ECEN 615 Methods of Electric Power Systems Analysis

Lecture 22: Linear Programming, Optimal Power Flow,

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University <u>overbye@tamu.edu</u>

Announcements

- Read Chapter 8
- Read the Chapter 3 appendices (3A covers optimization with constraints, 3B covers linear programming, 3D covers dynamic programming, and 3E convex optimization
- An excellent book on optimization is Linear and Nonlinear Programming by Luenberger and Ye (the 5th edition came out in 2021)
- Homework 6 is due today
- Exam 2 is on Thursday Dec 1 during class (for the on campus students); it will be comprehensive, but with more emphasis on the material after the first exam

Quick Coverage of Linear Programming

- LP is probably the most widely used mathematical programming technique
- It is used to solve linear, constrained minimization (or maximization) problems in which the objective function and the constraints can be written as linear functions

Example Problem 1 (mentioned in Lecture 21)

• Assume that you operate a lumber mill which makes both constructiongrade and finish-grade boards from the logs it receives. Suppose it takes 2 hours to rough-saw and 3 hours to plane each 1000 board feet of construction-grade boards. Finish-grade boards take 2 hours to roughsaw and 5 hours to plane for each 1000 board feet. Assume that the saw is available 8 hours per day, while the plane is available 15 hours per day. If the profit per 1000 board feet is \$100 for construction-grade and \$120 for finish-grade, how many board feet of each should you make per day to maximize your profit?

A M

Problem 1 Setup

Let x_1 =amount of cg, x_2 = amount of fg Maximize $100x_1 + 120x_2$ s.t. $2x_1 + 2x_2 \le 8$ $3x_1 + 5x_2 \le 15$ $x_1, x_2 \ge 0$

Notice that all of the equations are linear, but they are inequality, as opposed to equality, constraints; we are seeking to determine the values of x_1 and x_2

Example Problem 2 (Nutritionist Problem)

A nutritionist is planning a meal with 2 foods: A and B. Each ounce of A costs \$ 0.20, and has 2 units of fat, 1 of carbohydrate, and 4 of protein. Each ounce of B costs \$0.25, and has 3 units of fat, 3 of carbohydrate, and 3 of protein. Provide the least cost meal which has no more than 20 units of fat, but with at least 12 units of carbohydrates and 24 units of protein.

A M

6

Problem 2 Setup

Let x_1 =ounces of A, x_2 = ounces of B Minimize $0.20x_1 + 0.25x_2$ s.t. $2x_1 + 3x_2 \le 20$ $x_1 + 3x_2 \ge 12$ $4x_1 + 3x_2 \ge 24$ $x_1, x_2 \ge 0$

Again all of the equations are linear, but they are inequality, as opposed to equality, constraints; we are again seeking to determine the values of x_1 and x_2 ; notice there are also more constraints than solution variables

Three Bus Case Formulation

7

• For the earlier three bus system given the initial condition of an overloaded transmission line, minimize the cost of generation such that

the change in generationis zero, and the flowon the line betweenbuses 1 and 3 is notviolating its limit

• Can be setup considering the change in generation, $(\Delta P_{G1}, \Delta P_{G2}, \Delta P_{G3})$

Three Bus Case Problem Setup

Let $x_1 = \Delta P_{G1}$, $x_2 = \Delta P_{G2}$, $x_3 = \Delta P_{G3}$ Minimize $10x_1 + 12x_2 + 20x_3$ s.t. $\frac{2}{3}x_1 + \frac{1}{3}x_2 \le -20$ Line flow constraint $x_1 + x_2 + x_3 = 0$ Power balance constraint enforcing limits on x_1 , x_2 , x_3

LP Standard Form

The star	ndard form of the LP	problem is				
Minimiz	ze cx	Maximum problems can be treated as				
s.t.	Ax = b	minimizing the negative				
	$\mathbf{x} \ge 0$					
where	$\mathbf{x} = \mathbf{n}$ -dimension	$\mathbf{x} = n$ -dimensional column vector				
	$\mathbf{c} = \mathbf{n}$ -dimension	$\mathbf{c} = \mathbf{n}$ -dimensional row vector				
	$\mathbf{b} = \mathbf{m}$ -dimension	nal column vector				
	$\mathbf{A} = \mathbf{m} \times \mathbf{n}$ matrix					
For the	LP problem usually	n>> m				
Т	The previous examples w	vere not in this form!				

