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Announcements

A]M
Read Chapter 8

Read the Chapter 3 appendices (3A covers optimization with constraints,
3B covers linear programming, 3D covers dynamic programming, and 3E
convex optimization

An excellent book on optimization 1s Linear and Nonlinear Programming
by Luenberger and Ye (the 5% edition came out in 2021)

Homework 6 1s due today

Exam 2 1s on Thursday Dec 1 during class (for the on campus students); it
will be comprehensive, but with more emphasis on the material after the
first exam



Quick Coverage of Linear Programming

LP 1s probably the most widely used mathematical programming
technique

It 1s used to solve linear, constrained minimization (or maximization)
problems 1in which the objective function and the constraints can be
written as linear functions



Example Problem 1 (mentioned in Lecture 21)

T
* Assume that you operate a lumber mill which makes both construction-
grade and finish-grade boards from the logs it receives. Suppose it takes
2 hours to rough-saw and 3 hours to plane each 1000 board feet of
construction-grade boards. Finish-grade boards take 2 hours to rough-
saw and 5 hours to plane for each 1000 board feet. Assume that the saw
1s available 8 hours per day, while the plane is available 15 hours per
day. If the profit per 1000 board feet is $100 for construction-grade and
$120 for finish-grade, how many board feet of each should you make
per day to maximize your profit?



Problem 1 Setup

Let x,=amount of c¢g, X,= amount of {g
Maximize 100x; +120x,
S.t. 2x;+2x, <8

3x; +5x, <15

Xi,Xy 20

Notice that all of the equations are linear, but they are

inequality, as opposed to equality, constraints; we are
seeking to determine the values of x, and x,



Example Problem 2 (Nutritionist Problem)
T
* A nutritionist 1s planning a meal with 2 foods: A and B. Each ounce of A
costs $ 0.20, and has 2 units of fat, 1 of carbohydrate, and 4 of protein.
Each ounce of B costs $0.25, and has 3 units of fat, 3 of carbohydrate, and
3 of protein. Provide the least cost meal which has no more than 20 units
of fat, but with at least 12 units of carbohydrates and 24 units of protein.



Problem 2 Setup

Let x,=ounces of A, x,= ounces of B
Minimize 0.20x; +0.25x,
S.t. 2x;+3x, <20

x| +3x, 212

4x, +3x, =24

Xi,Xy 20

Again all of the equations are linear, but they are inequality, as opposed
to equality, constraints; we are again seeking to determine the values of
X, and X,; notice there are also more constraints than solution variables



Three Bus Case Formulation

For the earlier three bus system given the initial condition of an
overloaded transmission line, minimize the cost of generation such that

the change 1n generation
1s zero, and the flow

on the line between
buses 1 and 3 1s not
violating its limit

Can be setup consider-
ing the change in

generation, (APg,, APg,, APg3)

60 MW 60 MW

Bus 2
@-{"® &=

10.00 $/MwWh

0.0 MW

OfpMW

Bus 1
10.00 $/Mwh

@

180.0 MW

60 MW

Total Cost 20

1800 $/hr ° ™

Bus 3



Three Bus Case Problem Setup

Minimize 10x; +12x, + 20x;

2 1
S.t. 3X1 + 3x2 <—20  Line flow constraint

X +Xy +x3=0 Power balance constraint

enforcing limits on x;, x,, X,



LP Standard Form

The standard form of the LP problem is

Minimize e¢x Maximum problems can be treated as
St Ax=Db minimizing the negative

x>0
where X = n-dimensional column vector

¢ = n-dimensional row vector
b = m-dimensional column vector
A = mXxn matrix

For the LP problem usually n>>m

The previous examples were not in this form!



