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Announcements

• Read Chapter 8

• Read the Chapter 3 appendices (3A covers optimization with constraints, 
3B covers linear programming, 3D covers dynamic programming, and 3E 
convex optimization

• An excellent book on optimization is Linear and Nonlinear Programming 
by Luenberger and Ye (the 5th edition came out in 2021)  

• Homework 6 is due today

• Exam 2 is on Thursday Dec 1 during class (for the on campus students); it 
will be comprehensive, but with more emphasis on the material after the 
first exam
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Quick Coverage of Linear Programming

• LP is probably the most widely used mathematical programming 
technique

• It is used to solve linear, constrained minimization (or maximization) 
problems in which the objective function and the constraints can be 
written as linear functions
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Example Problem 1 (mentioned in Lecture 21)

• Assume that you operate a lumber mill which makes both construction-
grade and finish-grade boards from the logs it receives.  Suppose it takes 
2 hours to rough-saw and 3 hours to plane each 1000 board feet of 
construction-grade boards.  Finish-grade boards take 2 hours to rough-
saw and 5 hours to plane for each 1000 board feet.  Assume that the saw 
is available 8 hours per day, while the plane is available 15 hours per 
day.  If the profit per 1000 board feet is $100 for construction-grade and 
$120 for finish-grade, how many board feet of each should you make 
per day to maximize your profit?
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Problem 1 Setup

1 2

1 2

1 2

1 2

1 2

Let x =amount of cg, x = amount of fg

Maximize    100 120

s.t.                2 2 8

                     3 5 15

                     , 0

x x

x x

x x

x x


 
 


Notice that all of the equations are linear, but they are 
inequality, as opposed to equality, constraints; we are 
seeking to determine the values of x1 and x2
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Example Problem 2 (Nutritionist Problem)

• A nutritionist is planning a meal with 2 foods: A and B.  Each ounce of A 
costs $ 0.20, and has 2 units of fat, 1 of carbohydrate, and 4 of protein. 
Each ounce of B costs $0.25, and has 3 units of fat, 3 of carbohydrate, and 
3 of protein.  Provide the least cost meal which has no more than 20 units 
of fat, but with at least 12 units of carbohydrates and 24 units of protein. 
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Problem 2 Setup

1 2

1 2

1 2

1 2

1 2

1 2

Let x =ounces of A, x = ounces of B

Minimize    0.20 0.25

s.t.                2 3 20

                     3 12

                     4 3 24

                     , 0

x x

x x

x x

x x

x x


 
 
 


Again all of the equations are linear, but they are inequality, as opposed 
to equality, constraints; we are again seeking to determine the values of 
x1 and x2; notice there are also more constraints than solution variables 
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Three Bus Case Formulation

• For the earlier three bus system given the initial condition of an 
overloaded transmission line, minimize the cost of generation such that 
the change in generation 
is zero, and the flow 
on the line between
buses 1 and 3 is not 
violating its limit

• Can be setup consider-
ing the change in
generation, (DPG1, DPG2, DPG3) 

Bus 2 Bus 1

Bus 3

Total Cost

0.0 MW

  0 MW

180 MW

10.00 $/MWh

 60 MW  60 MW

 60 MW

 60 MW
120 MW

120 MW

10.00 $/MWh

10.00 $/MWh

180.0 MW

  0 MW

1800 $/hr 

120%

120%
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Three Bus Case Problem Setup

1 G1 2 G2 3 G3

1 2 3

1 2

1 2 3

1 2 3

Let x = P , x = P , x = P

Minimize    10 12 20

2 1
s.t.                20

3 3
                     0

                     enforcing limits on ,  ,  

x x x

x x

x x x

x x x

D D D

 

  

  

Line flow constraint

Power balance constraint
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LP Standard Form

The standard form of the LP problem is 

Minimize    

s.t.               