Replacing Inequality Constraints with Equality Constraints

- The LP standard form does not allow inequality constraints
- Inequality constraints can be replaced with equality constraints through the introduction of slack variables, each of which must be greater than or equal to zero

$$\dots \le b_i \to \dots + y_i = b_i \quad \text{with } y_i \ge 0$$
$$\dots \ge b_i \to \dots - y_i = b_i \quad \text{with } y_i \ge 0$$

• Slack variables have no cost associated with them; they merely tell how far a constraint is from being binding, which will occur when its slack variable is zero

Lumber Mill Example with Slack Variables

• Let the slack variables be x_3 and x_4 , so

Minimize $-(100x_1 + 120x_2)$ s.t. $2x_1 + 2x_2 + x_3 = 8$ $3x_1 + 5x_2 + x_4 = 15$ $x_1, x_2, x_3, x_4 \ge 0$ Minimize the negative

LP Definitions

A vector \mathbf{x} is said to be basic if

This is a key LP concept!

1. Ax = b

2. At most m components of \mathbf{x} are non-zero; these are called the basic variables; the rest are non basic variables; if there are less than m non-zeros then

x is called degenerate

 $A_{\rm B}$ is called the basis matrix

Define
$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_{B} \\ \mathbf{x}_{N} \end{bmatrix}$$
 (with \mathbf{x}_{B} basic) and $\mathbf{A} = \begin{bmatrix} \mathbf{A}_{B} & \mathbf{A}_{N} \end{bmatrix}$
With $\begin{bmatrix} \mathbf{A}_{B} & \mathbf{A}_{N} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{B} \\ \mathbf{x}_{N} \end{bmatrix} = \mathbf{b}$ so $\mathbf{x}_{B} = \mathbf{A}_{B}^{-1} (\mathbf{b} - \mathbf{A}_{N} \mathbf{x}_{N})$

Fundamental LP Theorem

- Given an LP in standard form with A of rank m then
 - If there is a feasible solution, there is a basic feasible solution
 - If there is an optimal, feasible solution, then there is an optimal, basic feasible solution
- Note, there could be a LARGE number of basic, feasible solutions
 - Simplex algorithm determines the optimal,
 basic feasible solution usually very quickly

LP Graphical Interpretation

- The LP constraints define a polyhedron in the solution space •
 - This is a polytope if the polyhedron is bounded and nonempty
 - The basic, feasible _ solutions are vertices of this polyhedron
 - With the linear cost function the solution will be at one of vertices

11

Image: Figure 3.26 from course text

Simplex Algorithm

- The key is to move intelligently from one basic feasible solution (i.e., a vertex) to another, with the goal of continually decreasing the cost function
- The algorithm does this by determining the "best" variable to bring into the basis; this requires that another variable exit the basis, while always retaining a basic, feasible solution
- This is called pivoting

Determination of Variable to Enter the Basis

• To determine which non-basic variable should enter the basis (i.e., one which currently 0), look at how the cost function changes w.r.t. to a change in a non-basic variable (i.e., one that is currently zero)

Define
$$\mathbf{z} = \mathbf{c} \, \mathbf{x} = \begin{bmatrix} \mathbf{c}_B & \mathbf{c}_N \end{bmatrix} \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{bmatrix}$$

With
$$\mathbf{x}_{\mathrm{B}} = \mathbf{A}_{B}^{-1} (\mathbf{b} - \mathbf{A}_{N} \mathbf{x}_{\mathrm{N}})$$

Then $\mathbf{z} = \mathbf{c}_{B} \mathbf{A}_{B}^{-1} \mathbf{b} + (\mathbf{c}_{N} - \mathbf{c}_{B} \mathbf{A}_{B}^{-1} \mathbf{A}_{N}) \mathbf{x}_{\mathrm{N}}$

Elements of \mathbf{x}_n are all zero, but we are looking to change one to decrease the cost

Determination of Variable to Enter the Basis, cont.