Replacing Inequality Constraints with Equality
Constraints

A] ¥

* The LP standard form does not allow 1nequality constraints
* Inequality constraints can be replaced with equality constraints
through the introduction of slack variables, each of which must
be greater than or equal to zero
.<b—>...+y;=b withy =20

* Slack variables have no cost associated with them; they merely
tell how far a constraint 1s from being binding, which will occur
when its slack variable 1s zero

10



Lumber Mill Example with Slack Variables

Let the slack variables be x; and x,, so

Minimize the negative

Minimize -(100x; +120x,)
S.t. 2x;+2xy +x3=38

X{>Xy,X3,X4 20

11



LP Definitions

A vector x 1s said to be basic if
1. Ax=Db

2. At most m components of x are non-zero; these

This 1s a key LP concept!

are called the basic variables; the rest are non basic

variables; if there are less than m non-zeros then

x 1s called degenerate Ag 1s called the basis matrix

Define x = {XB} (with x basic)and A=[A; A,]
AN

With [Ag AN]{XB}zb so0 xg=Ayz (b—Ayxy)
AN

12



Fundamental LP Theorem

Given an LP in standard form with A of rank m then
—  If there 1s a feasible solution, there is a basic feasible solution

—  If there is an optimal, feasible solution, then there is an optimal, basic feasible
solution

Note, there could be a LARGE number of basic, feasible solutions

—  Simplex algorithm determines the optimal,
basic feasible solution usually very quickly

13



LP Graphical Interpretation

A] ¥

* The LP constraints define a polyhedron in the solution space

— This 1s a polytope if the polyhedron is bounded and nonempty

— The basic, feasible
solutions are
vertices of this
polyhedron

— With the linear cost
function the solution
will be at one of
vertices

Image: Figure 3.26 from course text

APPENDIX 3B: LINEAR PROGRAMMING (LP) 1

ior | A polyhedron can be
unbounded

- T~ -\_\.
g ~ ~/ ~J{4.%)

~ - L ~O\ \ [
N R - ]

‘ Objective function contours |

'\\#\‘?(\‘4,-;\1 L B e

FIGURE 3.26 x,,x, plane with cost contours and the optimal solution shown.
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Simplex Algorithm
A]M

* The key 1s to move intelligently from one basic feasible solution (1.e., a
vertex) to another, with the goal of continually decreasing the cost

function

* The algorithm does this by determining the “best” variable to bring into
the basis; this requires that another variable exit the basis, while always
retaining a basic, feasible solution

* This 1s called pivoting

15



Determination of Variable to Enter the Basis
A]M
To determine which non-basic variable should enter the basis (1.e.,

one which currently 0), look at how the cost function changes w.r.t.
to a change 1n a non-basic variable (1.e., one that 1s currently zero)

Xp
Definez=cx=[cp c¢,]

X Elements of x,

are all zero, but

With xi = Al_31 (b A NXN) we are looking
| | to change one
Thenz=czAzb+ (CN —CpA AN)XN to decrease the

Ccost

16



Determination of Variable to Enter the Basis, cont.
A]M
Define the reduced (or relative) cost coefficients as

r 1s an n-m dimensional

—1
r=Ccy—CprA, A
N “B"“B N row vector

Elements of this vector tell how the cost function will change for
a change 1n a currently non-basic variable

The variable to enter the basis is usually the one with the most
negative relative cost

If all the relative costs are nonnegative then we are at an optimal
solution

17



Determination of Variable to Exit Basis

The new variable entering the basis, say a position j, causes the
values of all the other basic variables to change. In order to retain a
basic, feasible solution, we need to insure no basic variables
become negative. The change 1n the basic variables 1s given by

where ¢ 1s the value of the variable entering the

basis, and a i 1S 1ts associated column in A

18



Determination of Variable to Exit Basis, cont.

A] ¥

We find the largest value ¢ such
If no such ¢ exists then the problem is unbounded;

otherwise at least one component of X 5 equals zero.

The associated variable exits the basis.

19



Canonical Form

The Simplex Method works by having the problem 1in what 1s
known as canonical form

Canonical form 1s defined as having the m basic variables with the
property that each appears in only one equation, its coefficient in
that equation is unity, and none of the other basic variables appear
in the same equation

Sometime canonical form is readily apparent

Minimize -(100x, +120 .
g (100x, *2) Note that with x; and x, as
S.1. 2x+2x) +x3 =38 basic variables Ay 1s the
3x, +5x, + x4 =15 identity matrix

X(5X,X3,X4 20 -



Canonical Form

AJ
Other times canonical form 1s achieved by 1nitially adding artificial
variables to get an 1nitial solution

Example of the nutrition problem in canonical form with slack and artificial
variables (denoted as y) used to get an 1nitial basic feasible solution

Let x,=ounces of A, x,= ounces of B

Minimize y;+y,+y; Note that with y,, y,,
and y; as basic
variables Ay 1s the
Xp+3x, = x4+, =12 identity matrix