                     

where         n-dimensional column vector

                   n-dimensional row vector

            






cx

Ax b

x 0

x

c

       m-dimensional column vector

                   m×n matrix

For the LP problem usually n>> m




b

A

Maximum problems can be treated as 
minimizing the negative

The previous examples were not in this form!
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Replacing Inequality Constraints with Equality 
Constraints

• The LP standard form does not allow inequality constraints

• Inequality constraints can be replaced with equality constraints 
through the introduction of slack variables, each of which must 
be greater than or equal to zero

• Slack variables have no cost associated with them; they merely 
tell how far a constraint is from being binding, which will occur 
when its slack variable is zero 

  with 0

  with 0
i i i i

i i i i

b y b y

b y b y

    

    

 

 

10



Lumber Mill Example with Slack Variables

• Let the slack variables be x3 and x4, so

1 2

1 2 3

1 2 4

1 2 3 4

Minimize    -(100 120 )

s.t.                2 2 8

                     3 5 15

                     , , , 0

x x

x x x

x x x

x x x x


  

  


Minimize the negative
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LP Definitions

A vector  is said to be basic if 

1.  

2.  At most m components of  are non-zero; these

are called the basic variables; the rest are non basic 

variables; if there are less than m non-zeros then 

 i


x

Ax b

x

x

 

   

B
B

N

B 1
B N

N

s called degenerate

Define   (with  basic) and 

With    so    

B N

B N B N


 
  
 

 
   

 

x
x x A A A

x

x
A A b x A b A x

x

AB is called the basis matrix

This is a key LP concept!
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Fundamental LP Theorem

• Given an LP in standard form with A of rank m then
– If there is a feasible solution, there is a basic feasible solution

– If there is an optimal, feasible solution, then there is an optimal, basic feasible 
solution

• Note, there could be a LARGE number of basic, feasible solutions
– Simplex algorithm determines the optimal, 

basic feasible solution usually very quickly
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LP Graphical Interpretation 

• The LP constraints define a polyhedron in the solution space
– This is a polytope if the polyhedron is bounded and nonempty

– The basic, feasible 
solutions are
vertices of this
polyhedron

– With the linear cost
function the solution
will be at one of
vertices

Image: Figure 3.26 from course text

A polyhedron can be 
unbounded
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Simplex Algorithm

• The key is to move intelligently from one basic feasible solution (i.e., a 
vertex) to another, with the goal of continually decreasing the cost 
function

• The algorithm does this by determining the “best” variable to bring into 
the basis; this requires that another variable exit the basis, while always 
retaining a basic, feasible solution

• This is called pivoting
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Determination of Variable to Enter the Basis 

• To determine which non-basic variable should enter the basis (i.e., 
one which currently 0), look at how the cost function changes w.r.t. 
to a change in a non-basic variable (i.e., one that is currently zero)

 

 
1

B N

1 1
N

Define [ ]

With  

Then 

B
B N

N

B N

B B N B B N



 

 
   

 

 

  

x
z cx c c

x

x A b A x

z c A b c c A A x

Elements of xn

are all zero, but 
we are looking 
to change one 
to decrease the 
cost
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Determination of Variable to Enter the Basis, cont.

• Define the reduced (or relative) cost coefficients as

• Elements of this vector tell how the cost function will change for 
a change in a currently non-basic variable

• The variable to enter the basis is usually the one with the most 
negative relative cost

• If all the relative costs are nonnegative then we are at an optimal 
solution

1
N B B N

 r c c A A r is an n-m dimensional
row vector  
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Determination of Variable to Exit Basis

• The new variable entering the basis, say a position j, causes the 
values of all the other basic variables to change.  In order to retain a 
basic, feasible solution, we need to insure no basic variables 
become negative.  The change in the basic variables is given by 

1

where  is the value of the variable entering the

basis, and  is its associated column in 

B B B j

j





 x x A a

a A


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Determination of Variable to Exit Basis, cont.

1

We find the largest value  such 

If no such  exists then the problem is unbounded; 

otherwise at least one component of equals zero.

The associated variable exits the basis.  