• Define the reduced (or relative) cost coefficients as

$$\mathbf{r} = \mathbf{c}_N - \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{A}_N$$

r is an n-m dimensional row vector

- Elements of this vector tell how the cost function will change for a change in a currently non-basic variable
- The variable to enter the basis is usually the one with the most negative relative cost
- If all the relative costs are nonnegative then we are at an optimal solution

Determination of Variable to Exit Basis

• The new variable entering the basis, say a position j, causes the values of all the other basic variables to change. In order to retain a basic, feasible solution, we need to insure no basic variables become negative. The change in the basic variables is given by

$$\tilde{\mathbf{x}}_B = \mathbf{x}_B - \mathbf{A}_B^{-1} \mathbf{a}_j \,\varepsilon$$

where ε is the value of the variable entering the basis, and \mathbf{a}_{i} is its associated column in A

Determination of Variable to Exit Basis, cont.

$$\tilde{\mathbf{x}}_B = \mathbf{x}_B - \mathbf{A}_B^{-1} \mathbf{a}_j \varepsilon \ge \mathbf{0}$$

If no such ε exists then the problem is unbounded; otherwise at least one component of $\tilde{\mathbf{x}}_B$ equals zero.

The associated variable exits the basis.

Canonical Form

A M

- The Simplex Method works by having the problem in what is known as canonical form
- Canonical form is defined as having the m basic variables with the property that each appears in only one equation, its coefficient in that equation is unity, and none of the other basic variables appear in the same equation
- Sometime canonical form is readily apparent

Minimize $-(100x_1 + 120x_2)$ Note that with x_3 and x_4 ass.t. $2x_1 + 2x_2 + x_3 = 8$ basic variables A_B is the $3x_1 + 5x_2 + x_4 = 15$ identity matrix $x_1, x_2, x_3, x_4 \ge 0$ $x_1, x_2, x_3, x_4 \ge 0$

Canonical Form

- Other times canonical form is achieved by initially adding artificial variables to get an initial solution
- Example of the nutrition problem in canonical form with slack and artificial variables (denoted as y) used to get an initial basic feasible solution

Let
$$x_1$$
=ounces of A, x_2 = ounces of B
Minimize $y_1+y_2+y_3$
s.t. $2x_1+3x_2+x_3+y_1 = 20$
 $x_1+3x_2-x_4+y_2 = 12$
 $4x_1+3x_2-x_5+y_3 = 24$
 $x_1, x_2, x_3, x_4, x_5, y_1, y_2, y_3 \ge 0$

Note that with y_1 , y_2 , and y_3 as basic variables A_B is the identity matrix

LP Tableau

- With the system in canonical form, the Simplex solution process can be illustrated by forming what is known as the LP tableau
 - Initially this corresponds to the A matrix, with a column appended to include the b vector, and a row added to give the relative cost coefficients; the last element is the negative of the cost function value
 - Define the tableau as \mathbf{Y} , with elements \mathbf{Y}_{ij}
 - In canonical form the last column of the tableau gives the values of the basic variables
- During the solution the tableau is updated by pivoting

LP Tableau for the Nutrition Problem with Artificial Variables

• When in canonical form the relative costs vector is

$$\mathbf{r} = \mathbf{c}_N - \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{A}_N = \mathbf{c}_B \mathbf{A}_N$$
$$\mathbf{r} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}^T -\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 & 0 & 0 \\ 1 & 3 & 0 & -1 & 0 \\ 4 & 3 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -7 \\ -9 \\ -1 \\ 1 \\ 1 \end{bmatrix}^T$$