X5 X0, X3,X4,X5, V1, V2,¥3 20

S.t. 2x;+3x, + x53+y; =20

21



LP Tableau
T
With the system in canonical form, the Simplex solution process
can be 1llustrated by forming what 1s known as the LP tableau

— Initially this corresponds to the A matrix, with a column appended to
include the b vector, and a row added to give the relative cost coefficients;
the last element 1s the negative of the cost function value

~ Define the tableau as Y, with elements Y;;

— In canonical form the last column of the tableau gives the values of the
basic variables

During the solution the tableau 1s updated by pivoting

22



LP Tableau for the Nutrition Problem with Artificial
Variables
- Km

e When 1n canonical form the relative costs vector 1s

_ -1 _

X Xy Xy Xy Xg o Y Vo )

2 3 1 0 0 1 0 0 20 Note the last column
1 3 0 -1 0 0 1 0 12 gives the values of

4 3 0 0 -1 0 0 1 24 the basic variables
-7 -9 -1 1 1 0 0 0 =56

23



LP Tableau Pivoting
AJ
* Pivoting is used to move from one basic feasible solution to another

— Select the pivot column (i.e., the variable coming into the basis, say q) as the
one with the most negative relative cost

— Select the pivot row (i.e., the variable going out of the basis) as the one with
the smallest ratio of x;/Y;, for Y, >0; define this as row p (x; is given in the
last column)

That is, we find the largest value ¢ such

Xz =Xp —A;laqg >0

If no such ¢ exists then the problem is unbounded;
otherwise at least one component of X ; equals zero.
The associated variable exits the basis.

24



LP Tableau Pivoting for Nutrition Problem

Starting at

X Xy Xy Xy Xg V) Vo W3

2 3 1 0 o0 1 0 0 20

l1 3 0 -1 0 O 1 0 12

4 3 0 0 -1 0 O 1 24
-7 -9 -1 1 1 O O O =56

Pivot on column q=2; for row get minimum of
{20/3, 12/3, 24/3), which 1s row p=2

25



LP Tableau Pivoting
i
Pivoting on element Y . 1s done by
- First dividing row p by Y, to change the pivot element to unity.
~ Then subtracting from the k™ row Y, /Y, times the p™ row for all rows with Y, <> 0

X Xy Xy Xy X YV, W

2 3 1 0 o0 T O 0o 20 .
[’m only showing

1 3 0 -1 0 0 1 0 12 , .

4 3 0 0 -1 0 0 1 24 fractions with two
) ROD digits

7 -9 -1 1 1 0 0 0 -56

X1 X X Xy Xs N Vo N

0 1 1 O 1 -1 0 8

Pivoting gives 033 1 0 -033 0 0 033 0 4

3 0 O 1 -1 0 -1 1 12

-4 0 -1 =2 1 0 3 0 -20 26



LP Tableau Pivoting, Example, cont.

* Next pivot on column 1, row 3

X Xy Xy Xy Xs Vi Vo W

1 0 1 1 0O 1 -1 0 8
033 1 0 -033 0 O 033 0 4
3 0 0 1 -1 0 -1 1 12
-4 0 -1 =2 1 0 3 0 -20
*  Which gives
X X X Xy Xs M V2 Vs

0O 1 067 033 1 -067 -033 4

1 0 -044 011 0 044 -0.11 2.67
0 0 033 -033 0 -033 033 4.0
0 -1 -0.67 -033 0 1.67 133 -4

S = O O



LP Tableau Pivoting, Example, cont.
A]M
* Next pivot on column 3, row 1

X Xy X Xy Xs by Vs V3 . .
0 0 1 067 033 1 -067 -033 4 negative relative

0 1 0 —044 011 0 044 -011 267  Costswearedone (with
1 0 0 033 -033 0 -033 033 4 getting a starting solution)

0O 0 -1 -0.67 -033 0 167 133 4
*  Which gives

Since there are no

XXy Xy Xy Xs N W Vs

O 0 1 067 033 1 -067 -033 4
o 1 0 -044 0.11 0 044 -0.11 2.67
1 0 0 033 -033 0 -033 0.33 -4
0O 0 O 0 0 1 1 1 0