B B B j

B







  x x A a 0

x




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Canonical Form

• The Simplex Method works by having the problem in what is 
known as canonical form

• Canonical form is defined as having the m basic variables with the 
property that each appears in only one equation, its coefficient in 
that equation is unity, and none of the other basic variables appear 
in the same equation

• Sometime canonical form is readily apparent 

1 2

1 2 3

1 2 4

1 2 3 4

Minimize    -(100 120 )

s.t.                2 2 8

                     3 5 15

                     , , , 0

x x

x x x

x x x

x x x x


  

  


Note that with x3 and x4 as 
basic variables AB is the 
identity matrix
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Canonical Form 

• Other times canonical form is achieved by initially adding artificial 
variables to get an initial solution

• Example of the nutrition problem in canonical form with slack and artificial 
variables (denoted as y) used to get an initial basic feasible solution

1 2

1 2 3

1 2 3 1

1 2 4 2

1 2 5 3

1 2 3 4 5

Let x =ounces of A, x = ounces of B

Minimize    y +y +y

s.t.                2 3 20

                     3 12

                     4 3 24

                     , , , , ,

x x x y

x x x y

x x x y

x x x x x

   

   
   

1 2 3, , 0y y y 

Note that with y1, y2, 
and y3 as basic 
variables AB is the 
identity matrix
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LP Tableau

• With the system in canonical form, the Simplex solution process 
can be illustrated by forming what is known as the LP tableau
– Initially this corresponds to the A matrix, with a column appended to 

include the b vector, and a row added to give the relative cost coefficients; 
the last element is the negative of the cost function value

– Define the tableau as Y, with elements Yij

– In canonical form the last column of the tableau gives the values of the 
basic variables

• During the solution the tableau is updated by pivoting
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LP Tableau for the Nutrition Problem with Artificial 
Variables

• When in canonical form the relative costs vector is

• The initial tableau for the artificial problem is then

 

1

0 7

2 3 1 0 00 9

1 1 1 1 3 0 1 00 1

4 3 0 0 10 1

0 1

N B B N B N

T T

  

   
                        
      

r c c A A c A

r

1 2 3 4 5 1 2 3

2 3 1 0 0 1 0 0 20

1 3 0 1 0 0 1 0 12

4 3 0 0 1 0 0 1 24

7 9 1 1 1 0 0 0 56

x x x x x y y y




   

Note the last column 
gives the values of 
the basic variables
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LP Tableau Pivoting

• Pivoting is used to move from one basic feasible solution to another
– Select the pivot column (i.e., the variable coming into the basis, say q) as the 

one with the most negative relative cost

– Select the pivot row (i.e., the variable going out of the basis) as the one with 
the smallest ratio of xi/Yiq for Yiq >0; define this as row p (xi is given in the 
last column)

1

That is, we find the largest value  such 

If no such  exists then the problem is unbounded; 

otherwise at least one component of equals zero.

The associated variable exits the basis.

B B B q

B







  x x A a 0

x




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LP Tableau Pivoting for Nutrition Problem

• Starting at

• Pivot on column q=2; for row get minimum of 
{20/3, 12/3, 24/3), which is row p=2 

1 2 3 4 5 1 2 3

2 3 1 0 0 1 0 0 20

1 3 0 1 0 0 1 0 12

4 3 0 0 1 0 0 1 24

7 9 1 1 1 0 0 0 56

x x x x x y y y




   
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LP Tableau Pivoting

• Pivoting on element Ypq is done by 
– First dividing row p by Ypq to change the pivot element to unity.

– Then subtracting from the kth row Ykq/Ypq times the pth row for all rows with Ykq <> 0

1 2 3 4 5 1 2 3

2 3 1 0 0 1 0 0 20

1 0 1 0 0 1 0 12

4 3 0 0 1 0 0 1 24

7 9 1 1 1 0 0 0 56

x x x x x y y y




   

3

1 2 3 4 5 1 2 3

1 0 1 1 0 1 1 0 8

Pivoting gives   0.33 0 0.33 0 0 0.33 0 4

3 0 0 1 1 0 1 1 12

4 0 1 2 1 0 3 0 20

1

x x x x x y y y




 
   

I’m only showing
fractions with two
ROD digits
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LP Tableau Pivoting, Example, cont.