• The initial tableau for the artificial problem is then

X.	\boldsymbol{x}_{2}	\boldsymbol{x}_{2}	X.	X-	\mathcal{V}_{1}	v_{2}	\mathcal{V}_{2}		
2	3	1	0	0	1	0 0) 0	20	Note the last column
1	3	0	-1	0	0	1	0	12	gives the values of the basic variables
4	3	0	0	-1	0	0	1	24	the basic variables
-7	-9	-1	1	1	0	0	0	-56	

LP Tableau Pivoting

- A M
- Pivoting is used to move from one basic feasible solution to another
 - Select the pivot column (i.e., the variable coming into the basis, say q) as the one with the most negative relative cost
 - Select the pivot row (i.e., the variable going out of the basis) as the one with the smallest ratio of x_i/Y_{iq} for $Y_{iq} >0$; define this as row p (x_i is given in the last column)

That is, we find the largest value ε such

$$\tilde{\mathbf{x}}_B = \mathbf{x}_B - \mathbf{A}_B^{-1} \mathbf{a}_q \mathcal{E} \ge \mathbf{0}$$

If no such ε exists then the problem is unbounded;

otherwise at least one component of $\tilde{\mathbf{x}}_B$ equals zero.

The associated variable exits the basis.

LP Tableau Pivoting for Nutrition Problem

• Starting at

• Pivot on column q=2; for row get minimum of {20/3, 12/3, 24/3}, which is row p=2

LP Tableau Pivoting

- Pivoting on element Y_{pq} is done by
 - First dividing row p by Y_{pq} to change the pivot element to unity.
 - Then subtracting from the kth row Y_{kq}/Y_{pq} times the pth row for all rows with $Y_{kq} <> 0$

	x_1	x_2	x_3	x_4	X_5	\mathcal{Y}_1	${\mathcal{Y}}_2$	\mathcal{Y}_3		
	2	3	1	0	0	1	0	0	20	I'm only chowing
	1	3	0	-1	0	0	1	0	12	fractions with two
	4	3	0	0	-1	0	0	1	24	ROD digits
	-7	-9	-1	1	1	0	0	0	-56	ited angles
	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>x</i> ₅	\mathcal{Y}_1	${\mathcal{Y}}_2$	y_3		
	1	0	1	1	0	1	-1	0	8	
Pivoting gives	0.33	1	0	-0.33	0	0	0.33	3 0	4	
	3	0	0	1	-1	0	-1	1	12	
	-4	0	-1	-2	1	0	3	0	-20	

A M

LP Tableau Pivoting, Example, cont.

• Next pivot on column 1, row 3

• Which gives

x_1	x_2	x_3	X_4	X_5	\mathcal{Y}_1	${\mathcal{Y}}_2$	\mathcal{Y}_3	
0	0	1	0.67	0.33	1	-0.67	-0.33	4
0	1	0	-0.44	0.11	0	0.44	-0.11	2.67
1	0	0	0.33	-0.33	0	-0.33	0.33	4.0
0	0	-1	-0.67	-0.33	0	1.67	1.33	-4

LP Tableau Pivoting, Example, cont.