28



LP Tableau Full Problem
A]M
* The tableau from the end of the artificial problem 1s used as the starting

point for the actual solution

~ Remove the artificial variables

— Update the relative costs with the costs from the original problem and update the
bottom right-hand corner value

¢=[02 025 0 0 O]

_ -1 _

, 0.67 033 .
0 0.04
r=| | -[0 025 02] -044 0.11 |=
0 0.04
0.33 —0.33

* Since none of the relative costs are negative we are done with x,=4,
X,=2.7 and x,=4 29



Marginal Costs of Constraint Enforcement in LP

A] ¥

If we would like to determine how the cost function

will change for changes in b, assuming the set

of basic variables does not change The marginal costs will be
used to determine the OPF
then we need to calculate locational marginal costs
_ LMP
oz _O(epxp) _O(ezAgb) (L)
cb ob ob

So the values of A tell the marginal cost of enforcing

each constraint.

30



Nutrition Problem Marginal Costs

In this problem we had basic variables 1, 2, 3;
nonbasic variables of 4 and 5

> 3 1T'T201 T 4 7  Thereis no marginal
| B B cost with the first
Xg = A, (b—Ayxy)=|1 3 0 12/=|2.67 constraint since it is
4 3 0] (24 | 4 | not binding; values
_ 1 . _ tell how cost changes

if the b values were

2 3 1
h=cgA'=[02 025 0]]1 3 0| =|0.044| changed
4 30

31



Lumber Mill Example Solution

A] ¥

Minimize -(100x; +120x,)
S.t. 2x;+2xy +x;=38

An 1nitial basic feasible solution

X, Xy, X2,%X4 =0 . :
1542543574 Economic interpretation of A

The solution 1s X = 2.5,)62 — 1.5,)63 — O,x4 =0 is the profit 1s increased by
35 for every hour we up the

—1
_ 2 2 35 first constraint (the saw) and
Then 4 _[100 120]{3 5} - LO} by 10 for every hour we up the

second constraint (plane)

32



Complications

Often variables are not limited to being > 0

— Variables with just a single limit can be handled by substitution; for
example i1f x > 5 then x-5=z2 >0

— Bounded variables, high > x > 0 can be handled with a slack variable so x +
y = high, and x,y = 0
Unbounded conditions need to be detected (1.e., unable to pivot);
also the solution set could be null
Minimize x;—x, s.t. x; +x, =8
— X +x, — ¥, =8 = x, =8 1s a basic feasible solution
oY N
1 1 -1 8
2 0 -1 8 1



Complications
T
* Degenerate Solutions
— Occur when there are less than m basic variables > 0
— When this occurs the variable entering the basis could also have a value of zero; it
1s possible to cycle, anti-cycling techniques could be used
* Nonlinear cost functions
— Nonlinear cost functions could be approximated by assuming a piecewise linear
cost function
* Integer variables

~- Sometimes some variables must be integers; known as integer programming;
we’ll discuss after some power examples

34



LP Optimal Power Flow
Am

LP OPF was introduced in

— B. Stott, E. Hobson, “Power System Security Control Calculations using Linear
Programming,” (Parts 1 and 2) IEEE Trans. Power App and Syst., Sept/Oct 1978

— 0. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments in LP-based Optimal
Power Flow,” IEEE Trans. Power Systems, August 1990

It 1s a widely used technique, particularly for real power optimization; it
1s the technique used in PowerWorld

35



LP Optimal Power Flow
A]m

Idea 1s to 1terate between solving the power flow, and solving an LP with
just a selected number of constraints enforced

The power flow (which could be ac or dc) enforces the standard power
flow constraints

The LP equality constraints include enforcing area interchange, while the
inequality constraints include enforcing line limits; controls include
changes 1n generator outputs

LP results are transferred to the power flow, which 1s then resolved

36



LP OPF Introductory Example
A]Mm

* In PowerWorld load the B3LP case and then display the LP OPF
Dialog (select Add-Ons, OPF Case Info, OPF Options and Results)

e Use Solve LP OPF to

solve the OPF, initially e <4 10.00 s/m
with no line limits 05
enforced; this 1s similar —