• Next pivot on column 1, row 3

• Which gives

1 2 3 4 5 1 2 3

1 0 1 1 0 1 1 0 8

0.33 0 0.33 0 0 0.33 0 4

0 0 1 1 0 1 1 12

4 0 1 2 1 0 3 0 20

1

x x x x x y y y




 
   
3

1 2 3 4 5 1 2 3

0 0 1 0.67 0.33 1 0.67 0.33 4

0 0 0.44 0.11 0 0.44 0.11 2.67

0 0 0.33 0.33 0 0.33 0.33 4.0

0 0 1 0.67 0.33 0 1.67 1.33 4

1
1

x x x x x y y y

 
 

 
   
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LP Tableau Pivoting, Example, cont.

• Next pivot on column 3, row 1

• Which gives

1 2 3 4 5 1 2 3

0 0 1 0.67 0.33 1 0.67 0.33 4

0 0 0.44 0.11 0 0.44 0.11 2.67

0 0 0.33 0.33 0 0.33 0.33 4

0 0 0 0 0 1 1 1 0

1
1

x x x x x y y y

 
 

 

Since there are no

negative relative 
costs we are done (with 
getting a starting solution)

1 2 3 4 5 1 2 3

0 0 0.67 0.33 1 0.67 0.33 4

0 0 0.44 0.11 0 0.44 0.11 2.67

0 0 0.33 0.33 0 0.33 0.33 4

0 0 1 0.67 0.33 0 1.67 1.33 4

1
1

x x x x x y y y

 
 

 
   

1
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LP Tableau Full Problem

• The tableau from the end of the artificial problem is used as the starting 
point for the actual solution
– Remove the artificial variables

– Update the relative costs with the costs from the original problem and update the 
bottom right-hand corner value 

• Since none of the relative costs are negative we are done with x1=4, 
x2=2.7 and x3=4

 

1

[0.2 0.25 0 0 0]

0.67 0.33
0 0.04

0 0.25 0.2 0.44 0.11
0 0.04

0.33 0.33

N B B N B N

T T





  

 
                

c

r c c A A c A

r
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Marginal Costs of Constraint Enforcement in LP

1
1

If we would like to determine how the cost function

will change for changes in , assuming the set

of basic variables does not change 

then we need to calculate 

( ) ( )

So the

B B B B
B B

z 
  

   
  

b

c x c A b
c A λ

b b b
 values of  tell the marginal cost of enforcing

each constraint. 

λ

The marginal costs will be 
used to determine the OPF 
locational marginal costs 
(LMPs)
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Nutrition Problem Marginal Costs

• In this problem we had basic variables 1, 2, 3; 
nonbasic variables of 4 and 5

 

 

B

B

1

1
B N N

1

1
B

2 3 1 20 4

1 3 0 12 2.67

4 3 0 24 4

2 3 1 0

0.2 0.25 0 1 3 0 0.044

4 3 0 0.039









     
             
          

   
        
      

x A b A x

λ c A

There is no marginal 
cost with the first 
constraint since it is 
not binding; values 
tell how cost changes 
if the b values were 
changed
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Lumber Mill Example Solution

 

1 2

1 2 3

1 2 4

1 2 3 4

1 2 3 4

1

Minimize    -(100 120 )

s.t.                2 2 8

                     3 5 15

                     , , , 0

The solution is  2.5, 1.5, 0, 0

2 2 35
Then  = 100 120

3 5 10

x x

x x x

x x x

x x x x

x x x x



  

  


   

  
    

λ



Economic interpretation of l
is the profit is increased by
35 for every hour we up the 
first constraint (the saw) and
by 10 for every hour we up the 
second constraint (plane)  

1 2 3 4

An initial basic feasible solution

is 0, 0, 8, 15x x x x   

32



Complications

• Often variables are not limited to being  0
– Variables with just a single limit can be handled by substitution;  for 

example if x  5 then x-5=z  0

– Bounded variables, high  x  0 can be handled with a slack variable so x + 
y = high, and x,y  0 

• Unbounded conditions need to be detected (i.e., unable to pivot); 
also the solution set could be null 

1 2 1 2

1 2 1 2

1 2 1

Minimize     s.t.  8

8 8 is a basic feasible solution

1 1 1 8

2 0 1 8

x x x x

x x y x

x x y

  
     