• Next pivot on column 3, row 1

 x_2 X_{4} X_5 X_1 X_3 \mathcal{Y}_1 ${\mathcal{Y}}_2$ y_3 0 1 0.67 0.33 1 -0.67 -0.330 4 0 1 0 -0.440.11 0 0.44 -0.112.67 1 0.33 0 -0.33 0 -0.330.33 0 4 0 -1 -0.67 -0.33 0 1.67 0 1.33 -4

• Which gives

x_1	x_2	x_3	X_4	x_5	\mathcal{Y}_1	${\mathcal Y}_2$	\mathcal{Y}_3	
0	0	1	0.67	0.33	1	-0.67	-0.33	4
0	1	0	-0.44	0.11	0	0.44	-0.11	2.67
1	0	0	0.33	-0.33	0	-0.33	0.33	4
0	0	0	0	0	1	1	1	0

LP Tableau Full Problem

- The tableau from the end of the artificial problem is used as the starting point for the actual solution
 - Remove the artificial variables
 - Update the relative costs with the costs from the original problem and update the bottom right-hand corner value

$$\mathbf{c} = \begin{bmatrix} 0.2 & 0.25 & 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{r} = \mathbf{c}_N - \mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{A}_N = \mathbf{c}_B \mathbf{A}_N$$
$$\mathbf{r} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}^T - \begin{bmatrix} 0 & 0.25 & 0.2 \end{bmatrix} \begin{bmatrix} 0.67 & 0.33 \\ -0.44 & 0.11 \\ 0.33 & -0.33 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix}^T$$

• Since none of the relative costs are negative we are done with $x_1=4$, $x_2=2.7$ and $x_3=4$

Marginal Costs of Constraint Enforcement in LP

If we would like to determine how the cost function will change for changes in **b**, assuming the set of basic variables does not change The m used to the set

then we need to calculate

$$\frac{\partial z}{\partial \mathbf{b}} = \frac{\partial (\mathbf{c}_B \mathbf{x}_B)}{\partial \mathbf{b}} = \frac{\partial (\mathbf{c}_B \mathbf{A}_B^{-1} \mathbf{b})}{\partial \mathbf{b}} = \mathbf{c}_B \mathbf{A}_B^{-1} = \lambda$$

So the values of λ tell the marginal cost of enforcing each constraint.

The marginal costs will be used to determine the OPF locational marginal costs (LMPs)

Nutrition Problem Marginal Costs

• In this problem we had basic variables 1, 2, 3; nonbasic variables of 4 and 5

$$\mathbf{x}_{\mathrm{B}} = \mathbf{A}_{\mathrm{B}}^{-1} (\mathbf{b} - \mathbf{A}_{\mathrm{N}} \mathbf{x}_{\mathrm{N}}) = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 3 & 0 \\ 4 & 3 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 20 \\ 12 \\ 24 \end{bmatrix} = \begin{bmatrix} 4 \\ 2.67 \\ 4 \end{bmatrix}$$
$$\boldsymbol{\lambda} = \mathbf{c}_{\mathrm{B}} \mathbf{A}_{\mathrm{B}}^{-1} = \begin{bmatrix} 0.2 & 0.25 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 1 & 3 & 0 \\ 4 & 3 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 \\ 0.044 \\ 0.039 \end{bmatrix}$$

There is no marginal cost with the first constraint since it is not binding; values tell how cost changes if the **b** values were changed

Lumber Mill Example Solution

Minimize $-(100x_1 + 120x_2)$

s.t.

$$(1 + 2x_1 + 2x_2 + x_3) = 8$$

$$3x_1 + 5x_2 + x_4 = 15$$

$$x_1, x_2, x_3, x_4 \ge 0$$

The solution is $x_1 = 2.5, x_2 = 1.5, x_3 = 0, x_4 = 0$

Then $\lambda = \begin{bmatrix} 100 & 120 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix}^{-1} = \begin{bmatrix} 35 \\ 10 \end{bmatrix}$

An initial basic feasible solution is $x_1 = 0, x_2 = 0, x_3 = 8, x_4 = 15$

Economic interpretation of λ
is the profit is increased by
35 for every hour we up the
first constraint (the saw) and
by 10 for every hour we up the
second constraint (plane)

