fault will trip before
the relays farther from the fault. These time delays also provide
backup protection if a relay fails to open. These time delays for
different impedance ranges are typically separated into three
zones [15], [16]. Figure 1 is a schematic of these three zones
with their respective time delays.

The time vs. impedance graph in Figure 1 shows the time
delays for relay 1. Zone 1 is typically set to protect close to
90% of the line length, zone 2 is typically set to protect 100%
of the line plus 50% of the shortest connected line, and zone

Fig. 1. Time vs. Impedance Zone Schematic for a Simple Distance Relay.

3 is typically set to protect 100% of two lines plus 25% of
the third line [17].

This study does not attempt to implement the full complex-
ity of line distance relays, but instead, it proposes a method
to quickly (on the order of 5 seconds), add these important
models to a synthetic case. An algorithm for creating these
models that depends on the other lines connected to the bus is
beyond the scope of this paper and is left for future work. To
simplify the process, and still provide adequate line protection,
the lines are all treated as having the same total impedance.
Zone 1 protection was chosen to be 90% of the line, zone 2
was chosen to be 120% of the line, and zone 3 was chosen
to be 220% of the line. This simplification will lead to over-
reach of zones 2 and 3 where the relay is setup on a long
line that is connected to a bus where much shorter lines are
connected. Conversely, zones 2 and 3 will under-reach, if the
relay is setup on a short branch that connects to much longer
branches. This is an acceptable consequence because zones 2
and 3 only exist to provide backup protection if the relays fail
on the connecting lines. This means that breaker and relay
failure will not be modeled which is acceptable for most non-
system protection studies that should incorporate relays. This
is because contingencies modeling breaker failure are typically
provided by a RTO or utility’s system protection group, and
tools for creating these contingency lists already exist.

Typical line distance relay models can be easily and quickly
created with data stored in the synthetic case. The impedance
angle and magnitude of the line to be protected was found in
the case. The impedance angle of the line was used for the
impedance angle of the protection zone for all three zones.
90% of the impedance magnitude of the line was used for
zone 1, 120% of the impedance magnitude was used for zone
2, and 220% of the impedance magnitude was used for zone
3. The time delay for zone 1 is set to be 1 cycle of the system
frequency (60Hz for the United States), the time delay for
zone 2 is set to be 0.1 seconds, and the time delay for zone 3
is set to be 0.5 seconds. The relays were set to re-close once
after 10 cycles, and then remain open if there is still a fault
present. Load blinders, which prevent the relay from tripping
when the impedance of the load begins to enter one of the
protection zones, were not attempted in this study. Synthetic



load blinders are a topic for future work. Figure 2 shows the
protection zones for a branch with these values.

Fig. 2. Typical Relay Zones: Branch 1001-1064 Circuit 1 in the Texas 2000
Bus Case

In Figure 2, the blue circle covers zone 1, the red circle
covers zone 2, and the green circle covers zone 3. The Black
triangle is the line impedance.

Without any relays in the 2000 bus case, a balanced three
phase fault at 50% of the line was applied to an example
115kV transmission line in the 2000 bus case (circuit 1 of the
branch between buses 1001 and 1064). Figure 3, shows the
current with respect to time in the branch with the fault and
in the branch parallel to it.

Fig. 3. Current in Branch 1001-1064 Circuits 1 and 2: Texas 2000 Bus Case
with No Relays

In Figure 3, the blue line is branch 1001-1064 circuit 1
which had the balanced three phase fault applied at 50% of
the branch, and the red line is branch 1001-1064 circuit 2
which is in parallel with the branch with the fault.

After the relays were placed at both ends of every branch
in the case with the parameters previously listed, a transient
stability study was run with a balanced three phase fault at

0%, 50%, and 100% of the line on branch 1001-1064 circuit
1 in the Texas 2000 bus case [1]. Each graph was very similar,
so only the fault at 50% of the line is presented in Figure 4.
In Figure 4, the fault current is graphed with respect to time.

Fig. 4. Current in Branch 1001-1064 Circuits 1 and 2: Texas 2000 Bus Case
with Line Distance Relays

In Figure 4, the blue line is the current in the branch with
the fault, and the red line is the current in the branch that is in
parallel with the branch with the fault. From these two graphs,
it is easy to see that the relays are behaving as they were
designed. In Figure 3, for the case with no relays, the currents
in the two branches spike, and then eventually stabilize with
far more current than they can handle. In Figure 4, for the
case that has relays, the currents spike, and then the relay
opens only the branch with the fault, it stays open for 10
cycles and then re-closes on the fault, it then re-opens and
remains open. Circuit 2, which is in parallel with the branch
with the fault, then carries more current because the current
is no longer distributed between both circuits. A simulation
under fault conditions was run to show that the relays operated
correctly. The goal of including these models, however, is to
use them in studies that do not include faults, such as GMD
or EMP studies.