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Complications

• Degenerate Solutions
– Occur when there are less than m basic variables > 0

– When this occurs the variable entering the basis could also have a value of zero; it 
is possible to cycle, anti-cycling techniques could be used

• Nonlinear cost functions
– Nonlinear cost functions could be approximated by assuming a piecewise linear 

cost function 

• Integer variables
– Sometimes some variables must be integers; known as integer programming; 

we’ll discuss after some power examples 
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LP Optimal Power Flow

• LP OPF was introduced in 
– B. Stott, E. Hobson, “Power System Security Control Calculations using Linear 

Programming,” (Parts 1 and 2) IEEE Trans. Power App and Syst., Sept/Oct 1978

– O. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments in LP-based Optimal 
Power Flow,” IEEE Trans. Power Systems, August 1990

• It is a widely used technique, particularly for real power optimization; it 
is the technique used in PowerWorld
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LP Optimal Power Flow

• Idea is to iterate between solving the power flow, and solving an LP with 
just a selected number of constraints enforced

• The power flow (which could be ac or dc) enforces the standard power 
flow constraints

• The LP equality constraints include enforcing area interchange, while the 
inequality constraints include enforcing line limits; controls include 
changes in generator outputs

• LP results are transferred to the power flow, which is then resolved 
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LP OPF Introductory Example

• In PowerWorld load the B3LP case and then display the LP OPF 
Dialog (select Add-Ons, OPF Case Info, OPF Options and Results)

• Use Solve LP OPF to
solve the OPF, initially
with no line limits 
enforced; this is similar
to economic dispatch
with a single power 
balance equality constraint

• The LP results are available 
from various pages on the dialog

Bus 2 Bus 1

Bus 3

slack

Total Cost

10.00 $/MWh

 60 MW  60 MW

 60 MW

 60 MW
120 MW

120 MW

10.00 $/MWh

10.00 $/MWh
1800 $/h

0.0 MW

  0 MW

MW180

180.0 MW

MW  0
120%

120%
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LP OPF Introductory Example, cont
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LP OPF Introductory Example, cont

• On use Options, Constraint Options to enable the enforcement of 
the Line/Transformer MVA limits 
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LP OPF Introductory Example, cont.

Bus 2 Bus 1

Bus 3

slack

Total Cost

12.00 $/MWh

 20 MW  20 MW

 80 MW

 80 MW
100 MW

100 MW

10.00 $/MWh

14.00 $/MWh
1920 $/h

60.0 MW

  0 MW

MW180

120.0 MW

MW  0
100%

100%
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Example 6_23 Optimal Power Flow

Open the case Example6_23_OPF. In this example the load is gradually increased

On the Options, 
Environment
page the simulation 
can be set to solve an 
OPF when simulating
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Locational Marginal Costs (LMPs)

• In an OPF solution, the bus LMPs tell the marginal cost of supplying 
electricity to that bus

• The term “congestion” is used to indicate when there are elements (such 
as transmission lines or transformers) that are at their limits; that is, the 
constraint is binding

• Without losses and without congestion, all the LMPs would be the same

• Congestion or losses causes unequal LMPs

• LMPs are often shown using color contours; a challenge is to select the 
right color range!
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Example 6_23 Optimal Power Flow with Load 
Scale = 1.72

43



• LP Sensitivity Matrix (A Matrix)

Example 6_23 Optimal Power Flow with Load 
Scale = 1.72

The first row is the power balance constraint, while the second row is the line 
flow constraint.  The matrix only has the line flows that are being enforced.  
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Example 6_23 Optimal Power Flow with Load 
Scale = 1.82

• This situation is infeasible, at least with available controls.  There 
is a solution because the OPF is allowing one of the constraints to 
violate (at high cost)

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.95 pu1.04 pu

0.99 pu1.05 pu

 58%
A

MVA

 48%
A

MVA

 57%
A

MVA
 57%

A

MVA

133 MW

133 MW

 80 MW  80 MW 124 MW 124 MW

 64 MW

 64 MW

176 MW

176 MW

 42 MW

42 MW
 56 MW

11297.88 $/h

713.4 MW

235.47 $/MWh

1.82

16.82 $/MWh 20.74 $/MWh 22.07 $/MWh

15.91 $/MWh 1101.78 $/MWh

MW213

MW220

268 MW

 71 Mvar

143 MW

 54 Mvar

MW231.9
 71.3 Mvar

 71 MW
 36 Mvar

MW280

AGC ON

AGC ON

AGC ON
 89%

A

MV A

100%
A

MVA

100%
A

MVA
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Generator Cost Curve Modeling