Complications

A M

- Often variables are not limited to being ≥ 0
 - Variables with just a single limit can be handled by substitution; for example if $x \ge 5$ then $x-5=z \ge 0$
 - Bounded variables, high $\ge x \ge 0$ can be handled with a slack variable so x + y = high, and $x, y \ge 0$
- Unbounded conditions need to be detected (i.e., unable to pivot); also the solution set could be null

Minimize $x_1 - x_2$ s.t. $x_1 + x_2 \ge 8$ $\rightarrow x_1 + x_2 - y_1 = 8 \rightarrow x_2 = 8$ is a basic feasible solution $x_1 \quad x_2 \quad y_1$ $1 \quad 1 \quad -1 \quad 8$ $2 \quad 0 \quad -1 \quad 8$

Complications

Degenerate Solutions

- Occur when there are less than m basic variables > 0
- When this occurs the variable entering the basis could also have a value of zero; it is possible to cycle, anti-cycling techniques could be used
- Nonlinear cost functions
 - Nonlinear cost functions could be approximated by assuming a piecewise linear cost function
- Integer variables
 - Sometimes some variables must be integers; known as integer programming; we'll discuss after some power examples

LP Optimal Power Flow

- LP OPF was introduced in
 - B. Stott, E. Hobson, "Power System Security Control Calculations using Linear Programming," (Parts 1 and 2) *IEEE Trans. Power App and Syst.*, Sept/Oct 1978
 - O. Alsac, J. Bright, M. Prais, B. Stott, "Further Developments in LP-based Optimal Power Flow," *IEEE Trans. Power Systems*, August 1990
- It is a widely used technique, particularly for real power optimization; it is the technique used in PowerWorld

LP Optimal Power Flow

- Idea is to iterate between solving the power flow, and solving an LP with just a selected number of constraints enforced
- The power flow (which could be ac or dc) enforces the standard power flow constraints
- The LP equality constraints include enforcing area interchange, while the inequality constraints include enforcing line limits; controls include changes in generator outputs
- LP results are transferred to the power flow, which is then resolved

LP OPF Introductory Example

- In PowerWorld load the **B3LP** case and then display the LP OPF Dialog (select **Add-Ons, OPF Case Info, OPF Options and Results**)
- Use Solve LP OPF to solve the OPF, initially with no line limits enforced; this is similar to economic dispatch with a single power balance equality constraint
- The LP results are available from various pages on the dialog

LP OPF Introductory Example, cont

Options Common Options	LP Solution Deta All LP Variables	IIS	LP Basis Matrix II	overse of LP Ba	asis Trace Solu	tion							
Constraint Options Control Options		4k tos one 👬	Records *	Set • Colum	ins • 📴 • 📲	B + 80X0 + ∰	★ SORT 124 ABCD f(x) ★	🖽 🛛 Options 🕶					
Advanced Options Results Solution Summary		ID	Org. Value	Value	Delta Value	BasicVar	NonBasicVar	Cost(Down)	Cost(Up)	Down Range	Up Range	Reduced Cost Up	Reduced Cost Down
	1 Gen 1	#1 MW Control	180.000	180.000	-0.000		0	10.00	10.00	20.000	60.000	0.000	0.0
Bus Mvar Marginal Price Details	2 Gen 2	#1 MW Control	0.000	0.000	0.000	0	2	At Min	12.00	At Min	80.000	1.997	-20010.0
Bus Marginal Controls	A Slack /	+ I MW CONTON	0.000	0.000	0.000		2	At Min	20.00	At Min	At Max	4020 005	-20010.0
 LP Solution Details All LP Variables LP Basic Variables LP Basis Matrix Inverse of LP Basis Trace Solution 													

LP OPF Introductory Example, cont

• On use **Options, Constraint Options** to enable the enforcement of the Line/Transformer MVA limits

Options	Options
Common Options Constraint Options Constraint Options Advanced Options Advanced Options Solution Summary Bus MW Marginal Price Details Bus Mvar Marginal Price Details Bus Marginal Controls LP Solution Details All LP Variables LP Basic Variables LP Basis Matrix Inverse of LP Basis Trace Solution	Common Options Constraint Options Control Options Advanced Options Line/Transformer Constraints

LP OPF Introductory Example, cont.