Total Cost

to economic dispatch
with a single power T e
balance equality constraint o

* The LP results are available
from various pages on the dialog

37



LP OPF Introductory Example, cont

LP OPF Dialog o IEH

v Options LP Solution Details
L 1 iabl ic Variables  LP Basis Matrix £ i luti
- Constraint Options All LP Variables  LP Basic Variables Inverse of LP Basis = Trace Solution
w<Conirol Dplians | Bh Ak %8 5% & # | Records = Set~ Columns = - | fgl- e B S g - B | options -
- Advanced Options
~  Results Constraint ID Contingency 1D RHS b value Lambda Slack Pos Gen 1#1 MW
3 Control
- Solution Summary TR = ; i - e
- Bus MW Marginal Price Details rea 1 onstrain ase Case 0.00 000

- Busg Mvar Marginal Price Details
- Bus Marginal Controls

w - LP Solution Details

- Al LP Variables

- LP Basic Variables

- LP Basis Matrix

- Inverse of LP Basis

- Trace Solution

LP OFF Dialog =l x |

“ - Options LP Solution Details
Sommaruans All LP Variables ic Vari i i i i
Constraint Options LP Basic Variables = LP Basis Matrix = Inverse of LP Basis = Trace Solution
Control Options m = % Alfe=ts0 w00 M 9% | Records ~ Set~ Columns = “E' "&E' iy~ B | Options ~
Advanced Options

“ -Results D Org. Value Value Delta Value BasicWar MonBasicVar | Cost{Down) CostjUp) |Down Range| UpRange |Reduced Cost Up‘ Reduced Cost

: Down
Solution Summary
Bus MW Marginal Price Details 1]Gen 1#1 MW Control | 180.000 180,000 -0.000 i 0 10.00 10.00 20.000 60.000 0.000 0.000
9 ;i R : 2|Gen 2 #1 MW Control 0.000 0.000 0.000 0 2 At Min 12.00 At Min 80.000 1.997
Buus Mvar Meyginal Price Dt 3|Gen 3 #1 MW Contral 0.000 0.000 0.000 0 3 At Min 20.00 At Min 80.000 9,997
] - Bus Marginal Controls 4| slack-Area Home 0,000 0,000 0,000 0 1 At Min At Max At Min At Max

w P Solution Details

[ AILP Variables
LP Basic Variables
LF Basis Matrix
Inverse of LP Basis
-1 Trace Solution




LP OPF Introductory Example, cont

On use Options, Constraint Options to enable the enforcement of
the Line/Transformer MV A limits

LP OPF Dialog

w - Oplions

- Common Oplons

- Canstraint Oplions

- Control Options

- Advanced Options

esults

- Solution Summary

- Bug MW Marginal Price Details
- Bus Mvar Marginal Price Details
- Bus Marginal Controls

+ -LP Solution Details

- All LP Variables

- P Basic Variables
- LP Basis Matrix

- Inverze of LP Basis
- Trace Solution

Oplions

Common Options  Constraint Options  Control Options

Line/Transformer Constraints

[ Disable Line/Transformer MVA Limit Enforcement

Percent Correction Tolerance | 2.0 :
MVA Auto Release Percentage | 73,0 :

Maximum Yiolation Cost ($/MWhr) | 1000.0 :
[ |Enforce Line/Transformer MW Flow Limits (not MyA)

Interface Constraints
[ Disable Interface My Limit Enforcement

Percent Correction Tolerance 202

MW Auto Release Percentage 75.0 =
Maximum Yiolation Cost (SMWhr) 1000.0

-

-
-

Phase Shifting Transformer Regulation Limits
[ | Dizable Phase shifter Regulation Limit Enforcement

In Range Cost {$/MWhr) 0.10 %

Maximum Violation Cost (§MWhr) 1000.0{-%

Advanced Options

If you want to change enforcement percentages,
modify the Limit Monitoring Settings

Limit Monitoring Settings ...

Bus Constraints
Disable Bus Angle Enforcement

Maximum Violation Cost {$/deg-h) 1000.0| =

DFACTS Constraints

[JEnforce Limits on Mumber of D-FACTS Devices in OPF

Maximum Mumber of D-FACTS Devices 1000 =

Maximum Yiolation Cost ($/num-h) 1000.0|=

A] ¥

39



LP OPF Introductory Example, cont.