• LP algorithms require linear cost curves, with piecewise linear curves used 
to approximate a nonlinear cost function

• Two common ways
of entering cost 
information are 
– Quadratic function

– Piecewise linear curve

• The PowerWorld OPF
supports both types 
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Security Constrained OPF

• Security constrained optimal power flow (SCOPF) is similar to OPF 
except it also includes contingency constraints
– Again the goal is to minimize some objective function, usually the current system 

cost, subject to a variety of equality and inequality constraints

– This adds significantly more computation, but is required to simulate how the 
system is actually operated (with N-1 reliability)

• A common solution is to alternate between solving a power flow and 
contingency analysis, and an LP
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Security Constrained OPF, cont.

• With the inclusion of contingencies, there needs to be a distinction 
between what control actions must be done pre-contingent, and which 
ones can be done post-contingent
– The advantage of post-contingent control actions is they would only need to be done 

in the unlikely event the contingency actually occurs

• Pre-contingent control actions are usually done for line overloads, while 
post-contingent control actions are done for most reactive power control 
and generator outage re-dispatch 
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SCOPF Example

• We’ll again consider Example 6_23, except now it has been enhanced to 
include contingencies and we’ve also greatly increased the capacity on 
the line between buses 4 and 5; named Bus5_SCOPF_DC

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.82 pu1.04 pu

1.00 pu1.05 pu

 36%
A

MVA
 80%

A

MVA

 57%
A

MVA
 12%

A

MVA

 53 MW

 53 MW

 82 MW  82 MW  26 MW  26 MW

 91 MW

 91 MW

  0 MW

  0 MW

 96 MW

96 MW
127 MW

5729.74 $/h

392.0 MW

14.70 $/MWh

1.00

14.33 $/MWh 14.87 $/MWh 15.05 $/MWh

14.20 $/MWh 15.05 $/MWh

MW135

MW173

147 MW
 39 Mvar

 78 MW
 29 Mvar

MW127.4
 39.2 Mvar

 39 MW
 20 Mvar

MW 84

AGC ON

AGC ON

AGC ON 80%
A

MVA100%
A

MVA

Total Hourly Cost:

Total Area Load:

Marginal Cost ($/MWh):

Load Scalar: 

slack

1

2

3 4

5

1.00 pu

0.82 pu1.04 pu

1.00 pu1.05 pu

 36%
A

MVA
 80%

A

MVA

 57%
A

MVA
 12%

A

MVA

 53 MW

 53 MW

 82 MW  82 MW  26 MW  26 MW

 91 MW

 91 MW

  0 MW

  0 MW

 96 MW

96 MW
127 MW

5729.74 $/h

392.0 MW

319.73 $/MWh

1.00

14.33 $/MWh 14.87 $/MWh 15.05 $/MWh

14.20 $/MWh 1540.19 $/MWh

MW135

MW173

147 MW
 39 Mvar

 78 MW
 29 Mvar

MW127.4
 39.2 Mvar

 39 MW
 20 Mvar

MW 84

AGC ON

AGC ON

AGC ON100%
A

MVA

268%
A

MVA

Original with line 4-5 limit of 60 
MW with 2-5 out 

Modified with line 4-5 limit of 200 
MVA with 2-5 out 
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PowerWorld SCOPF Application

Just click the button to solve

Number of times
to redo contingency
analysis
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LP OPF and SCOPF Issues

• The LP approach is widely used for the OPF and SCOPF, particularly 
when implementing a dc power flow approach

• A key issue is determining the number of binding constraints to 
enforce in the LP tableau
– Enforcing too many is time-consuming, enforcing too few results in excessive 

iterations

• The LP approach is limited by the degree of linearity in the power 
system
– Real power constraints are fairly linear, reactive power constraints much less 

so  
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