40

Bus 1 10.00 \$/MWh

---(F)

120.0 MW

Example 6_23 Optimal Power Flow

АМ

On the **Options**, **Environment**

page the simulation can be set to solve an OPF when simulating

Open the case **Example6_23_OPF.** In this example the load is gradually increased

Locational Marginal Costs (LMPs)

- In an OPF solution, the bus LMPs tell the marginal cost of supplying electricity to that bus
- The term "congestion" is used to indicate when there are elements (such as transmission lines or transformers) that are at their limits; that is, the constraint is binding
- Without losses and without congestion, all the LMPs would be the same
- Congestion or losses causes unequal LMPs
- LMPs are often shown using color contours; a challenge is to select the right color range!

Example 6_23 Optimal Power Flow with Load Scale = 1.72

Example 6_23 Optimal Power Flow with Load Scale = 1.72

LP Sensitivity Matrix (A Matrix)

[1] I. A. MARKEN, MARKEN MARKEN, MARKEN MARKEN, MARKEN, MARKEN, MARKEN, MAR	LP Solution Details
Common Options Constraint Options	All LP Variables LP Basic Variables LP Basis Matrix Inverse of LP Basis Trace Solution
Control Options	: 🔄 🔲 🏗 👫 號 🦛 🍓 Records - Set - Columns - 📴 - 🗱 - - 類 - 新 - Dptions -
 Advanced Options Results 	Constraint ID Contingency ID RHS b value Lambda Slack Pos Gen 1 #1 MW Gen 2 #1 MW Gen 4 #1 MW Slack-Area Top Slack-Line 2 TO 5 Control Control Control Control Control Control Control CKT 1
Bus MW Marginal Price Details Bus Mvar Marginal Price Details Bus Marginal Controls UP Solution Details All LP Variables LP Basic Variables LP Basis Matrix Inverse of LP Basis	2 Line from 2 to 5 ckt. 1 Base Case 0.000 10.541 5 0.025 -0.151 1.000
Trace Solution	

The first row is the power balance constraint, while the second row is the line flow constraint. The matrix only has the line flows that are being enforced.

Example 6_23 Optimal Power Flow with Load Scale = 1.82

• This situation is infeasible, at least with available controls. There is a solution because the OPF is allowing one of the constraints to violate (at high cost)

Generator Cost Curve Modeling

- LP algorithms require linear cost curves, with piecewise linear curves used to approximate a nonlinear cost function
- Two common ways of entering cost information are
 - Quadratic function
 - Piecewise linear curve
- The PowerWorld OPF supports both types

Bus Number	1	~ ‡	Find By Number	Status Open					
Bus Name	Name 1 V Find By Na		Find By Name	Closed					
ID	1	Find			Energized				
Area Name	Home (1)			YES (Online)					
Labels	no labels			Fuel Type	Unknown				
	Generator MVA Base 10	0.00		Unit Type	UN (Unknown)	,			
Power and Vo	oltage Control Costs O	PF F	aults Owners,	Area, etc. Cu	stom Stability				
Output Cost	Model Bid Scale/Shift C	OPF Res	erve Bids						
Cost Mode	1		119	Cubic Cost Mod	el				
ONone	24.24			Cubic Input/Ou	utput Model (MBtu/h)				
Cubic C	Cost Model			A (Enter a	s Fixed Cost)				
OPiecewi	ise Linear			B 10.00					
Unit Fuel (Cost (\$/MBtu)	<u> </u>	1.000	C 0.0000	1				
				0.0000					
variable C	Jam (s/mvvn)		0.000	Carment Oubia	te Linger Coat				
Fixed Cost	s (costs at zero MW output	t)		Number of	to Linedi Cost				
Fuel Cost In	ndependent Value (\$/hr)		0.00 🌻	Break Points	0				
Fuel Cost D	ependent Value (Mbtu/hr)		0.00	Convert to	o Linear Cost				
Total Fixed	Costs (\$/hr)).00		1				
		15	St.						
-			-		10 10 10	t			