AlM

®
LP OPF Dialog _
v -Options LP Solution Details
: Sommon Sy All LP Variables ic Variahl i i f Juti
. Constraint Options LP Basic Variables = LP Basis Matrix  Inverse of LP Basis  Trace Solution
- Control Options EAT) Bh Ak %8 % | @& 8 | Records~ Set~ Columns~ BE- WE- B W - B | Options -
i - Advanced Options
v -Results D Org. Value Value Delta Value BasicWar MonBasicVar | Cost{Down) Cost{Up] Down Range | Up Range |Reduced CostUp| Reduced Cost At )
: Down Breakpoint?
Solution Summary - — = —
- Bus My Marginal Price Details T5en 11 MW Contral 120,000 0 2 ] 40,000 40,000 0.000 )0 NO
. 2|Gen 2 #1 MW Control 60.000 0 T ] 60,000 20,000 0.000 NO
B Milar Marcnad Pce Dol 3|Gen 321 MW Control 0,000 0 0 2 At Min 80,000 6.002 YES
i Bus Marginal Controls 4|Slack-Area Home 0.000 0 0 1 At Min At Max VES
~ -LP Solution Details 5fSlack-line 1 TO 3 CKT1 0.000 0 0 =] At Min 200.000 5.995 YES
Al LP Variables
- LP Basic Variables
- LP Basis Matrix
- Inverse of LP Basis
- Trace Solution
20 M 20 MW
Bus 2 Bus 1
- 10.00 $/MWh
LP OPF Dialog @—»r
~ . Options LP Solution Details 60.0 MW 12.00 $/MWh
i i Commaon Options : - 120.0 MW
i i i LP Basis Matrix i i
- Constraint Options All LP Variables ~ LP Basic Variables Inverse of LP Basis  Trace Solution P—
0 5 : % [
Control Options B Bh Ak %0 S0 M4 ?&n Records » Set~ Columns = - | i, AU - iﬁ; fig~ B Options ~ B
- Advanced Options 80 MW
esults Constraint D Contingency 1D RHS b value Lambda Slack Pos Gen 2#1 MW Gen 1£1 MW
Y Control Control Total Cost
s e T[Eres 11w Constrant Base C 10.002 4 1.000 1,000 Zo200/H
: ; y rea 1 MW Constrain ase Case 0.00. : .00 000 14.00 $/MWh
- Bus MW Marginal Price Details e 1
g 2[Linefrom 1to 3ckt 1 Base Case 5.995 5 -0.333

- Bus Mvar Marginal Price Details
i Bus Marginal Controls

+ - LP Solution Details

- All LP Variables

- LP Basic Variables

- LP Basis Matrix.

- Inverse of LP Basis

- Trace Solution

180fMw

40



Example 6 _23 Optimal Power Flow

Case: Exampleb 23 OPFPWE Status: Initialized | Simulator 21

AGC ON

16 MW
79 MW

1.04 p

, 0.99 pu
14.50 $/Mwh yi 14.50 $/Mwh

) d )
i 39 MW 181[Mw 127. 4fiMw
20 Mvar AGC ON \\\:7 39.2 Mvar

Total Hourly Cost: 5724.27 $/h Load Scalar: 1,00%

Total Area Load: 392.0 MW
Marginal Cost ($/MWh): 14.50 $/MWh

On the Options,
Environment

page the simulation
can be set to solve an
OPF when simulating

Run Mode Solution Arimation Stopped

Open the case Example6 23 OPF. In this example the load 1s gradually increased

41



Locational Marginal Costs (LMPs)
A]Mm

In an OPF solution, the bus LMPs tell the marginal cost of supplying
electricity to that bus

The term “congestion” 1s used to indicate when there are elements (such
as transmission lines or transformers) that are at their limits; that 1s, the
constraint is binding

Without losses and without congestion, all the LMPs would be the same
Congestion or losses causes unequal LMPs

LMPs are often shown using color contours; a challenge is to select the
right color range!