B. Time-Overcurrent Relays

The time-overcurrent relay is one of the oldest relays, but
it is still in use today [15]. The time-overcurrent relay is
modeled by a straightforward equation with several constants
that can be manipulated for the purpose of achieving relay
coordination. (1) from [17], [18], is the time-overcurrent relay
equation.

tpickup = TD

 A(
I

Ithresh

)p

− 1
+B

 (1)

In (1), tpickup is the time delay until the relay opens, I is
the current in the branch, Ithresh is the threshold current, and
p, TD, A, and B are parameters that can be manipulated to
achieve relay coordination. From [17], [18], 2.0 is a typical
value for p that causes a rapid decay in the time-overcurrent
curve. To create the synthetic models, tpickup was set at
0.1 seconds when the current is twice Ithresh, and Ithresh
was set to be 110% of the line limit to prevent tripping at



Fig. 5. Typical Time-Overcurrent Curve: Branch 1001-1064 Circuit 1 in Texas
2000 Bus Case

peak load times. TD was set at 1, and A = B. To achieve
relay coordination, these choices might be incorrect, but relay
coordination is not attempted in this study. This is enough
information to solve (1) for A and B. The model for the time-
overcurrent relays then becomes (2).

tpickup =
0.0833(
I

Ithresh

)2

− 1
+ 0.0833 (2)

Setting tpickup to 0.1 seconds when the current is twice
Ithresh is not a random choice. In the line distance relays that
were designed previously, 0.1 seconds is the delay for zone
2. Using these values, it is intended that the time-overcurrent
relays be used as backup relays with the line distance relays.
This will give the line distance relays time to open for zone 1,
and provide backup with zones 2 and 3. The time-overcurrent
curve for this relay model is shown in Figure 5.

With this relay model implemented at both ends of every
branch in the Texas 2000 bus case, a balanced three phase fault
was simulated at 0%, 50%, and 100% of the line at branch
1001-1064 circuit 1. The breaker opened as it was designed in
all three cases. Figure 6 shows the currents in the branch with
the fault and in circuit 2 which is in parallel with the branch
with the fault.

Fig. 6. Current in Branch 1001-1064 Circuits 1 and 2: Texas 2000 Bus Case
with Time-Overcurrent Relays

In Figure 6, the blue line is the current in branch 1001-
1064 circuit 1 which had the fault applied to it. The red line
is the current in branch 1001-1064 circuit 2 which is in parallel
with the branch with the fault. From Figure 6, it is clear that
the time-overcurrent relay opened without opening the line in
parallel with it.

Line distance relay and time-overcurrent relay models can
be quickly and easily added to synthetic cases with existing
data sets using this algorithm. For the 2000 bus case, a python
script (version 3.9) was written to create both types of relays.
This script interacts with PowerWorld and takes advantage of
the EasySimAuto python package. This script shows that this
algorithm is straightforward enough to automate which makes
it easy to improve synthetic cases.

III. CREATING GENERATOR CAPABILITY CURVES

A synthetic generator capability curve can be formulated by
making three assumptions.

1) The capability curve is the intersection of three circles.
2) The minimum and maximum real and reactive power

limits that are given create a rectangular capability “box”
that fits completely within the actual generator capability
curve.

3) The maximum rated apparent power output is greater
than the maximum apparent power output as calculated
from the maximum real and reactive power output as
defined in the synthetic case.

The three circles that makeup the generator capability curve
are the armature current limit, the field current limit, and the
end-region heating limit.

A. Armature Current Limit

The armature current limit [5] can be modeled by (3), where
P is the real power output, Q is the reactive power output,
and Smax is the maximum apparent power output calculated
from (4) below. In (4), Pmax and Qmax are the maximum real
and reactive power defined in the synthetic case.

P 2 +Q2 ≤ S2
max (3)

P 2
max +Q2

max = S2
max (4)

B. Field Current Limit

The field current limit is modeled by a circle with a center
on the Q-axis below the P -axis. Three equations are used to
find the field current limit. (5a) is the circle that models the
field current limit [11]. (5b) finds the center of that circle.
Finally, (5c) finds the radius of that circle [11].

P 2 + (Q−Q0,field)
2 ≤ r2field (5a)

Q0,field =
Q2

max,a − S2
max

2
(
Qmax,a − Smax

√
1− pf2

lagging

) (5b)

rfield = Qmax,a −Q0,field (5c)

In the above three equations, Q0,field is the center of the
circle, rfield is the radius of the circle, P is the real power



output of the generator, Q is the reactive power output of the
generator, Smax is the maximum apparent power output as
calculated in (4), Qmax,a is the maximum reactive power as
calculated in (6a), and finally, pflagging is the minimum power
factor as calculated from (6b).

Qmax,a =
√
S2
rated − P 2

max (6a)

pflagging =
Pmax

Smax
(6b)

In the previous two equations, Srated is the maximum
rated apparent power output of the generator, and the other
variables are the same as defined previously. The maximum
rated apparent power output of the generator was chosen
because (5b) is found using trigonometry. In this trigonometric
problem there is not enough information to solve it without
knowing Qmax,a. It is known that Qmax,a should be larger
than Qmax. The maximum rated apparent power is larger than
the maximum apparent power calculated in (4) which means
(6a) will give us a reasonable value for Qmax,a. From [5], (7)
below is the actual center of the circle.