Security Constrained OPF

- Security constrained optimal power flow (SCOPF) is similar to OPF except it also includes contingency constraints
 - Again the goal is to minimize some objective function, usually the current system cost, subject to a variety of equality and inequality constraints
 - This adds significantly more computation, but is required to simulate how the system is actually operated (with N-1 reliability)
- A common solution is to alternate between solving a power flow and contingency analysis, and an LP

Security Constrained OPF, cont.

- With the inclusion of contingencies, there needs to be a distinction between what control actions must be done pre-contingent, and which ones can be done post-contingent
 - The advantage of post-contingent control actions is they would only need to be done in the unlikely event the contingency actually occurs
- Pre-contingent control actions are usually done for line overloads, while post-contingent control actions are done for most reactive power control and generator outage re-dispatch

SCOPF Example

• We'll again consider Example 6_23, except now it has been enhanced to include contingencies and we've also greatly increased the capacity on the line between buses 4 and 5; named Bus5_SCOPF_DC

Original with line 4-5 limit of 60 MW with 2-5 out Modified with line 4-5 limit of 200 MVA with 2-5 out AM

PowerWorld SCOPF Application

2 🔁 - 👺 🖪 🖽 🧱 🛙		Security Constrained Optimal Power Flow Form - Case: Example6_23			
File Case Information Run Full Security SCOPF Status SCOPF Solved Com	Constrained OPF	ve As Aux Load Aux To redo contingen			
 Results Contingency Violations Bus Marginal Price Details Bus Marginal Controls LP Solution Details All LP Variables LP Basic Variables LP Basis Matrix 	SCOPF Specific Options Maximum Number of Outer Loop Iterations Consider Binding Contingent Violations from Last SCOPF Solution Consider Binding Contingency Violations from Last SCOPF Solution Contingency Analysis Reference Case Maximum Number of Contingency Violations Allow Per Element 12 Basecase Solution Method Solve base case using the power flow Solve base case using optimal power flow Handling of Contingent Violations Due to Radial Load Flag violations but do not include them in SCOPF Completely ignore these violations Indude these violations	SCOPF Results Summary analysis Number of Outer Loop Iterations 1 Number of Contingent Violations 1 SCOPF Start Time 11/1/2017 7:55:50 AM SCOPF End Time 11/1/2017 7:55:50 AM Total Solution Time (Seconds) 0.136 Total LP Iterations 24 Final Cost Function (\$/Hr) 6301.94 Contingency Analysis Input View Contingency Analysis Form			
	DC SCOPF Options Storage and Reuse of LODFs (when appropriate) None (used and disgarded) Stored in memory only Stored in memory and case pwb file	Contingency Analysis Results Solving contingency L_000003Three-000004FourC1 Applied: OPEN Line Three_138.0 (3) TO Four_138.0 (4) CKT 1 CHECK Open Contingency L_000003Three-000004FourC1 successfully solved. Solving contingency L_000004Four-000005FiveC1 Applied: OPEN Line Four_138.0 (4) TO Five_138.0 (5) CKT 1 CHECK Opene Contingency L_000004Four-000005FiveC1 successfully solved, Contingency Analysis finished at November 01, 2017 07:55:50			

Ă,M

LP OPF and SCOPF Issues

- The LP approach is widely used for the OPF and SCOPF, particularly when implementing a dc power flow approach
- A key issue is determining the number of binding constraints to enforce in the LP tableau
 - Enforcing too many is time-consuming, enforcing too few results in excessive iterations
- The LP approach is limited by the degree of linearity in the power system
 - Real power constraints are fairly linear, reactive power constraints much less so