42



Example 6 23 Optimal Power Flow with Load

Scale =1.72 T

Examplef_23_OPF - Case: Examplef_23_OPF.PWB Status: Running (PF) | Simulator 23

230G5MW 79 My |
AGC ON o

25.37 $/Mwh
\ 252MW ‘dleg.lgmw
8 o] 67.4 Mvar

Total Hourly Cost: 10308.47 $/h Load Scalar: 1.72@
Total Area Load: 674.2 MW
Marginal Cost ($/MWh) : 19.46 $/Mwh 43



Example 6 23 Optimal Power Flow with Load

Scale = 1.72
LP Sensitivity Matrix (A Matrix)

LP OPF Dialog

v - Options I LP Solution Details
i i Common Options

i i i LP Basis Matri T i
Constraint Options All LP Variables LP Basic Variables asis Matrix  Inverse of LP Basis  Trace Solution

Advanced Options

\.'-Resulis Constraint 1D Contingency |D RHS b value

Control Options % Ak 42 5% ik ?&n Records ~ Set~ Columns ~ ' “E' "%’jﬁ’;v &H' E%E i~ B oOptions -

Slack-Area Top

Slack-Line 2TO 5

Solution Summary 1|Area 1 MW Constraint Base Case 0.000
Bus MW Marginal Price Details 2|Linefrom 2to 5 ckt 1 Base Case 0.000
Bus Mvar Marginal Price Details
¢ - Bus Marginal Controls

~ - LP Solution Details

i All LP Variables

i LP Basic Variables

i LP Basis Matrix

i Inverse of LP Basis

i Trace Solution

oK Solve LP OPF | | Single Outer Loop Initialize LP OPF Save As Aux

1.000

Help Cancel

A] ¥

The first row 1s the power balance constraint, while the second row is the line
flow constraint. The matrix only has the line flows that are being enforced.



Example 6 23 Optimal Power Flow with Load
Scale = 1.82

* This situation 1s infeasible, at least with available controls. There
1s a solution because the OPF 1s allowing one of the constraints to
violate (at high cost)

A] ¥

Base Case 16.824 4 1.000 1.000 1.000 1.000

‘I.U|NIJ

Base Case

Total Hourly Cost: 11297.88 $/h
Total Area Load: 713.4 MW
Marginal Cost ($/MWh):  235.47 $/MWh 45



Generator Cost Curve Modeling

i

LP algorithms require linear cost curves, with piecewise linear curves used
to approximate a nonlinear cost function

Two common ways
of entering cost
information are

— Quadratic function

— Piecewise linear curve

The PowerWorld OPF
supports both types

Labels ... |I'IO labels

tor Information for Present
& 0 i Status
Bus Number |1 ~ Find By Numb: O Open
| [ FindBy @) Closed
Energized
D (1
12 2L N (Offine)
Area Name |Home (8] YES {Onling)
| Type nknown
Generator MVA Base| 100.00 | UnitType | UN {Unknown)
Power and Voltage Control  Costs  OPF Faulte Owners, Ares, etc, Custom  Stability

Output CostModel  Bid Scale/Shift  OPF Reserve Bids

Cost Model

CJ MNone

(®) Cubic Cost Model
O Piecewise Linear

Unit Fuel Cost {$/MBtu)
Varizble Q&M ($MWwh)

Fixed Costs {costs at zero MW outpu

Fuel Cost Independent Value (S/hr)
Fuel Cost Dependent Yalue (Mbtu/hr)

Total Fixed Costs ($/hr)

ity

=

glle
=
2
] [

0.00

DDDDDDDD

CCCCCCCCCCCCCCCC

Cancel Help
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Security Constrained OPF
i
Security constrained optimal power flow (SCOPF) 1s similar to OPF
except 1t also includes contingency constraints

— Again the goal is to minimize some objective function, usually the current system
cost, subject to a variety of equality and inequality constraints

— This adds significantly more computation, but is required to simulate how the
system is actually operated (with N-1 reliability)

A common solution is to alternate between solving a power flow and
contingency analysis, and an LP
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Security Constrained OPF, cont.
T
* With the inclusion of contingencies, there needs to be a distinction
between what control actions must be done pre-contingent, and which
ones can be done post-contingent
— The advantage of post-contingent control actions 1s they would only need to be done
in the unlikely event the contingency actually occurs
* Pre-contingent control actions are usually done for line overloads, while
post-contingent control actions are done for most reactive power control
and generator outage re-dispatch
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SCOPF Example
o

We’ll again consider Example 6 23, except now 1t has been enhanced to

include contingencies and we’ve also greatly increased the capacity on
the line between buses 4 and 5; named Bus5 SCOPF DC