Q0,field = −V 2
t

Xs
(7)

In (7), Vt is the armature terminal voltage and Xs is the
synchronous reactance. For synthetic cases, (7) will often
yield unrealistic results because the generator parameters are
synthetic. As such, they are not necessarily related to the
generator capability curve in the way that they should be. For
this reason, it is preferred to use (5b) to obtain a realistic value
for Q0,field.

C. End-Region Heating Limit

The end-region heating limit is modeled by a circle with a
center on the Q-axis above the P -axis. Three equations are
used to find the end-region heating limit. (8a) is the circle that
models the end-region heating limit [11]. (8b) finds the center
of that circle. Finally, (8c) finds the radius of that circle [11].

P 2 + (Q−Q0,end)
2 ≤ r2end (8a)

Q0,end =
Q2

min,a − S2
max

2
(
Qmin,a + Smax

√
1− pf2

leading

) (8b)

rend = Q0,end −Qmin,a (8c)

In the three equations above, Q0,end is the center of the
circle that lies on the Q-axis, rend is the radius of the
circle, Qmin,a is the actual minimum reactive power output
as determined by (9a), and pfleading is the minimum power
factor as determined by (9b).

Qmin,a =
√
S2
rated − pf2

leadingS
2
max (9a)

pfleading =
Pmax√

P 2
max +Q2

min

(9b)

The previous definitions of the parameters in the above two
equations apply. The center of the circle that sweeps out the arc
that models the end-region heating limit, Q0,end, was found
using trigonometry. As with the field current limit, there is not
enough information to solve the trigonometry problem without
knowing Qmin,a. (9a) produces a reasonable value for Qmin,a

by the same reasoning that (6a) produces a reasonable value
for Qmax,a. (10) below is the actual center of the circle [8].

Q0,end =
SCR

2
+

1

2Xe
(10)

In (10), SCR is the short circuit ratio, and Xe is the external
reactance [8]. For the same reason (7) could not be used to
determine the center of the field current limit circle, (10) can-
not be used. In synthetic cases, specific generator parameters
are also synthetic. Thus, they do not necessarily relate to the
generator capability curve in the way that they should. Using
(10) will often yield unrealistic generator capability curves
because of this problem.

D. Results

Within the stated assumptions, this algorithm produces
reasonable results. Figure 7 is a typical generator capability
curve produced by this algorithm.

Fig. 7. Synthetic Generator Capability Curve for the Generator at Bus 1050.

In Figure 7, the orange line is the capability ”box” from
assumption 2, and the blue line is the synthetic generator
capability curve produced by this algorithm. Notice in Figure
7 that the bottom right corner of the original capability ”box”
does not intersect the synthetic generator capability curve. This
model can easily be formulated such that it does, by replacing
Smax with Pmax in (8b). This is not a simple substitution, but
deriving (8b) again with this criterion yields that result. This
is undesirable for this model because it also means that every
generator capability curve produced with that model has zero
negative reactive power capability at its maximum apparent
power output. In other words, the end-region heating limit
intersects the P -axis. This result is less typical. As such, Smax



was used to generate a reasonably accurate synthetic generator
capability curve. Figure 8 shows the result of using Pmax in
place of Smax in (8b). In Figure 8, the orange line is the
generator capability ”box,” and the blue line is the generator
capability curve produced by using Pmax instead of Smax in
(8b).

Fig. 8. Alternate Synthetic Generator Capability Curve for the Generator at
Bus 1050.

This algorithm successfully produces typical generator ca-
pability curves within the stated assumptions. A python script
was written to build a synthetic generator capability curve for
every generator in the 2000 bus case except wind and solar
generators. This shows that this algorithm allows generator ca-
pability curves to be quickly and efficiently added to synthetic
cases.

IV. CONCLUSION

For certain studies, it is sometimes necessary to add relay
models and generator capability curves to a synthetic case
which can be time consuming, or require unknown data. With
the presented algorithms, these models can be quickly added
to a synthetic case with data that is already known and stored
in the case.

For the line distance relays, the model is accurate enough
to be used in dynamic simulations, but zones 2 and 3 could
overreach or under-reach in many cases. This is an acceptable
consequence because backup protection is less important in
synthetic cases. For the time-overcurrent relays, the model will
protect the line from faults, but the relays are not coordinated.
Proper zone 2 and zone 3 reach and load blinders as well as
relay coordination are topics for future work.

The generator capability curves are accurate enough to
be a better representation of the generator’s reactive power
capability than the capability ”box” stored in the case. Future
work on this topic could include using these equations that
estimate the curve, to produce generator parameters. Currently,
synthetic generator parameters are within an acceptable range;
this algorithm could potentially be used as a tool to make the

parameters that are related to the generator capability curve
more precise.

The methods presented in this study will allow researchers
to improve their models so that their studies more accurately
reflect the real grid. Achieving this in a purely synthetic model
is important so that the results of the study can still be freely
shared with other researchers.
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