82 MW 82 MW 26 MW /N 78 MW 82 MW 78 MW
b 59 < 29 M 79
1.05 pu > 257% s 00 p‘ili)% 12%> \ Y, var 1.05 pu > > 57% s . 29 Mva
i y 14.33 $/MWh — 14.87 $/MWh L A 15.05 $/MWh 1 14.33 $/MWh 15.05 $/MWh
53 MW A 135 g1y T 147 MW 53 v Y 135PMH 91 Mw
Y AGC ON v AGC ON
36% sn’if/u 84fMw 36% 0%
AGC ON -
91 MW 91
53 MW 53 MW

1.04 pu A | | 0.82 pu 1.04 pu

) I 2 [ 14.20 $/MWh
39 MW 1735w " 127. 48Mw . 1730w

20 Mvar AGC ON 39.2 Mvar MW
20 Mvar AGC ON

Total Hourly Cost: 5729.74 $/h Load Scalar: 1.00@

Total Hourly Cost: 5729.74 $/h Load Scalar: 1.00
Total Area Load: 392.0 MW

Total Area Load: 392.0 MW
Marginal Cost ($/MWh): 319.73 $/MWh

Marginal Cost ($/MWh): 14.70 $/MWh

Original with line 4-5 limit of 60 Modified with line 4-5 limit of 200
MW with 2-5 out MVA with 2-5 out
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PowerWorld SCOPF Application

EE - SRHEIME®
THR E NS & "™ O
Case Information

E Run Full Security Constrained OPF ;

Onelines Toals Cptions Add Ons Window

? Hep

j"|_ Cloze

Save As Aux

®

Just click the button to solve

Security Constrained Optimal Power Flow Form - Case: Examplef_22

Number of times

Load Aux

SCOPF Status |SCOPF Solved Correctly

Options
. Results

Contingency Viclations
Bus Marginal Price Details
H Bus Marginal Controls

* - LP Solution Details

All LP Varizbles

LP Basic Variables

LP Basis Matrix

SCOPF Spedific Options

Maximum Mumber of Outer Loop Iterations 1 :

Consider Binding Contingent Violations from Last SCOPF Solution

Initialize SCOPF with Previously Binding Constraints
Set Solution as Contingency Analysis Reference Case
Maximum Mumber of Contingency Violations Allow Per Element 12

Basecase Solution Method
(®) Solve base case using the power flow

(") Solve base case using optimal power flow

Handling of Contingent Violations Due to Radial Load
(®) Flag violations but do notincude them in SCOPF
() Completely ignore these violations

() Include these violations in the SCOPF

DC SCOPF Options
Storage and Reuse of LODFs {when appropriate)

(® MNone (used and disgarded) C|EEIF. Stored
Contingency
() stored in memary anly Analysis LODFs

(D stored in memory and case pwb file

to redo contingency
SCOPF Results Summary analys i S
Mumber of Cuter Loop Iterations

x

Mumber of Contingent Viclations 1

SCOPF Start Time 11/1/3017 7:55:50 AM

SCOPF End Time

Total Solution Time (Seconds) 0,138
Total LP Iterations 24
Final Cost Function ($/Hr) 6301.94

|
|
|
11/1/2017 7:55:50 AM |
|
|
|

Contingency Analysis Input

MNumber of Active Contingendies:

Contingency Analysis Results
Solving contingency L_000003Three-000004FourC1 -
Applied:
OPEM Line Three_138.0 (3) TO Four_138.0 (4) CKT 1| | CHECK | | Oper
Contingency L_000003Three-000004FourC 1 successfully salved.
Solving contingency L_000004Four-000005FiveC1
Applied:
CPEM Line Four_138.0 (4) TO Five_138.0 (5) CKT 1| | CHECK | | Opene
Contingency L_000004Four-000005FiveC 1 successfully solved.
Contingency Analysis finished at Movember 01, 2017 07:55:50

View Contingency
Analysis Form

< >
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LP OPF and SCOPF Issues
T
The LP approach 1s widely used for the OPF and SCOPF, particularly
when implementing a dc power flow approach

A key 1ssue 1s determining the number of binding constraints to
enforce in the LP tableau

- Enforcing too many is time-consuming, enforcing too few results in excessive
iterations

The LP approach 1s limited by the degree of linearity in the power

system

— Real power constraints are fairly linear, reactive power constraints much less
SO
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